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Abstract

All alphanumeric characters can be written in certain styles with strokes of different shapes
and positions. An on-line handwritten character written on a digitizing tablet is represented
as a sequence of strokes, which are the loci of the pen tip from its pen-down to pen-up posi-
tions. In this paper, we present an approach to on-line handwritten alphanumeric character
recognition based on sequential handwriting signals. In our approach, an on-line handwrit-
ten character is characterized by a sequence of dominant points in strokes and a sequence
of writing directions between consecutive dominant points. The directional information of
the dominant points is used for character preclassification and the positional information is
used for fine classification. Both preclassification and fine classification are based on dynamic
programming matching using the idea of band-limited time warping. These techniques are
elastic, in that they can tolerate local variation and deformation. The issue of reference (or
template) set evolution is also addressed. A recognition experiment has been conducted with
62 character classes (0-9, A-Z, a-z) of different writing styles (Italian manuscript style and
some other styles) and 21 people as data contributors. The recognition rate of this exper-
iment is 91%, with 7.9% substitution rate and 1.1% rejection rate. The average processing

time is 0.35 second per character on a 486 50MHz personal computer.
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1 Introduction

With the development of digitizing tablets and microcomputers, on-line handwriting recognition
has become an area of active research since the 1960s)). One reason for this is that on-line
handwriting recognition promises to provide a dynamic means of communication with computers
through a pen-like stylus, not just a keyboard. This seems to be a more natural way of entering

data into computers.

On-line recognition refers to the recognition mode in which the machine recognizes the
handwriting while the user writes on the surface of a digitizing tablet with an electronic pen.
The digitizing tablet captures the dynamic information about handwriting, such as number of
strokes, stroke order, writing speed, etc., all in real time. Off-line recognition, by contrast, is
performed after the handwriting has been completed and its image has been scanned in. Thus,

dynamic information is no longer available.

Another advantage of on-line recognition over off-line recognition is that there is close
interaction between the user and the machine. The user can thus correct any recognition error

immediately when it occurs.

The problem of on-line handwriting recognition can be defined in various ways. Variables
in the problem definition include character set, writing style, and desired recognition rate. In
general, each problem definition lends itself to different algorithmic approaches, which in turn

make use of different features for classification.

With respect to alphanumeric character recognition, it seems that the most discriminating

features come from their shape. This has led many researchers in the field of handwritten



(2,3,4)

alphanumeric character recognition to use geometrical and topological features , statistical

features®), and other algorithms(®:7®) to perform recognition based on character shape.

In recent years, some researchers have made a lot of effort in modeling pen-tip movement(%:10)

(10)

In the handwriting generation model'\*”’, for example, the movement of the pen tip is described

as a velocity vector controlled by two synergies: one is the curvilinear velocity and the other is

the angular velocity. Such a model gives us a better understanding of handwriting generation.

In this paper, we present an approach to on-line handwritten alphanumeric character recog-
nition based on sequential handwriting signals. The recognition process consists of the following
stages (Figure 1):

1. Data preprocessing
2. Feature extraction

3. Character classification

4. Reference set evolution

input output

Data Feature Character

Preprocessing Extraction Classification

Reference Set

Evolution

Figure 1: Different stages of the recognition process

Feature extraction is a very crucial step, as the success of a recognition system is often



attributed to a good feature extraction method. The main idea here is to come up with an
efficient and reliable method for extracting features from the sequential handwriting signals. In
particular, points in strokes corresponding to local extrema of curvature are detected. These
points correspond to the maxima of angular velocity or the minima, of curvilinear velocity of

(910) In addition, the mid-point between two consecu-

the pen-tip movement in fluent writing
tive points that correspond to curvature extrema or pen-down/pen-up locations is also used to
represent a local minimum of angular velocity (or a local maximum of curvilinear velocity). We

refer to all these points as dominant points in strokes. Figure 2 illustrates this concept, where

the dominant points are indicated by circles.

Figure 2: Dominant points in strokes

Unlike topological and statistical features such as moments, dominant points are perceptibly
significant and are useful for generating rich structural descriptions. In our system, an on-
line handwritten character is characterized by a sequence of dominant points in strokes and a
sequence of writing directions between consecutive dominant points. The directional information
of the dominant points is used for character preclassification and the positional information is
used for fine classification. Both preclassification and fine classification are based on dynamic

programming matching using the idea of band-limited time warping.



An expected advantage of this approach over other methods comes from the fact that our
character matching processes are elastic and hence can tolerate local variation and deformation.
Besides, dominant points are quite easy to extract using the technique described in Reference 11.
Moreover, our approach can handle large alphabets (such as Chinese characters) due to its fast
preclassification step. However, since our approach is based on sequential handwriting signals, it
is intrinsically stroke-order dependent unless multiple models corresponding to different stroke

orders are used.

The remainder of this paper is divided into five sections. Section 2 describes data prepro-
cessing and feature extraction. Section 3 presents our preclassification and fine classification
algorithms. Section 4 addresses the problem of reference set evolution. Section 5 presents the

experimental results using our approach. Finally, Section 6 gives some concluding remarks.

2 Data Preprocessing and Feature Extraction

2.1 Data Preprocessing

In the current context, a handwritten stroke refers to the locus of the pen tip from its pen-down
to the next pen-up position. It can, therefore, be described as a sequence of consecutive points

on the z—y plane:

S =pip2---pL (1)

where p; = (z;,4), 1 <1 < L, p; is the pen-down point, py, is the pen-up point, and L is the

number of points in the stroke. Based on this representation, a handwritten character can then



be described as a sequence of strokes

C =58 Sy 2)

where N is the number of strokes in the character.

Since handwritten characters often have large variations in size and position, it is necessary
to normalize the input data to facilitate subsequent processing. In our system, size normalization

is performed by scaling each character both horizontally and vertically:

0

5 = —atmin gy (3)
Tmazx — Tmin
o __ .

Ymaz — Ymin
where (z?,y?) denotes the original point, (z;,y;) is the corresponding point after transformation,
Tmin = Min{z?}, Ymin = min{y?}, Tmez = max;{z?}, Ymer = max;{y?}, W and H are the

width and height of the normalized character, respectively.

Following this normalization step, stroke smoothing and linear interpolation are performed

so that the point sequence representing a stroke satisfies the following relations:

Pi+1 F D (5)
|z —m| < 1 (6)
lyir1 —w| < 1 (7)

We impose the above conditions on each stroke so that its eight-neighbor chain code is:

D =didy---dy 1 (8)

where d; € {E,SE,S,SW,W,NW,N,NE}, 1 <1 < L —1, describes the direction from a point

to the next one. These directions are shown in Figure 3(a) and are coded as 0 to 7. Due to



the interpolation process, d; can be determined simply from the coordinate offsets as shown in
Table 1. An example of stroke chain code is given in Figure 3(b) where the stroke has been

interpolated. Its chain code is 43221007.

d |o|1]23|4]|5|6]|7

Az (1 |1]|]0|-1|-1|-1]O0 1

Ay |0 | 1|1 1 0 |-1]-1]-1

X
6 4
5 7 3
Nw N NE
2
4 W E 0
2
Sw S SE
3 1 1 7
2 0 0
y
(a) direction code (b) example of chain code

Figure 3: Stroke chain code

2.2 Feature Extraction

2.2.1 Feature Types

The stroke-based features used in our system are:

e Dominant points in strokes:



Dominant points refer to points of the following types: (a) pen-down and pen-up points;
(b) points corresponding to local extrema of curvature; and (c) mid-points between two

consecutive points of type (a) or (b).

e Direction primitives between dominant points:

A direction primitive refers to one of the eight chain-code directions: E, SE, S, SW, W,
NW, N, and NE (see Figure 3(a)). It represents the writing direction from a dominant

point to the next one.

2.2.2 Dominant Points

Based on the chain coding scheme, consecutive exterior angles and contour angles formed by
pairs of arrows along the stroke can be defined as shown in Figure 4. In Figure 4, the exterior
angle a; at point p; is formed by the pair of arrows, d;_1 and d;, and located on the left-hand side
of the arrows. The value of a; can be obtained by looking up Table 2. Denoting the sequence of
exterior angles in a stroke as

A =asgaz---ay_1 (9)

and performing low-pass filtering on A, one can segment the stroke into a sequence of con-

vex/concave/plain regions.

(di—1 —d;)mod8 | 0 1 2 3 4 5 6 7

a; 180° | 135° | 90° | 45° | 0°/360° | 315° | 270° | 225°

Table 2: Lookup table for exterior angles



Figure 4: Exterior angle and contour angle

The contour angle v; at p; is defined within a support region and its value is estimated as

1 K
U= g > aw (10)
k=1
where for £ = 1,2,..., K, angle aqy; is formed by the pair of arrows d;_j and d;, 1. The value

of a;; can also be obtained through table lookup as before. The contour angle v; is a good

estimate of the curvature at p;. Denoting the sequence of contour angles in the stroke as

V= VU3 - - -V 1 (11)

one can easily obtain the maximum within a convex region and the minimum within a concave
region. All such maxima and minima constitute the local extrema of curvature along a stroke.

More details of the above technique can be found in Reference 11.

After detecting the extreme points, a mid-point between two consecutive points of type (a)
(i.e. pen-down and pen-up points) or (b) (i.e. local extrema of curvature) along a stroke is then
located to approximate the point of local minimum in angular velocity. The pen-down and
pen-up points, the local extrema of curvature and these mid-points together then constitute the

dominant points in a stroke.

10



2.2.3 Direction Primitives

Based on the dominant points extracted, a direction primitive can be defined as a vector from
a dominant point to the following one, after quantization into one of the eight directions E, SE,

S, SW, W, NW, N, and NE.

2.2.4 Feature Sequences

After feature extraction, a character C can be represented as a sequence P of dominant points

and a sequence D of direction primitives:

P = pipy---pm (12)

D = didy---dy_q (13)

where p,, is a dominant point, and d,,, € {E,SE,S,SW,W,NW,N,NE} is the (quantized)

direction from py, to Ppyt1-

2.3 Other Considerations

There are a few other special considerations in our system design.

1. Recognition of different character sets:

Our system aims at recognizing handwritten characters from different character sets, in-

cluding Chinese characters', English letters, and Arabic numerals. Some English letters

'!Our system processes handwritten Chinese characters in a similar manner. However, Chinese character

recognition is beyond the scope of this paper.

11



and Arabic numerals look very similar to each other (e.g., ‘0’ and ‘0’, ‘s’ and ‘5’), mak-
ing it very difficult, if not impossible, to resolve such ambiguities without using context
information. In our system, we designate different writing areas for different character

sets.

. Recognition of ascenders and descenders:

Furthermore, since ascenders (“poles”) and descenders (“legs”) are very useful for dis-
criminating between some English letters having a similar shape (e.g., ‘h’ and ‘n’), ledger
lines (defining three ledger regions) are used to facilitate character classification for En-
glish handwriting. In our system, the ascender-descender property of an English letter is
determined by the position of its first stroke. If the upper portion of this stroke is above
the mid-level of the top ledger region, it is considered to be a letter with ascender. On the
other hand, if the lower portion of the stroke is below the mid-level of the bottom ledger
region, it is considered to be a letter with descender. Otherwise, the letter has neither an

ascender nor a descender.

. Use of pseudo extrema of curvature:

Since the curvature along a perfect circle is constant, theoretically no local extrema of
curvature can be detected along the circle. This may lead to misclassification if a large
portion of a stroke is part of a circle or a very smooth arc. When this happens, we identify
the mid-point of that region as a pseudo extreme of curvature. For any region defined by
two dominant points of type (a) or (b), we consider both the length of the arc and the ratio
of the arc length to the chord length. If both measures exceed their respective thresholds,

its mid-point will be regarded as a pseudo extreme of curvature.

12



2.4 An Example

Figure 5 shows an example of the letter ‘B’.? The original handwriting with two “inked” strokes
is located in the designated writing area for English letters. The “inking” process is simulated
simply by connecting consecutive points in the pen-tip trace with line segments. The discrete
version of the pen-tip trace sampled by the digitizing tablet is re-displayed in the top-right
region. As soon as the writing is completed, the input character is normalized in size, with the
data points of each stroke interpolated and chain coded. Local extrema of curvature in each
stroke are then detected from the chain code at the pixel level. After that, mid-points between
every two consecutive local extrema or pen-down/pen-up points are located. All these points
are dominant points in strokes. The direction between every two consecutive dominant points
is then quantized into one of the eight categories, forming a sequence of direction primitives for

each stroke.

In the lower region of Figure 5, the two preprocessed strokes of the letter ‘B’ are displayed,
with the local extrema of curvature marked. Each stroke is also characterized by a sequence of
direction primitives. The first stroke has three dominant points (no curvature extrema) with
sequence ‘22’. The second stroke has nine dominant points (three extreme points) with sequence
‘01340134’. Since this character is written in the area designated for (lowercase or uppercase)
English letters and the upper portion of the first stroke is above the mid-level of the top ledger

region, it is categorized as an English letter with ascender.

2The generic user interface shown in Figure 5 and some later figures is intended for a more general system
which uses more or less the same approach as described in this paper for the recognition of Chinese characters as
well. Readers may ignore the Chinese character box in these figures since Chinese character recognition is beyond

the scope of this paper.
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Designated Writing Area | | Original Data

Chinese: English: Numeral: English:asc

"

‘ Information of Constituent Primitives
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22 013401
34

Figure 5: Example of data preprocessing and feature extraction

3 Character Classification

Our classification stage is divided into two steps. First, candidate selection is performed during
the preclassification step to reduce the number of candidate classes that need to be investigated
further in detail. Second, fine classification is performed on the candidate classes that survive
the preclassification step to finally classify an input character. Both the preclassification and

fine classification steps perform matching using dynamic programming.

3.1 Dynamic Programming for Elastic Matching

3.1.1 Band-limited Time Warping

Time warping is a useful technique for finding the correspondence between two strings (se-

(12,13) " In dealing with such distortions, each symbol in one

quences) which may be distorted
string can be mapped to one or more symbols in the other string, provided that the sequential

order is preserved.
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Given two strings, many time warps are possible. A cost (or gain) function can be defined
to evaluate each warp. If time warping is intuitively seen as stretching or shrinking one string
(nonlinearly) to make it look more similar to another string, then the best warp corresponds to
the best compromise between minimizing the stretching and shrinking costs and maximizing the
similarity between the corresponding symbols in the two strings. A similarity or dissimilarity

(i.e. distance) measure can be defined between two strings based on the best warp.

For a string of length m and another string of length n, the best warp between them can be
found out using dynamic programming, and the matching process is usually represented by an
m x n graph (matrix) with three basic operations (i.e. compression, expansion, and substitution)
associated with each node(!3'%). The computational complexity is thus O(mn). This could be
time-consuming if the basic operations form complex distortions. However, if we assume that
there are only local distortions (i.e. variation and deformation of handwriting in our case) within
each string, we can limit the extent of possible positional shift of each symbol. This results
in a reduction in the number of possible warps that need to be investigated using dynamic
programming. As a result, the matching graph is reduced to a sub-diagonal one, and hence the
computational complexity is also reduced accordingly. The sub-diagonal range characterized
by an integer indicates the extent of possible positional shift of symbols during the matching
process (see Figure 8). This kind of time warping is referred to here as band-limited time
warping. Similar ideas have been suggested by Tappert et al.(), who use lines of slopes 1 /2 and

2 to represent the limits of compression and expansion in stroke-by-stroke elastic matching.

15



3.1.2 Dynamic Programming Algorithm

Dynamic programming is a useful technique for finding the shortest path from one node to
another in a graph. It has also been used successfully for string matching(!#1%). In our system,

we use a dynamic programming approach to perform elastic matching of feature sequences.

source

i

Vs

VN-1

VN

sink

Figure 6: Dynamic programming matching

Suppose G is a matching graph with nodes in N levels, as shown in Figure 6. Each node
in the graph is associated with an index and a cost value. Let V,, be the set of nodes at level
n, 1 < n < N. The singleton sets V; = {1} and Vx = {T'} are for the source and sink nodes,
respectively. Starting from the source there are a number of paths leading to the sink, with
each path associated with a total cost value. Denoting the cost value of node v as ¢, and the
minimum partial cost (over all possible partial paths) from a node u € V,, to the sink Vy as

Cp(u), the minimum total cost from the source to the sink can then be determined as follows:

1. Initialization step:

Cn(T)=cr (14)
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2. Induction step:

VueV,yn=N—-1,N—-2,...,1
Cn(u) = ¢, + min {Cpi1(v)} (15)

(u,v)eG

where (u,v) denotes an edge in G.

The algorithm for dynamic programming based on a gain measure can be derived in a

similar manner.

3.2 Preclassification

The preclassification step is based on finding the maximum gain of band-limited time warping to

define the similarity between two strings. The maximum gain is found by dynamic programming.

3.2.1 Similarity Between Two Sequences

Let Dy and Dpg be the sequences of direction primitives of an input character C7 and a reference

character Cg, respectively:

D[ - dzl dz2 =t diM—l (16)
Dr = dydpy---dpy (17)

Without loss of generality, assume that M < N. Using the idea of band-limited time warping,

one can construct a matching graph G4(Dy, Dg) with nodes in N+1 levels, as shown in Figure 7.

As shown in the figure, a direction primitive in D is allowed to have only one match in Dy,

but a direction primitive in D; may have multiple matches in Dg. Furthermore, virtual source

17
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source

2
s~
~ 1 virtual
............................................................................ <
1%y sink
M-1 --%

node (p,q) denotes matching d;, with dr,

Figure 7: Matching graph G5(Dy, Dg)

and sink nodes are introduced so that matching of the two ends is not enforced. The gain at a
node (p,q) can be interpreted as the similarity between d;, and d,,, which is defined in Table 3.

The gains at the source and the sink are set to zero.

The maximum total gain G, from the source to the sink can be found by dynamic

programming as discussed above. The similarity between D; and Dpg is then defined as

Gmaz

(18)

if both Dy and Dp are non-empty. It is obvious that 0 < S(Dy, Dg) < 1.

3.2.2 Candidate Classes

Suppose C7 and Cpr belong to the same character set and have the same ascender-descender

property if the character set is the set of English letters. C'r is said to be a candidate class for

18



SE 0.6 1 0.6 0 0 0 0 0

SW 0 0 0.6 1 0.6 0 0 0

NwW 0 0 0 0 0.6 1 0.6 0

NE | 0.6 0 0 0 0 0 0.6 1

Table 3: Similarity between direction primitives
Crif

S(Dr1,Dr) > Ts (19)

where T is a threshold.

Based on the above rule, we can select a (limited) number of candidate classes for subsequent
fine classification. In the case when no candidate classes can be selected, the input character
will be rejected because it is sufficiently different from all the character patterns in the current
reference set. (The issue of modifying or evolving the current reference set will be addressed in

a later section.)

3.3 Fine Classification

The fine classification step is based on finding the minimum cost of band-limited time warping
to define the distance (i.e. dissimilarity) between two strings. The minimum cost is found by

dynamic programming.
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3.3.1 Distance Between Two Sequences

Let P;r and Pg be the sequences of dominant points of the input character C; and a reference

character Cg, respectively:

P = PriPry**Pry (21)

Using the idea of band-limited time warping, a matching graph G4(Pr, Pg) with nodes in N

levels can be constructed (Figure 8), similar to that for the preclassification step.

source 1 2 B N

node (p,q) denotes matching p;, with py,

Figure 8: Matching graph G4(Pr, Pr)

Unlike in the matching graph G4(Dy, Dr) a dominant point in either sequence may have
multiple matches in the other sequence. The cost at a node (p,q) is defined as the Euclidean
distance between dominant points p;, and p,,. The minimum total cost Cii, from the source

to the sink can be found by dynamic programming. With this cost, the distance between P;

20



and Pg is defined as

Cmin
N

D(P;, Pgp) = (22)

It is obvious that D(Pr, Pr) is well defined and > 0 as long as P; and Pg are both non-empty.

3.3.2 Character Classification

Let {Pr} be the set of dominant point sequences corresponding to the set of candidate classes
{CRr} obtained from the preclassification step. The input character C; is classified as C} € {Cgr}

if Py, corresponding to C}, satisfies

Py = argmin{D(Pr, Pr)} (23)
R
and
D(Pr,Pr) <Tp (24)

where Tp is a threshold. Otherwise, the input character will be rejected.

3.4 An Example

We have defined the similarity and distance between strings based on dynamic programming

matching using different matching graphs. Figure 9 shows an example to illustrate the ideas.

Two character patterns Cr and Cgr are shown. For simplicity, we only consider dominant
points of types (a) and (b) (see Section 2) in this example. Let the sequences of direction

primitives of Ct and Cg be
Dr = d;d;,di;diyy, = WSEN (25)
Dr = d,dydy,d,, =SENW (26)

21



Dig dil Diq Dis Prqy Prg dT4 Pry

dzz C’I dz4 drl de
pls dls p7,4 p’I‘Q de p’r‘3
1 2 3 4 5
1 2 3 4 1
O:1>0—0
2
m 3
3 .
4 5
path of maximum gain: path of minimum cost:
(2,1)(3,2)(4,3)(4,4) (1,1)(2,1)(3,2)(4,3)(5,4)(5,5)
Matching graph Gs(Djy, DRg) Matching graph G4(Pr, Pr)

Figure 9: Example of similarity and distance measures
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and the sequences of their dominant points be

Pr = piypi,pisPispis

= (91,0)(0,0)(0, 127)(107, 127)(80, 0) (27)
Pr = PriProPrsPriDrs
= (0,0)(0,127)(107,127)(107, 0)(27,0) (28)

The maximum gain G4, determined from the matching graph Gs(Dy, Dg) is 3, while the

minimum cost C,i, determined from the matching graph G4(Pr, Pr) is 160. Thus, we get

S(D;,Dp) = > =0.75 (29)

=W

60

4 Reference Set Evolution

In general, a character class may need more than one reference pattern (or template) to repre-
sent different commonly encountered variations in writing style, e.g., numeral ‘7’ and lowercase
English letter ‘z’. Besides, variations in stroke order and the number of strokes may also be han-
dled in the same way. However, due to speed and memory considerations, it may not be feasible
to allow the reference set to be expanded without bound. Moreover, class separability may be
affected if the reference patterns are not chosen properly. We propose a method for choosing
the appropriate set of reference patterns in an iterative manner.> This process is referred to as

reference set evolution.

3Note that this issue is related to clustering.
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4.1 Intraclass and Interclass Distances

Let A be an alphabet of M character classes with NV example instances per class:

Ay = {Cull <m < M} (31)

Cn = {Cmn|1§n§N} (32)

For each class C,, we want to select K,, patterns from the N instances to form the reference

set:

Cr, = {Crmny |Cmny, € O, 1 <k < Ky} (33)

For each subset C7,, the following distance measures are defined:

e Intraclass distance:

1 Ky, N
Dmt(C:;L,Cm) = 7= At Z ZD(Pmnkapmn) (34)
k=1n=1

where P,,,,, and P, are the sequences of dominant points of C,,, and Cy,,, respectively.
e Interclass distance:

Deri(Cr,,Cl) = min  {D(Ppn,, Pin;)}

l#m,ng,n;
= min{min{rrTlli_n{D(Pmnk s Piny) } 1} (35)
J

l#m =~ Nk

where Py, and Py, are the sequences of dominant points of Cpyp,, and Oy, , respectively.

Intuitively, for each character class C,,, we would like to find the optimal reference set C’fn
such that

Cr, = arg min{ Diny(C,, Cm) } (36)

24



and

Cr, = arg max{ Degt (Cra; O ) } (37)

so that it can represent the class with minimum intraclass distance and maximum interclass
distance. In practice, however, this may not always be realizable. A heuristic method is proposed

here to find a (suboptimal) reference set through an iterative procedure.

4.2 Tterative Evaluation and Deletion

Let P,,, be the sequence of dominant points of an instance Cp,, in class C,,. We define the

following evaluation function for Cp,y:

N
J(Crn) = ZD(Pmnapmz) + l;gnin {D(Pmna-Pan) | Clnj € OZT} (38)

i=1 MM
where C7 is the current reference set for class C; and can be arbitrarily set at the beginning.

We delete the instance Cyyy, € Cpp, such that
Crng, = arg Hhin{J(Cmn)} (39)

By repeatedly deleting instances, we can get a reference set C7, with K, instances. The same

procedure is performed on all M classes.

By going through the character classes for multiple passes using an iterative evaluation
and deletion procedure, the resultant reference set will have small intraclass distance and large

interclass distance.
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5 Recognition Experiment

We have discussed the several stages of our system for data preprocessing, feature extraction,
character classification, and reference set evolution. In this section, some experimental results

are discussed.

Our system has been implemented on a 486 50MHz personal computer running Microsoft
Windows 3.1, with a WACOM digitizing tablet as input device. The width and the height of each
normalized character are set to W = 108 and H = 128, and the thresholds for preclassification
and fine classification are set to Ts = 0.6 and Tp = 32. Two rectangular writing areas each of

size 110 x 72 are assigned to numerals and English letters.

5.1 Character Classes

We use 62 character classes with different writing styles in our experiment, i.e., numerals 0-9,
uppercase letters A-Z, and lowercase letters a-z. The basic writing templates for these classes are
shown in Figures 10 to 12. These writing templates are derived from the Italian manuscript style
and some other writing styles. Most characters are written from top to bottom and from left to
right. For characters having more than one stroke, the stroke order is indicated by associated

numbers.

As was mentioned above in Section 2, three ledger regions are used for English writing. The

ledger lines are shown as dotted lines in Figures 11 and 12.

Other than the writing templates shown above, some character classes also have other
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Figure 10: Basic writing templates for numerals

Figure 11: Basic writing templates for uppercase letters
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Figure 12: Basic writing templates for lowercase letters

associated templates. For example, the letter ‘T’ in the Italian manuscript style is written with
two strokes: the first one is a vertical stroke and the second, a horizontal stroke. However, some
people write this character with a different stroke order, i.e., the horizontal stroke first followed
by the vertical stroke. In order to handle such variation, an extra template is also included. For

brevity, we do not show all the variants here.

5.2 Data Collection and Reference Set

5.2.1 Data Collection

In order to evaluate the performance of our system, 21 participants were invited to contribute
handwriting data for our recognition experiment. The data for each participant are stored in

three data files, one each for numerals, uppercase and lowercase letters.
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When producing the first data file, each participant was asked to write the numerals 0-9
twice in two different writing styles corresponding to the writing templates in Figure 10. This
file thus contains 20 character instances (0-9, 0-9). For the second data file, each participant was
asked to write the uppercase letters A-Z once in the specified stroke order according to Figure 11,
and then in whatever stroke order the participant prefers. Thus, this file contains a total of 52
character instances (A-Z, A-Z). For the third data file, each participant was asked to write the
lowercase letters a-z twice in two different writing styles corresponding to the writing templates
in Figure 12. This file contains a total of 52 character instances (a-z, a-z). Figures 13 and 14
show two examples of such data files produced by two participants. Note that in Figure 13 the
two instances of characters ‘G’, ‘I’, and ‘J’ are quite different with respect to the number of

strokes. Such variations are not consistent between different writers.

Data from shirley, 5 July 1995

Figure 13: Uppercase letters written by a participant
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Data from james, 15 June 1995

Figure 14: Lowercase letters written by a participant

5.2.2 Reference Set

All the 124 characters written by the first participant were used as reference patterns to form
the initial reference set. This set includes all the basic writing templates as shown in Figures 10
to 12, as well as some variations with respect to the number of strokes and the stroke order,

such as in the characters ‘E’, ‘H’, ‘I’, and ‘T".

Reference set evolution was then performed by using the data from five randomly chosen
participants. A maximum of four reference patterns were allowed for each character class.
However, the two initial reference patterns for each class were treated as “seeds” and were never
deleted. After running the procedure as described in Section 4, 56 new reference patterns were
selected to give a total of 180 patterns in the reference set. This reference set was then used in

the recognition of the characters written by the other 15 participants.
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5.3 Recognition Results

By using an elastic matching approach, our system can tolerate local variation and deformation
such as stroke splitting and slanting. In our experiment, it was found that whenever a person
wrote a character in accordance with one of the writing templates in the reference set, the input

character was always recognized correctly. Figure 15 shows an example.

| Designated Writing Area | | Identity |
Chinese: English: Numeral:
o o m
— _%L — Mo.2
d=15.88
5=0.893

Information of Character Candidates

m u n

No.2 No.2 No.2
d=15.88 d=19.81 d=20.42
5=0.893 s=0.787 s=0.707

Figure 15: Recognition of a single character

The input character in Figure 15 was written in accordance with the second writing template
for the lowercase letter ‘m’ in Figure 12. Although the stroke was split into two parts due to fast
writing, a reference pattern for the correct class ‘m’ was still selected during the preclassification
step. The three candidate reference patterns are reference pattern 2 of ‘m’, reference pattern
2 of ‘u’, and reference pattern 2 of ‘n’. As shown in Figure 15, the candidates are sorted in
ascending order of the distance. In addition, the distance and similarity values are also shown.
Since reference pattern 2 of class ‘m’ has the smallest distance value (d = 15.88) for the input

character, the input is recognized as character ‘m’.

To collect more statistics about the performance, the data from 15 participants were tested.
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Figures 16 to 18 show some examples.

Designated Writing Area | | Identity
Chinese: English: Numeral:
_______ 9
_______ ? No.1
d=24.02
5=0.650

‘ Data from William Go ‘

Total: 200 Done: 20 First: 20 Second: 0 Third: 0 Other: 0 Reject: 0

O 25456759
O 234567 5]

Figure 16: Recognition of numerals

Designated Writing Area | | Identity
Chinese: English: Numeral:
_______ No.1
d=9.04
s=1.000

‘ Data from chang ‘

Total: 52 Done: 52 First: 48 Second: 2 Third: 0 Other: 0 Reject: 2

EFGaH ) JCLMN
PORSTUVWA
Z

< T

Figure 17: Recognition of uppercase letters

In each figure, the handwritten characters from a data file are displayed in the lower area.
The character currently being processed is highlighted by a box, with the original writing and
the recognized class displayed in the corresponding areas. The information line in the middle

area provides the following statistics:
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Designated Writing Area | | Identity

Chinese: English: Numeral:

. No.2
d=19.74

s=0.500

‘ Data from chesney ‘

Total: 52 Done: 52 First: 44 Second: 3 Third: 2 Other: 2 HReject: 1

CF G A LT ARELMmNn
Sl G N SR P IV WV IV &
Y%

>

Figure 18: Recognition of lowercase letters

e total number of characters in the data file;

e number of characters processed (done) so far;

e number of characters recognized as the first candidate;

e number of characters recognized as the second candidate;

e number of characters recognized as the third candidate;

e number of characters recognized as some other candidates; and

e number of characters rejected by the system.

As part of the results, all the 20 numerals in Figure 16 were recognized correctly. Among
the 52 characters (partially) shown in Figure 17, 48 were recognized as the first candidate, two
as the second candidate, and two were rejected. For the lowercase letters in Figure 18, 44 were
recognized as the first candidate, three as the second, two as the third, two as others, and one

was rejected.
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The recognition results based on data from 15 people are summarized in Tables 4 to 7. The
recognition rate for numerals is the highest while that for lowercase letters is the lowest.* The
overall recognition rate is 91.0%, with 7.9% substitution rate and 1.1% rejection rate. If we

consider the three best candidates, the hit rate is 97.1%.

Total 1st 2nd 3rd Others | Rejected

300 289 8 0 1 2

100% | 96.3% | 2.7% | 0.0% 0.3% 0.7%

Table 4: Recognition results for numerals

Total 1st 2nd 3rd Others | Rejected

780 725 31 1 10 13

100% | 92.9% | 4.0% | 0.1% 1.3% 1.7%

Table 5: Recognition results for uppercase letters

Total 1st 2nd 3rd Others | Rejected

780 679 61 13 22 5

100% | 87.1% | 7.8% | 1.7% 2.8% 0.6%

Table 6: Recognition results for lowercase letters

The average time for processing one data file of 20 numerals is about 6 seconds, while that
for 52 English letters is about 18 seconds. Thus, the average processing time is estimated to be

about 0.35 second per character.

“Postprocessing techniques based on context information may be used to further increase the recognition

accuracy. However, such issue is beyond the scope of this paper.
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Total 1st 2nd 3rd Others | Rejected

1860 1693 100 14 33 20

100% | 91.0% | 5.4% | 0.7% 1.8% 1.1%

Table 7: Overall recognition results

6 Conclusion and Remarks

In this paper, we have presented an approach to on-line handwritten alphanumeric character
recognition. In our approach, an on-line handwritten character is characterized by a sequence of
dominant points in strokes and a sequence of writing directions between consecutive dominant
points. The directional information of the dominant points is used for character preclassification
and the positional information is used for fine classification. Both preclassification and fine
classification are based on dynamic programming matching using the idea of band-limited time
warping. These techniques are elastic, in that they can tolerate local variation and deformation.

The issue of reference (or template) set evolution is also addressed.

Our system has been built on a 486 50MHz personal computer running Microsoft Windows
3.1, with a WACOM digitizing tablet as input device. A recognition experiment was conducted
using this approach, with 62 character classes (0-9, A-Z, a-z) of different writing styles (Italian
manuscript style and some other styles) and data collected from 21 people. The data from six
participants were used to build the reference set, which was then tested using data from the
other 15 participants. The recognition rate of this experiment is 91%, with 7.9% substitution
rate and 1.1% rejection rate. The system is reasonably fast, with average processing time of

0.35 second per character.
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A remarkable aspect of our approach is that it is easily extensible to different character sets
and different writing styles. For example, the system can also recognize symbols such as ‘+’,
‘¢, ‘£ if the corresponding templates are added into the reference set. Furthermore, our
approach can handle large character sets (such as Chinese characters) due to its fast preclassi-

fication step.

A limitation of our system is its dependence on stroke order, since our approach is based
on sequential features rather than 2-D spatial information. Thus, in general, a different stroke

order requires an additional reference pattern.

In our future work, we will develop an approach insensitive to variations in stroke order.
A possible solution to this problem is to cast it under a probabilistic framework so that such
variations can be represented by a probability distribution over all possible sequences for a pat-
tern class. An early approach using (observable) Markov chains(®) and a more recent approach

(17,18)

using hidden Markov models are examples in this direction.
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