Constructive Neural Networks as Estimators of

Bayesian Discriminant Functions'

Dit-Yan Yeung
Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon
Hong Kong

17 February 1992

Abstract

Of crucial importance to the successful use of artificial neural networks for pattern classification
problems is how the appropriate network size can be automatically determined. We address
this issue by formulating the process as an automatic search in the space of functions that
corresponds to a subclass of multilayer feedforward networks. Learning is thus a dynamic net-
work construction process which involves adjusting both the network weights and the topology.
Adding new hidden units corresponds to extracting higher-level features from the original input
features for reducing the residual classification errors. It can be shown that the resultant network
approximates a Bayesian classifier that implements the Bayesian decision rule for classification.

This paper also reports the empirical results of several pattern classification experiments.

Keywords: pattern classification, discriminant functions, Bayesian classifiers, feedforward net-

works, constructive networks, transfer of learning.

!The research work reported here has been partially supported by a research grant (HKUST 15/91) from the Hong
Kong Research Grants Council. An earlier version of this paper was presented at the Eighth International Workshop
on Machine Learning held June 27-29, 1991 in Evanston, Illinois, U.S.A.

1 Introduction

1.1 Pattern Classification

The problem of concern in this paper is pattern classification by supervised learning. In particular,
we consider the use of artificial neural networks for pattern classification problems. Informally,
the general classification problem can be stated as follows. Given a finite training set of patterns
with known class membership, the problem is to construct an appropriate representation or classi-
fication model which correctly classifies the training patterns to any specified degree of accuracy.
The generalization capability of the learned classification model is measured by the classification
performance of the model in a separate testing set. Since the problem involves generalizing the
classification model from the training patterns to the testing patterns, it can be considered as an

inductive inference process.

1.2 Neural Network Approach

Many neural network models have been proposed for pattern classification problems. Among them,
the class of multilayer feedforward networks [16] is perhaps the most popular one. The degenerate
case in this class of networks is a single perceptron [15], which is basically a threshold logic unit.
Suppose each training or testing pattern is described as a feature vector of real-valued attributes
and its corresponding classification. It is well known that a perceptron partitions the feature space
into two subspaces by a hyperplane. If the training patterns belong to two linearly separable classes,
the perceptron convergence theorem guarantees that a perceptron can be trained to classify all the
training patterns correctly using the perceptron learning algorithm [15]. A more general definition
of perceptron does not require the transfer function to be of the threshold type. If a continuous
sigmoid transfer function such as the hyperbolic tangent is used in place of the discontinuous
threshold function, a learning algorithm similar to the perceptron learning algorithm can be used

[18]. It is often referred to as the least mean square (LMS) algorithm.

In reality, however, many classification problems do not satisfy the linear separability assump-
tion. Nonlinear decision surfaces are often needed to form decision regions in the feature space.
The corresponding networks for representing these classification models are feedforward networks

with at least one layer of hidden units between the input and output layers. These multilayer

feedforward networks are generalized cases of simple networks with no hidden layers. They can
also be considered as hierarchies of perceptrons and thus are sometimes referred to as multilayer
perceptrons. A generalized form of the LMS algorithm called the back-propagation (BP) learning
algorithm [16] has been proposed to train such networks if the hidden and output units all have

differentiable transfer functions.?

Theoretical results exist for characterizing the representation or approximation capabilities of
multilayer feedforward networks. For example, formal proofs were established to show that single-
hidden-layer feedforward networks with sigmoid hidden units are capable of approximating any
Borel measurable function from one finite-dimensional space to another to any specified degree of
accuracy, provided that there are sufficiently many hidden units [9]. Similar results on the universal
approximation capabilities of such networks can be found in [2]. However, these results assert no

theoretical bounds on the number of hidden units required.

1.3 Research Issues

There are a number of open research issues related to this class of networks and the corresponding

network learning problem. For the purposes of this paper, three of them are discussed here:

1. Slow learning in deep networks. The more hidden layers a network has, the slower will be the
back-propagation learning process. This is due to the fact that the error signal is attenuated

significantly each time it is propagated backward through a layer.

2. Network size determination. With a given classification problem at hand, the number of

hidden units needed is usually unknown in advance.

3. Learnability. The theoretical results on the universal approximation capabilities of multi-
layer feedforward networks only provide existence proofs and thus leave open the question of
whether the desired mappings can be learned efficiently using a given learning algorithm. In
other words, the universality of approximation capabilities of multilayer feedforward networks

by no means implies their learnability.

2Although linear transfer functions are obviously differentiable with constant first derivatives, the hidden units of
multilayer feedforward networks always use nonlinear transfer functions because any such network with linear hidden

units can always be reduced to one with no hidden layers for representing the same mapping.

This paper describes a method which, to a certain extent, addresses all these three issues.

The remainder of the paper is organized as follows. Section 2 gives a functional formulation
of the particular subclass of multilayer feedforward networks considered in this paper, and shows
that a network of the subclass approximates asymptotically a Bayesian classifier in the minimum
mean squared-error sense. Based on the functional formulation, Section 3 describes how the net-
works can be constructed dynamically during learning and relates the construction process with a
function space search strategy. Section 4 discusses three pattern classification domains and their
experimental results. Concluding remarks and discussions on possible further extensions can be

found in Section 5.

2 Single-Hidden-Layer Feedforward Networks

2.1 Functional Formulation

We consider in this paper a class of single-hidden-layer feedforward networks in which a typical
network has direct connection between the input and output layers, as exemplified in Figure 1.
Table 1 gives the definitions of symbols used in providing a functional formulation of the class of

networks.
*k% FIGURE 1 ***

Each input feature z; is assigned an input unit which is connected to the kth output unit with
connection weight w;;. An extra unit (called the bias unit) with fixed value z¢g = 1 and the weights
wok, 1 < k < m, represent the biases of the m output units. Mathematically, each network with A
hidden units corresponds to a mapping NV, : R™ — R™ whose (vector) function value is used to
specify the class to which a training or testing pattern belongs. For the degenerate extreme with

h = 0, the mapping (denoted as A,) can be defined as:

N (x) = (f(x"FEwith), fH - with), L f e wi)T

n+1s
k

Equivalently, we can replace f by a function fo : ®*t1 — ® which takes w s as the parameter

vectors:

N (%) = (Jo(x™ 5 with), fo(x" T with), o, fo(x™ 5w t)T. (1)

For the general case with A > 0, the output value of the jth hidden unit is g(x"*!-v;) or

G(x"*1;v;). We define the augmented feature vector x"+#+1 as:

x"Hhtl — (1,21, ..., xn,g(x”H; Vi), ...,f](X”H; Vh))T.

The mapping N, corresponding to the network can thus be defined as:
Nt (%) = (F 41400 ot i) ooty T

or

Nnhm(x) _ (]Zh(xn+h+1; ‘)V{H-hﬁ—l)7]Zh(xn+h+1 : W;L+h+1), s]Zh(xn+h+1 : W:Ln+h+1))T. (2)

Comparing (1) with (2), it can be seen that the general case (h > 0) is very similar in form
to the degenerate case (h = 0), except that the original input feature space is augmented to a

higher-dimensional space as seen by the output units.

From Equation (1), learning N,,, reduces to learning the parameter vectors WZ‘H’S. Obvi-
ously this can be done by using a simple network learning algorithm such as the LMS algorithm.
Equation (2) shows that AV, can also be learned in a similar way by learning the parameter vec-

n+h+1>
k

tors w s, provided that the parameter vectors v;’s are known and fixed when the unknown

parameter vectors wz+h+1’

s are learned. To achieve this, we can keep the parameter vectors v;’s
non-adjustable once they are determined and introduced into the network. Thus there is only one

layer of adjustable weights (w and so no back-propagation of errors is needed. The impor-

n+h+1s
k s)
tant issue of how to determine the parameter vectors v;’s during the dynamic network construction

process will be the concern of the next section.

Allowing as few as only one layer of adjustable weights at each learning stage is a simple yet
rather effective technique for speeding up network learning. Let us mention here some previous
attempts which are also based on this very idea and at the same time bear resemblance in their
formulation with the model discussed above. [14] discusses the use of ® functions for classifying
patterns. A ® function is a linear combination of a set of component functions each of which is a

linearly independent, real-valued function of the input features. However, the exact forms of the

component functions are not fixed by the model. Qur model corresponds roughly to a specific family
of ® functions with the input features themselves and the A functions §’s constituting the component
functions. Another approach is referred to as functional-link networks [10]. This approach is very
similar to the use of ® functions. The functional links map the feature space to a usually higher-
dimensional space with the net effect of enhancing the input representation without introducing
any intrinsically new ad hoc information. The functional links can be high-order transforms of
the input features but their exact forms should be custom-made for each individual problem. [13]
describes a successful application of artificial neural networks to the control of robot manipulators.
To learn the mapping for inverse dynamics, a simple learning algorithm is used to learn the weights
for combining a set of subsystems linearly. The subsystems form a mapping which transforms the
input state variables for better representation. The subsystems or their underlying functions can
be determined from the manipulator dynamics equation whose form is assumed to be known a
priori. There are certainly other examples which also take advantage of using only a single layer

of adjustable weights at a time.

2.2 Approximating Bayesian Discriminant Functions

We now show that learning in the class of single-hidden-layer networks described above results
in network classifiers that approximate the Bayesian discriminant functions. Figure 2(a) gives the
functional decomposition of a network classifier. The mapping N,,,» maps x to the network output
vector y = (Y1, Yz, e ym)T. The parameter matrices V and W of A, are defined in terms of the

s, respectively. 'V is an (n 4 1) X h matrix whose column vectors

2+h+1 ’s. With

weight vectors v;’s and WZ‘H“H’
are v;’s, whereas W is an (n + h 4+ 1) x m matrix whose column vectors are w
the network output vector, the decision vector d = (dy,da, ...,d,,)T is determined by applying the

maximum selector mapping M, such that:

1 Yr > yk’vvk/ # k
dp =
0 otherwise
The decision vector can be considered to be the estimated value of the desired classification vector

c = (c1,¢9,ycm)! = F(x), where F is the desired mapping the network is supposed to learn.

Figure 2(b) shows the functional decomposition of the corresponding Bayesian classifier. The m

Bayesian discriminant functions §;’s are defined as:
Br(x) = Plwr | x)

, the a posteriori probability of wy given x. The corresponding decision vector d* gives the

estimated value of the desired classification vector.
*** FIGURE 2 ***

Table 2 gives the definitions of symbols used in establising the asymptotic equivalence result.
We define the sample total error function es for § in the form of a quadratic error function commonly
used in learning algorithms such as the BP learning algorithm:
Z Z yk’ x° V Wn+h+1) cpr (Xs))Q.
seS k'=1
This error function can be rewritten as:
55(V,W) = Z Z Z yk’ x° V Wn+h+1) — Ckl(Xs))Q

k=13s€Sy k'=1

m

= ZZ yr(x* VoWt) — e (x)? + 0 Y (e (x5 VWit —ep (x7))7].

k=1 s€S, k'=1k'#£k

Since

1 se8;
cp(x®) =

0 otherwise,

we have:

es(V,W)=>">" [(ye(x%; V,withtly —1)? 4 > (e (xV , Wikt hEy)2), (3)
k=1 s€S; k=1 k'£k

As the size of § increases, the population average error function can be defined as:

BV, W)= Jim |5|55(V W), (4)

Substituting (3) into (4), we have:

5V, W)

m

Z Z ||:§;|| |S | X V Wn-l-h-l-l) 1)2 n Z (yk’(x vV wn-}—h—i—l))]

ISI % 11 s€8, k'=1k'#k

=3 Puw) / (o Vw1 12 1 ST (gl V, wiH1))2) p(x |) dx
k=1 Ox K'=1,k'#k

= [e Vs S 1P S (s VW) Pl))
k=1"8x k=1 k'#£k

[(ye(x; V, wi) — 1) Plwg | %) + E (g (33 V, Wit)2 Pl [x)] p(x) dx

[l
NE
;43\..

k=1 k'=1,k' £k
= i/ﬁ [(yk(XQV,wz-i-h-l—l))Q i Plwp | x) — ka(X?VaWZM“)ﬁk(x) + Bu(x)] p(x) dx
k=177 k=1
= i/ﬂ [(yk(X;V7WZ+h+1) _ ﬁk(x))Q + ﬁk(X)(l _ ﬁk(x))] ,O(X) dx.
k=1"%x
We define
6(V,W) = Z/Q (yr(x; V, withty — 5,(x))2p(x) dx.
k=1"%x
Thus
(VW) = §(V. W)+ E/Q Bre(x)(1 — Br(x))p(x) dx. (5)
k=1"¢x

Suppose our network learning algorithm minimizes the sample total error function s with
respect to W. The population average error function € will also be minimized if the training set
S is large enough. Since the second term of the right hand side of Equation (5) is independent of
W, minimizing Z implies minimizing 6 as well. In other words, the (error-minimization) learning
algorithm works in such a way that the network output values approximate the Bayesian discrim-
inant functions in the minimum mean squared-error sense. It should be noted, however, that the
network learning algorithm only minimizes s in the local sense. Furthermore, a network should
possess sufficient hidden units in order to give satisfactory approximation. It is for this very reason

that the whole issue of determining network size is central to the research described here.

3 Constructive Networks

3.1 Network Construction as Function Space Search

The class of single-hidden-layer networks described above can be formulated as an infinite family of

functions N' = {Nupm | n > 1, > 0,m > 2}. For the subfamily with fixed values of n and m, each

function in it has an index equal to the number of hidden units in the corresponding network.?
It is obvious that A, is a specialization of N, for i < j. The process of determining the
appropriate network size for approximating the desired mapping corresponds to searching through
the corresponding subfamily for the appropriate function. Among all possible search strategies,
sequential search is probably the simplest one. One possibility is to guess an initial index to start
with and then decrement, if necessary, the index by one at a time until the appropriate function is
reached. In general, however, there is no a priori knowledge about what the appropriate index is
and so providing an initial guess can be difficult. If the initial guess is too large compared with the
appropriate index, much learning time will be spent on networks larger than necessary and hence
learning is rather inefficient. On the other hand, if the initial guess is too small, sequential search

will surely miss the appropriate function.

Incremental sequential search is preferable for several reasons:

1. We can always start with A, without having to provide an initial guess, unless a prior:

knowledge is available to suggest a larger index.
2. Most of the learning efforts will be spent on small networks in which fast learning is possible.

3. Previous learning efforts spent on smaller networks can facilitate the subsequent learning of

larger networks.

With transfer of prior learning [7, 3], we can avoid training large networks directly from scratch.
Hopefully the desired mapping will become more reachable. Incremental sequential search can
be considered as fine-tuning an existing model to better fit the reality, which is an important
characteristic of human learning. In what follows, we will describe one way of implementing the

incremental sequential search strategy.

We first describe the network construction process here in high-level terms, so that the general
structure of the algorithm can be understood more easily. Some parts that are less obvious and

hence require more detailed discussions will be left to the next subsection.

Construct_Network(S; H, ¥, Ew, éw, Tw, Ev, &v, Tv)

3Formally speaking, each element Ay, in the subfamily represents a parameterized family of functions in itself.

For simplicity, we still refer to it as a function with the assumption that no confusion will be caused.

Input:
S training set

User-specified parameters:

H maximum number of hidden units allowed

P threshold percentage classification error as success criterion

Fw maximum number of learning epochs for W allowed for each distinct value h
Ew threshold percentage change in residual error when training W for each

distinct value A
Tw maximum number of consecutive learning epochs for W with no significant
change in residual error that can be tolerated for each distinct value h
FE~v, v, and 7yy will be defined in Add_Hidden_Unit later
Output:

Nubm network with 2 < H hidden units for approximating the desired mapping

Initialize current network NV, as Ny (e, h = 0)
Fori=1to Ew {
Train weight matrix W of A, for 1 epoch using S;
If percentage of incorrectly learned training patterns < @,
Exit with success;
If percentage change in residual error < vy in each of the last 7yy epochs,
Exit “For” loop;
}
While h < H {
Add_Hidden _Unit(Nupm; Ev, Ev, Tv); (i.e., increment h by 1)
Fori=1to Fw {
Train weight matrix W of A/,;,, for 1 epoch using S;
If percentage of incorrectly learned training patterns < 1,
Exit with success;
If percentage change in residual error < vy in each of the last 7yy epochs,

Exit “For” loop;

10

}

Exit with failure;

Let us use an example to illustrate the basic ideas. Suppose Figure 3(a) is the network Njg3
after its weight matrix W is trained to completion without arriving at an acceptably small residual
error. In order to further reduce the error, the network grows in size by introducing a new hidden
unit. As shown in Figure 3(b), the newly added unit is initially unconnected with the output units.
The weight vector vs is modified with the aim of reducing the residual error when the weight matrix
W is trained again later. (Details of the learning algorithm involved will be presented in the next
subsection.) Since the new hidden unit is not connected to the output units when the weight vector
vy is trained, the residual error will not change at this stage. The objective of training vs is solely
to maximize, hopefully, the future contribution of the hidden unit. After the training of v3 has
been completed, connection weights are established between the newly added hidden unit and the
output units, as illustrated in Figure 3(c). This is followed by training the new (augmented) weight

matrix W.
k FIGURE 3 *%*

With a specified level of required accuracy, we can test a trained network with S to see if
the residual error is acceptably small and hence the termination criterion has been satisfied. If
necessary, we can also define additional termination criteria such as the performance of using a

trained network to classify the testing patterns.

3.2 Learning Algorithms

We now describe the learning algorithms for the weight matrices W and V. Learning of W for
either V., or Np,i,, involves essentially only one layer of adjustable weights, and thus any gradient-
descent learning algorithm like the LMS algorithm can be used. For our purposes, however, the
quickprop algorithm [4] is used instead to speed up the learning process by virtue of the second-order

information of the weight space. Appendix A provides more details about the algorithm.

The procedure of training the weight vector v, of the newly added (hth) hidden unit requires

more detailed discussions. Similar to the training of W, it can be considered as an optimization

11

problem. The weight values are adjusted to optimize an objective function which is related to the
approximation accuracy of N,x,,. The method to be described below is similar to that proposed
by [5].

To give a better mapping N, um,, we optimize the degree of association between the output zj
of the hth hidden unit and the residual error of N, j_1,,. We define the residual error e; of the
kth output unit as:

er = (yr — &) f'(1x)
where 1}, is the total input of the kth output unit, f’ is the first derivative of f, and é, = 2¢; — 1.4
The objective function J, for the Ath hidden unit is defined as the sum of the absolute values of
the covariances cov(zp, e;) between z;, and e over the set O of output units:
Jn = E |cov(zp, ex)| = Z sgn(cov(zp, ex)) cov(zp, €x)
keO keO
where sgn : ® — {—1,1} is the sign function.
The following algorithm summarizes the procedure of adding a new hidden unit and training

its input weight vector:

Add_Hidden _Unit(Nupm; Ev, Ev, Tv)

Input:
Nk
User-specified parameters:
Fvy maximum number of learning epochs for V allowed before a new hidden unit
is added
Ev threshold percentage change in ./ when training V before a new hidden unit
is added
Tv maximum number of consecutive learning epochs for V with no significant

change in J that can be tolerated before a new hidden unit is added
Output:

Nk with A incremented by 1

Establish weights between input units and new hidden unit;

*&x is obtained by (linearly) mapping the desired classification cx from {0,1} to {—1,1}.

12

Fori=1to Evy {
Train weight vector vj4q for 1 epoch using S;
If percentage change in J < &y in each of the last 7y, epochs,
Exit “For” loop;
}
Establish weights between output units and new hidden unit;

Increment A by 1;

The covariance cov(zp,e) can be defined as:

S 5 2 G mE =g 5 274

SES SES

cov(zp, ex)

where Zj, and € are the averages of z; and ej respectively over S. The gradient component 9.J;,/0v;p,
of J, with respect to v;;, can be expressed as:
S 11 cov Zh, € t e —€
37th |S| kz g hy €k) Z!] h) P~ er)
€O seES

where t;, is the total input of the Ath hidden unit.

To maximize the objective function Jj, the weight updating rule Aw;, = 1(9J,/0v;) can be
used to learn the weight vector v, where n > 0 is the learning rate parameter. This hill-climbing
(gradient-ascent) procedure is very similar in principle to that for learning (gradient-descent) the
output weight matrix W. FEquivalently, the quickprop algorithm can also be used. After the
weight values v;’s are determined, they become fixed and will never change during the subsequent
learning. The final output weight values of A, _1,, become the initial output weight values of
Nohm, with the addition of m new output weights between the newly added hidden unit and the
m output units. This is how the transfer effects of prior learning are utilized in the incremental

construction of large networks from smaller ones.

The network construction strategy described above was inspired by the cascade-correlation
networks [5]. While cascade-correlation networks allow more than one hidden layer with only
one unit per layer, our method constructs feedforward networks with at most one hidden layer.
Simple complexity analysis shows that the number of weights grows as O(h?) for cascade-correlation

networks but only as O(h) for our networks.

13

4 Classification Experiments

4.1 Example Domains

In this section, we will discuss four of the pattern classification domains we have studied. They are
referred to as Mushroom, Thyroid, Waveform, and Symmetry, respectively, and described briefly

below.

4.1.1 Domain 1: Mushroom

This domain refers to the data set that contains descriptions of hypothetical samples corresponding
to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. It was obtained from the
repository of machine learning databases at the University of California, Irvine, U.S.A.; which
have been widely used by the machine learning community as benchmarks for comparing different
learning algorithms. Subsets of the data set were randomly selected for use in our experiments.
Each species in the data set is classified as definitely edible, definitely poisonous, or of unknown
edibility and not recommended. The latter category is combined with the poisonous one, thus
resulting in two classes. All the 22 feature attributes are nominal-valued. Table 3 gives more

details about the feature attributes.

4.1.2 Domain 2: Thyroid

This domain refers to the data set that contains thyroid disease records provided by the Garavan
Institute of Sydney, Australia. Like the Mushroom data set, this was also obtained from the
University of California, Irvine. Subsets of the data set were randomly selected for use in our
experiments. Each record (pattern) consists of a number of continuous-valued, binary-valued, and
nominal-valued feature attributes which correspond to the symptoms and personal particulars of a
patient, and a class which indicates whether or not the patient has thyroid disease. Details of the

feature attributes can be found in Table 4.

14

4.1.3 Domain 3: Waveform

This problem is adapted from the waveform recognition problem as defined in [1, pp.49-55]. Each
class is generated from a random convex combination of two of the three base waves sampled at
intervals with Gaussian noise added. Mathematically, the three base waves are represented as

(54(1),5(2),...,5(21)), 1 <1 < 3, where:

—cos((t—1)m/6) 1<:<13

-1 14 <2 <21
-1 1<:1<4
s2(1) = { —cos((i—5)r/6) 5<i<17
-1 18<2<21
-1 1<i<8

—cos((¢—9)1/6) 9<i<21.

A waveform (z1, zg, ..., ¥21) is generated from the base waves as follows:

psi(i)+ (1 —p)se(i)+ & Class 1

;=9 psa(i)+ (1 — p)ss(i)+ & Class 2

psi(i)+ (1 —p)sa(i)+ & Class 3
where i is a random variable with uniform distribution on the interval [0, 1] and £;’s are independent
random variables with normal distribution N(0,0.01). Additionally, another problem instance is

defined by introducing 19 noise attributes which are simply independent random variables with

distribution N (0,0.01).

4.1.4 Domain 4: Symmetry

This domain considers N x N binary input patterns with a horizontal, vertical, or diagonal axis of
mirror symmetry (Figure 4). The problem is to learn to correctly classify the patterns into three
classes according to the axis of symmetry, as described in [17]. For every axis of symmetry, there
are a total of 2V?/2 possible input patterns. Patterns were generated randomly for both the training

and testing sets but those with more than one axis of symmetry were excluded.

¥¥ FIGURE 4 *%*

15

4.2 Specifications of Domain Problem Instances

Table 5 summarizes the specifications of the problem instances. We distinguish between the number
of feature attributes of a problem instance and the number of input units in the corresponding
network. While a continuous-valued or binary-valued attribute is simply represented by a single
input unit, a nominal-valued attribute can correspond to more than one unit. The number of units
used is equal to the number of possible values the attribute can have. For the number of output

units, however, it is always equal to the number of classes of the problem instance.

4.3 Experiments and Results

For each problem instance, we performed 100 trials to average out the variations due to random
initialization of weights. We used the same set of user-specified parameter values (H = 20, ¢ = 0,
BEw =50, &w = 1%, Tw = 8, Eyv = 50, &y = 3%, Ty = 8) for all the problem instances.’
The empirical results are summarized in Table 6. The three cost measures for characterizing the
computational requirements are the number of hidden units, number of weight parameters, and
total number of epochs spent on learning both the input and output weights. The percentage of
training patterns correctly learned and the percentage of testing patterns correctly classified by the

trained network can be used as performance measures.
*%% TABLE 6 *%*

For all the problem instances, a 100% accuracy can almost always be obtained for the training
patterns. The percentage accuracy for testing is slightly lower for the Mushroom, Thyroid, and
Waveform domains but is more than 30% lower for Symmetry. The Mushroom domain turns out
to be linearly separable, and hence requires no hidden units at all. Overfitting of the training

patterns has occurred for all the problem instances, but is especially significant for the Symmetry

“Except for H which can be chosen to determine the maximum network size and ¢ which can be specified
to determine the acceptance criterion of the user, all the other six parameters used their default values, which are
results of previous experience with various problem domains. We always use these default values for any new problem
given, thus avoiding the trouble of adjusting parameter values which makes portability to new problem domains a

lot more difficult.

16

problem. It should be noted that the training sets for the Symmetry domain, though with 3000
patterns each already, only represent a very small portion of the feature space (about 1% for the
6x6 problem and 0.00007% for the 8x8 problem). The training patterns used may not represent
all the discriminating features that are needed for satisfactory classification of the testing patterns.
However, the generalization results are in fact not bad, considering that only about 33% accuracy

would be expected for “zero-knowledge” random guess.

Typical learning curves for the four problem domains are shown in Figures 5-8. FEach figure
shows the percentage classification errors for both the training and testing data during the learning
process. For the three domains that required hidden units in the experiments, the place where
each new hidden unit is added is indicated by a dotted vertical line in the graph. Notice that
there is always a flat region in the learning curve before a new unit is added. Each flat region
corresponds to learning the input weights of a hidden unit with the output weights held constant.
Upon adding a new unit, the curve usually shows significant improvement in classification accuracy
of the training data especially during the early learning stage, although some local fluctuations are

not uncommeon.

¥¥ FIGURE 5 *%*
¥¥ FIGURE 6 ***
¥k FIGURE 7 *%*

*** FIGURE 8 ***

One might ask whether hidden units are really necessary to the Thyroid, Waveform, and
Symmetry domains. Are they in fact linearly separable like the Mushroom domain? To answer this
question, we performed a set of control experiments on the three domains using networks with no
hidden units (AN,). This can easily be done by changing the default values of some user-specified
parameters (H = 0, Eyw = 1000, 7wy = 1000). The results are summarized in Table 7. We
compared their performance with the learning curves in Figures 6-8. To assess the learning and,
more importantly, generalization capabilities, it is the classification performance of the testing data
that really counts. For this reason, Figures 9—11 show the learning curves of the testing data trained
under different conditions. As we can see, the introduction of hidden units does not help much for

the Thyroid domain, but is significant for Waveform and especially useful for Symmetry.

17

*dkk TABLE 7 *%*
¥¥ FIGURE 9 ***
¥¥ FIGURE 10 ***

¥k FIGURE 11 ***

Both the Mushroom and Thyroid domains ended up requiring no hidden units in the experi-
ments, although hidden units were actually introduced for the Thyroid domain trained with default
settings of the user-specified parameters. Notice from Figure 9 that before the first hidden unit
is added into the network, the percentage error is already rather low at about 5%.° To avoid
introducing hidden units which do not help significantly in subsequent learning, the absolute level
of the residual error could be useful as an additional criterion to determine when to stop learning.

The issue of termination criteria in general, however, requires further work to be done.

5 Discussions

This paper describes an approach to the dynamic construction of artificial neural networks for
supervised learning. With this approach, learning starts with a simple network with no hidden
units in which fast learning is possible. New units are then added to the network one at a time until
satisfactory approximation of the desired mapping is reached. The fast learning phase corresponds
to quickly finding a crude model so that the approximate solution is in the right ballpark. This
is followed by fine-tuning the model to give better solutions. Transfer effects of prior learning

experience can thus be utilized in shaping subsequent learning.

While a traditional pattern recognition system consists of separate subsystems for feature
extraction and classification, the network approach considered in this paper performs both functions
as the network learns and grows in size. More precisely, new hidden units correspond to higher-
level features extracted from the training patterns which are themselves expressed in lower-level
features. This in turn modifies the classifier so as to provide a more accurate approximation of the
desired mapping and hence reduce the residual classification error. Of course, the patterns can be

expressed in high-level features if they are available. This should make the learning problem easier

®Tt is not always possible to achieve 100% classification accuracy with no overgeneralization, because the different

classes may be overlapping in the feature space and hence inherently non-separable.

18

and the resultant network is expected to be smaller in size.

There have been several recent attempts to construct networks by starting with a small network
which gradually grows to an appropriate size at the same time when learning of weights occurs.
[8, pp.158-162] gives a brief review of some of these models. While the model presented in this
paper was inspired by the cascade-correlation algorithm (as mentioned in Section 3.2), it bears
little resemblance with most other models proposed so far. Models such as [12, 6, 11] are basically
networks of threshold logic units for learning Boolean functions. They all assume that the training
set is consistent in the sense that the same input will never correspond to different outputs. Our
model, however, makes use of sigmoidal units for approximating Bayesian classifiers with Bayesian
a posteriori probabilities. There is no need to assume the consistency of training patterns since
the objective of the decision-theoretic classifier is to minimize classification errors. As far as the
network construction process is concerned, our model is somewhat similar to [11] in that the
resultant network has only one hidden layer with its units added one at a time. Up to now,
there is no conclusive (theoretical or empirical) result to show which model performs best for a
given problem. Extensive comparative studies of the different models on a wide range of pattern

classification problems are thus needed in the future.

Although single-hidden-layer feedforward networks are general enough in representing or ap-
proximating continuous functions to any specified degree of accuracy, more hidden layers may still
be used in practice to reduce the total number of hidden units used. We suggest here one possible
extension of our current approach. When a new unit is added to a network, the unit can be added
to an existing hidden layer or to a newly created one. A candidate hidden unit is temporarily added
to an existing layer. The network attempts to find a set of input weight values which gives the
candidate unit a reasonably high degree of association with the residual error. If the network fails
to find such an acceptable set after a specified number of trials, it will remove the candidate unit
from the layer and put it in a new layer. In general, a network can have different numbers of units

in different hidden layers. As a comparison, [5] allows no more than one unit per hidden layer.

It should be noted that the objective function J; defined in Section 3 is by no means the only
possible measure for optimization. Future work includes investigating other measures of degree of
association between the output of a hidden unit and the residual error of the network. Furthermore,

the issues of overgeneralization and termination criteria as mentioned in Section 4.3 will also be

19

addressed in our future study.

6 Acknowledgment

The author would like to thank the anonymous reviewers for their suggestions that led to improve-

ment in presentation of the paper.

20

References

[1] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and Regression Trees.

Wadsworth International, Belmont, California (1984).

[2] G. Cybenko, Approximation by superpositions of a sigmoid function, Mathematics of Control,
Signals and Systems 2, 303-314 (1989).

[3] H.C. Ellis, The Transfer of Learning. Macmillan, New York (1965).

[4] S.E. Fahlman, An empirical study of learning speed in back-propagation networks. Technical

Report CMU-CS-88-162, School of Computer Science, Carnegie Mellon University (1988).

[5] S.E. Fahlman and C. Lebiere, The cascade-correlation learning architecture, in Advances in
Neural Information Processing Systems 2, D.S. Touretzky (editor). Morgan Kaufmann, San

Mateo, California, 524-532 (1990).

[6] M. Frean, The upstart algorithm: A method for constructing and training feedforward neural

networks, Neural Computation 2, 198-209 (1990).

[7] R.F. Grose and R.C. Birney (editors), Transfer of Learning. Van Nostrand, Princeton, New
Jersey (1963).

[8] J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation.
Addison-Wesley, Redwood City, California (1991).

[9] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal
approximators, Neural Networks 2, 359-366 (1989).

[10] M.S. Klassen and Y.H. Pao, Characteristics of the functional-link net: A higher order delta

rule net, in Proceedings of the IEEFE International Conference on Neural Networks, San Diego,

California (1988).

[11] M. Marchand, M. Golea and P. Rujan, A convergence theorem for sequential learning in two-

layer perceptrons, Furophysics Letters 11, 487-492 (1990).

[12] M. Mézard and J.P. Nadal, Learning in feedforward layered networks: The tiling algorithm,
Journal of Physics A 22, 2191-2204 (1989).

21

[13] H. Miyamoto, M. Kawato, T. Setoyama and R. Suzuki, Feedback-error-learning neural network

for trajectory control of a robotic manipulator, Neural Networks 1, 251-265 (1988).

[14] N.J. Nilsson, Learning Machines: Foundations of Trainable Pattern Classifying Systems.
McGraw-Hill, New York (1965).

[15] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms.
Spartan, New York (1962).

[16] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error
propagation, in Parallel Distributed Processing: Fzplorations in the Microstructure of Cog-
nition, Volume 1, D.E. Rumelhart and J.I.. McClelland (editors). MIT Press, Cambridge,
Massachusetts, 318-364 (1986).

[17] T.J. Sejnowski and P.K. Kienker, Learning symmetry groups with hidden units: Beyond the
perceptron, Physica 22D, 260-275 (1986).

[18] B. Widrow and M.E. Hoff, Adaptive switching circuits, in IRE WESCON Convention Record
4, 96-104 (1960).

22

A Quickprop Algorithm

The algorithm is heuristic in nature and based on two assumptions. First, the error curve for each
weight can be approximated by a concave-upward parabola. Second, changes in the error curve
of any weight are not affected by all the other weights that are changing concurrently. For each
weight, the previous and current error gradients and the weight change are used to determine the
form of the parabola. It is desired that the next weight change brings it directly to the valley

(minimum) of this parabola.

At time step t, a weight and its gradient component are denoted as w[t] and S[t], respectively.

Suppose the error curve is of the parabolic form:
FE = a(w—b)Z—l—c,
where @ > 0, b, and ¢ are constants. So,
St—1]=2a(w[t—1] - b) (6)
and
S[t] = 2a(wlt] — b). (7)

Let Aw[t — 1] = w[t] — w[t — 1] denotes the weight change from w[t — 1] to w[t]. The next weight
change Aw[t] is set to be equal to b—w[t] so as to jump directly to the minimum point. Equations (6)

and (7) can be combined and rewritten in terms of Aw[t — 1] and Aw][t]:

Awl[t] = % Aw[t —1].

Since the actual form of the error curve might not be exactly parabolic, w[t + 1] = w[t] + Awlt] is
in general only an approximation of the optimal value. The above procedure continues iteratively

until the error is acceptably small.

23

Bias unit

—

;. Output units

Input units

Hidden units

Figure 1: An example network with two input units, two hidden units, and three output units.

24

Nypm(X; VW)

L

(@

P(ool‘ X)

L

vy

(b)

P(oom‘ X)

j>d*

Figure 2: Functional decomposition of: (a) network classifier; (b) Bayesian classifier.

25

(b)

©

Figure 4: Examples of the three types of mirror symmetry: (a) horizontal; (b) vertical; (c¢) diagonal.

27

14

T T T T T T T T T
I
]
]
:
| N
L N Y
."
1
I
1
I
,I
1
1
!
L ’ 1o
=
0
ey
5]
o)
i log
o)
c
5
5
L 403
=
5
=z
L 4 <
L 4«
| | | | | | | | | o
XX XX XX XX XX XX XX XX X X X
S S S S S S S S)) 3
S & @ ~ o e} S & & =

suseled paljsse[o Aj19e1iodul Jo afelusdled

Figure 5: Learning performance for a typical run of the Mushroom domain using default settings

for the user-specified parameters.

28

1000

T T
o
- o
L —
I %)
3 =
[S)
' g
o))
L c
5
5
L o]
Qo
€
S
2
L o
C —
o))
c
L c J
s >
-
//I/ = 1
—
X X X X
S S o))
™ N —

suseled paljsse[o Aj19e1iodul Jo afelusdled

Figure 6: Learning performance for a typical run of the Thyroid domain using default settings for

the user-specified parameters.

29

[T T T T
|
1
—
1 (=]
B o 7 1 8
L —S ARREREEEE]
L |] "
L !] 2
L ! _ S
I o
i J | &
/ 2
- </f N .E
- / | B
\7 qa
2
- < 1 &
N [S
< S
L7 =z
- 4 o
[1
[@)] — __
L g ——]
L E i E
L B .]
— T~
- = ->:::» .
- \-\~\’\"_ - m -
R =
= [
- /f//(-
/
/
/
7/
7/
/
7/
/
7/
! 1 1 1 1 1 1 1 1 1 -
X X X X X X X X N N N
o) S o) S)))) S))
8 (] [s¢] N~ O o < ™ N —

suseled paljsse[o Aj19e1iodul Jo afelusdled

Figure 7: Learning performance for a typical run of the Waveform domain using default settings

for the user-specified parameters.

30

syooda Bululea| Jo JequinN

18 v ==

.
i — =

)

Buiumel

%0

%0T

%0¢

%0€

%0

%05

%09

%0L

%08

%06

%00T

suseled paljsse[o Aj19e1iodul Jo afelusdled

Figure 8: Learning performance for a typical run of the Symmetry domain using default settings

for the user-specified parameters.

31

1000

100

Number of learning epochs

10

30%
20% |-\
10%

0%

suseled paljsse[o Aj19e1iodul Jo afelusdled

Figure 9: Comparing the “Testing” curve in Figure 6 (Thyroid domain) with one (“Testing0”)

obtained from training a network with no hidden units.

32

Number of learning epochs

suseled paljsse[o Aj19e1iodul Jo afelusdled

Figure 10: Comparing the “Testing” curve in Figure 7 (Waveform domain) with one (“Testing0”)

obtained from training a network with no hidden units.

33

1000

Number of learning epochs

100%
90%
80% [
70% r-
60% r-
50% r-
40% r-
30% r-
20% -
10%
0%

suseled paljsse[o Aj19e1iodul Jo afelusdled

Figure 11: Comparing the “Testing” curve in Figure 8 (Symmetry domain) with one (“Testing0”)

obtained from training a network with no hidden units.

34

Table 1: Definitions of symbols used in functional formulation.

Symbol Definition Remark

n number of input units (number of input features) n>1

h number of hidden units h>0

m number of output units (number of output classes) m > 2

i index of the 7th input unit (1 < ¢ < n) or the bias unit (¢ =0) 0<i<mn

7 index of the jth hidden unit 1<j5<h

k index of the kth output unit 1<k<m

X feature vector = (21,22, ..., 2,)T"
x"tt network input vector (augmented feature vector) = (20, 1y ey Tp) T
v; weight vector of the jth hidden unit = (V05 V1jy e Vnj) "
WZ—HL-H weight vector of the kth output unit = (Woky Wik --s 'wn+h7k)T
g(t) transfer function for hidden units = tanh(t)

f(t) transfer function for output units =1/(1+¢€7)
g(t;0) parameterized version of g with parameter vector 6 =g(t-0)

f(t; 6) parameterized version of f with parameter vector 6 = f(t-0)

35

Table 2: Definitions of symbols used in equivalence proof.

Symbol Definition

Qyx feature space (space of all possible feature vectors)
S training set

|S| cardinality of &

W, event that the pattern belongs to the kth class

Sk subset of § with class membership wy

S index of the sth training pattern

P(wy) a priori probability of wy,

P(wi |x) a posteriori probability of wy given x

probability density function for x

probability density function for x given wy
(class-conditional probability density function for x)
sample total error function for &

population average error function

36

Table 3: Feature attributes and their number of attribute values for the Mushroom domain.

Feature attribute Number of values

cap shape 6
cap surface 4
cap color 10
bruises?

odor

gill attachment

gill spacing

N W e O N

gill size

—_
[\

gill color

stalk shape

stalk root

stalk surface above ring
stalk surface below ring
stalk color above ring
stalk color below ring
veil type

veil color

ring number

ring type

spore print color

population

o = BN e I L R V=R V= R s S o > R)

habitat

Total = 125

37

Table 4: Feature attributes and their value types for the Thyroid domain.

Feature attribute Value type
age continuous
sex nominal (2 values)
on thyroxine binary
query on thyroxine binary
on antithyroid medication binary
sick binary
pregnant binary
thyroid surgery binary
1131 treatment binary
query on hypothyroid binary
query on hyperthyroid binary
lithium binary
goitre binary
tumor binary
hypopituitary binary
psych binary
TSH measured binary
TSH continuous
T3 measured binary
T3 continuous
TT4 measured binary
TT4 continuous
T4U measured binary
T4U continuous
FTI measured binary
FTI continuous
TBG measured binary
TBG continuous
referral source nominal (5 values)

38

Table 5: Specifications of the problem instances. For each training or testing set, the number of

patterns in each class is shown in parentheses. (#I: number of features; #I: number of input units;

#0: number of classes or number of output units; #Tr: number of training patterns; #Te: number

of testing patterns)

Domain Mushroom Thyroid Waveform Symmetry

Instance 1 2 1 2 1 2 1 2

#F 22 22 29 29 21 40 36 64

#1 125 125 33 33 21 40 36 64

#0O 2 2 2 2 3 3 3 3

#Tr 300 100 500 300 300 300 3000 3000
(150; 150) | (505 50) | (a7; 463) | (17;283) | (100; 100; 100) | (100; 100 100) | (1000; 1000; 1000) | (1000; 1000; 1000)

#Te 1000 1000 900 900 1000 1000 3000 3000
(500; 500) | (5005 500) | (54; 846) | (54; 846) | (233; ass; 334) | (33a; 233; az4) | (1000; 1000; 1000) | (1000; 1000; 1000)

39

Table 6: Empirical results of the problem instances (four domains) using default settings of the
user-specified parameters. Each table entry has three numbers which correspond to the minimum,
average, and maximum cost or performance measures among 100 trials. (#H: number of hidden
units; #P: number of weight parameters; #E: number of learning epochs; %Tr: percentage accuracy

for training; %Te: percentage accuracy for testing)

Domain Mushroom Thyroid Waveform Symmetry
Instance 1 2 1 2 1 2 1 2
min 0 0 6 5 9 6 6 6
#H | avg 0 0 12.32 12.65 13.98 10.42 8.59 8.92
max 0 0 20 20 20 17 12 13
min 252 252 284 248 291 387 351 603
#P | avg 252 252 | 511.52 | 523.40 | 415.50 | 581.48 | 454.60 | 801.56
max || 252 252 788 788 566 871 591 1079
min 18 7 623 486 901 642 593 615

#E | avg | 24.04 | 12.15 | 1088.58 | 1076.98 | 1311.86 | 1021.08 | 863.33 | 898.77
max 32 19 1601 1691 1756 1549 1122 1295

min 100 100 99.8 99.0 99.0 100 100 100
%Tr | avg 100 100 100 100 100 100 100 100
max || 100 100 100 100 100 100 100 100

min 97.1 | 88.9 94.4 91.0 89.3 88.0 64.2 60.7
%Te | avg 98.6 | 93.1 95.6 94.1 92.0 90.2 65.4 63.4
max || 99.8 | 96.2 97.1 96.4 94.0 92.4 66.5 64.8

40

Table 7: Empirical results of the problem instances (three domains) using networks with no hidden

units.
Domain Thyroid Waveform Symmetry
Instance 1 2 1 2 1 2
#H 0 0 0 0 0 0
#P 68 68 66 123 | 111 | 195
#E 1000 | 1000 | 1000 | 1000 | 1000 | 1000

min || 97.8 | 97.3 | 83.7 | 86.3 | 33.4 | 32.2
%Tr | avg || 97.8 | 97.7 | 84.1 | 92.9 | 33.4 | 32.3
max || 98.0 | 97.7 | 84.7 | 94.3 | 334 | 32.3

min || 96.3 | 94.4 | 81.6 | 77.6 | 9.8 | 20.9
%Te | avg 96.5 | 94.7 | 81.9 | 80.7 | 9.8 | 21.0
max || 96.6 | 94.9 | 82.2 | 81.5 | 9.8 | 21.2

41

