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Abstract

Speed, accuracy, and #exibility are crucial to the practical use of on-line handwriting recognition. Besides, extensibility
is also an important concern as we move from one domain to another which requires the character set to be extended. In
this paper, we will propose a simple yet robust structural approach for recognizing on-line handwriting. Our approach is
designed to achieve reasonable speed, fairly high accuracy and su$cient tolerance to variations. At the same time, it
maintains a high degree of reusability and hence facilitates extensibility. Experimental results show that the recognition
rates are 98.60% for digits, 98.49% for uppercase letters, 97.44% for lowercase letters, and 97.40% for the combined set.
When the rejected cases are excluded from the calculation, the rates can be increased to 99.93%, 99.53%, 98.55% and
98.07%, respectively. On the average, the recognition speed is about 7.5 characters per second running in Prolog on a
Sun SPARC 10 Unix workstation and the memory requirement is reasonably low. With this simple yet robust structural
approach, we already have an e!ective and e$cient on-line character recognition module. This module will be used as
part of a larger system, a pen-based mathematical equation editor, which is being developed by the authors using
a syntactical pattern recognition approach. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd.
All rights reserved.

Keywords: Structure extraction; Structural primitives; Flexible structural matching; On-line handwritten character
recognition

1. Introduction

Automatic recognition of on-line handwriting pro-
vides one of the most natural ways for human beings to
interact with computers without having to learn any
extra skill (e.g., typing). Research in this area has been
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active for more than three decades [1]. Di!erent ap-
proaches, such as statistical, syntactic and structural, and
neural network approaches, have been proposed.

Characters consist of line segments and curves. Di!er-
ent spatial arrangements of these elements form di!erent
characters. In order to recognize a character, we should
"rst "nd out the structural relationships between the
elements which make up the character. However, in prac-
tice, the syntactic and structural approach [2,3] su!ers
from several drawbacks. One of the major concerns is the
need for robust extraction of primitives [4].
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Fig. 1. Four binary operations in PDL.

In order to make on-line handwriting recognition
feasible, at least three issues have to be considered:
speed, accuracy, and #exibility [5]. High speed and accu-
racy are always the key characteristics of any system,
while #exibility is also important here due to diverse
writing styles of di!erent writers. In other words, an ideal
handwriting recognizer should be able to quickly and
accurately recognize a reasonably wide range of hand-
writing input.

Most, if not all, handwriting recognition systems
in existence are designed to recognize prede"ned charac-
ter sets of "nite size. Typically they include digits,
uppercase letters and lowercase letters. However, when
we move from one application to another, some charac-
ters may have to be added to the character set. However,
many existing methods require that complete retraining
from scratch be conducted and hence previous training
e!orts wasted (e.g., [6]). It would certainly be desirable to
reuse what is already available as much as possible.

In this paper, we will propose a simple yet robust
structural approach for recognizing on-line hand-
writing. Our approach is designed to achieve reasonable
speed, fairly high accuracy and su$cient tolerance
to variations. At the same time, it maintains a high degree
of reusability and hence facilitates extensibility. First
of all, we will review some related work. After introduc-
ing the structural primitives used in our proposed
representation scheme, we will give an overview of the
recognition process. Then, we will discuss how to extract
structural primitives from the input and undertake some
reconstruction steps in a robust manner. Afterwards, we
will explain how to perform classi"cation through model
matching. We will also illustrate how to resolve ambi-
guities through some examples. Finally, we will present
and discuss some experimental results, which are then
followed by some concluding remarks.

2. Related work

Using the structural approach, two-dimensional pat-
terns, such as characters, can be represented in at least
two di!erent ways. The "rst one is to use a representation
formalism which is by nature of high dimensionality,

such as an array, a tree or a graph [7,8]. The second one
is to incorporate additional relationships between primi-
tives into a one-dimensional representation form. Two
well-known methods using the latter approach are the
picture description language (PDL) [9] and the plex
grammar [10].

Note that we need to consider the trade-o! between
expressive power and time complexity for processing
when we choose any representation formalism. Graphs
have the highest expressive power, but the detection of
exact or approximate subgraph isomorphism is known
to be intractable [11]. On the other hand, string match-
ing is of polynomial time complexity, but its expressive
power is much lower. When e$ciency is our major
concern, like in this paper, string representations are
generally preferred. Hence, we will focus on string repres-
entations rather than high-dimensional representations.

Among the various string representations, the PDL
and the plex grammar are usually used to describe
how primitives are connected. These schemes may be-
come very tedious when there exist large variations with-
in the character classes. Berthod and Maroy's primitives
[12] attempt to address the problem of high variabil-
ity. However, their method does not make use of
directional information. On the other hand, Freeman's
chain code [13] and some extended schemes (e.g., [14])
use directional information to form primitives, although
the resulting representations are often not compact
enough.

2.1. Picture description language

The picture description language (PDL) [9] is one of
the earliest attempts to describe pictorial patterns using
a formal language. In PDL, each primitive has two con-
nection points, i.e., head and tail. Four binary operators,
denoted by #, !, ] and *, are de"ned to combine
a pair of PDL expressions. On the other hand, the unary
operator 8 is used to reverse the head and tail of a primi-
tive or a PDL expression. Fig. 1 shows how primitives
are connected using these four binary operators.

By de"nition, a PDL expression is either

f a primitive, or

1100 K-F. Chan, D-Y. Yeung / Pattern Recognition 32 (1999) 1099}1114



Fig. 2. Two example PDL expressions.

Fig. 3. Two example plex structures.

f a PDL expression preceded by a unary operator, or
f two PDL expressions connected by a binary operator.

One of the advantages of PDL is that pictorial
patterns can be represented by strings, i.e., PDL expres-
sions. Fig. 2 shows two PDL expressions which describe
the structures of two characters, &F' and &P'. However,
PDL has its limitation that all connections between
primitives or complex patterns are allowed at only two
points. Also, the same pattern can sometimes be de-
scribed by more than one PDL expression.

Intuitively, the &P' in Fig. 2 could simply be represented
as the concatenation of the PDL expression for &F' and
the primitive &b'. However, this combination is impossible
because of the incompatibility between the heads and
tails of the two structures. As a result, we need to describe
the letter &P' by another PDL expression.

2.2. Plex grammar

The plex grammar [10] was designed to overcome the
limitation of PDL by allowing more than two connection
points.

The basic unit of the plex grammar is an n-attaching
point entity, or simply nape. It is represented by an
identi"er and a list of attaching points. Structures for-
med by connecting the napes together are called plex
structures. A plex structure consists of three components:

f a list of napes,
f a list of internal connections between napes, and
f a list of attaching points which can be used for

joining the plex structure with other napes or plex
structures.

Fig. 3 shows the structures of characters &F' and &P' in
plex grammar. Three napes, h, v2 and v3, are used to

create new plex structures. For example, the plex struc-
ture of the nape, f(1, 2, 3), is as follows:

(v3, h, h) (110, 201) (1, 2, 3).

The "rst part is the list of napes used in the structure. The
second part gives information about the two internal
connections:

f The "rst value, 110, means that a connection exists
between point 1 of v3 and point 1 of the "rst h. Note
that the second h is not involved in this connection,
and hence the third digit is 0.

f The second value, 201, means that there exists a con-
nection between point 2 of v3 and point 1 of the second
h. Similarly, a value of 0 for the second digit shows that
the "rst h is not involved in this connection.

The last part is the list of points which can be used to
form connections with other napes or plex structures.

The plex grammar su!ers from the same problem as
PDL in that a pattern may be represented by several
di!erent plex structures corresponding to di!erent orders
in listing the napes.

2.3. Berthod and Maroy+s encoding scheme

In Berthod and Maroy's encoding scheme [12], there
are "ve primitives:

f straight line, denoted by T,
f positive (counter-clockwise) curve, denoted by P,
f minus (clockwise) curve, denoted by M,
f pen-lift, denoted by L,
f cusp, denoted by R.

Every character can be represented by a string of
primitives. Fig. 4 shows some examples of characters
which are encoded using Berthod and Maroy's scheme.

Note that some resulting strings are ambiguous. For
example, the code P has three interpretations MC, L, UN
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Fig. 4. Examples of some characters encoded using Berthod
and Maroy's scheme.

Fig. 5. Direction values used in Freeman's chain code.

Fig. 6. Some example characters encoded using the extended
Freeman encoding scheme.

and the code TLTLT has eight interpretations MA, F, H,
I, K, N, Y, ZN. In the latter case, some of the characters
are not really similar at all, e.g., &H' has two vertical
and one horizontal strokes while &I' has one vertical and
two horizontal strokes. The scheme is thus not very
informative.

2.4. Freeman+s chain code and some extended schemes

Freeman's chain code [13] is a widely used chain-
coding method. It consists of eight values, 0}7, which
indicate how the current point is connected to the next
one. Fig. 5 shows the direction values in Freeman's chain
code.

The extended Freeman and the improved extended
Freeman encoding schemes [14] both use the eight direc-
tion values in Freeman's chain code as primitives. During
the preprocessing stage, all values that are the same as
their preceding ones in the chain code are removed so
that the resulting chain code can be shorter and at the
same time preserves all the critical information.

The extended Freeman encoding scheme pays special
attention to the pen-lifting action by assigning a direction
value (with a bar on it) to the pair of points between
pen-up and its successive pen-down. As a result, the

number of primitives is increased to 16. Note that this
extended scheme still creates some ambiguous cases, but
the degree is much less than that of Berthod and Maroy's
scheme. Fig. 6 shows some example characters encoded
using the extended Freeman encoding scheme.

The improved extended Freeman encoding scheme
reduces the number of primitives back to eight by repres-
enting 01 , 11 , 2, 71 simply as 0, 1, 2 , 7. According to the
authors [14], the classi"cation result remains the same as
the one in the extended Freeman encoding scheme but its
primitives are comparatively simpler.

3. Overview of the recognition process

3.1. Structural primitives

Characters are composed of line segments and curves.
Every line segment or curve can be extended along a cer-
tain direction. A curve that joins itself at some point
forms a loop. Hence, in our representation, we will use as
primitives di!erent types of line segments and curves
with some directional information. Note that a single
stroke may consist of several primitives. Basically, there
are "ve types of primitives:

f line,
f up (curve going counter-clockwise),
f down (curve going clockwise),
f loop (curve joining itself at some point), and
f dot (a very short segment which may sometimes be just

noise; we, however, cannot simply ignore it since it
may be part of a character, like in &i' and &j').

To represent the directional information, we also em-
ploy Freeman's chain code [13] which consists of eight
values, i.e., 0}7.

The grammar, G, which expresses our proposed struc-
ture in a string representation, is a 4-tuple G"(<

T
, <

N
,
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Fig. 7. Examples of the representations for some characters.

Fig. 8. Examples of the models for some character classes.

P, S) where

f <
T
"Mline, up, down, loop, dot, ‘M‘,’N’, ‘,’, 0, 1, 2, 3, 4,

5, 6, 7N, with 0}7 denoting the direction values in
Freeman's chain code,

f <
N
"MCharacter, StrokeSet, Stroke, PrimitiveSet,

Primitive, LineType, DirectionN,
f P is a set of production rules as follows:

P"M

Character P MStrokeSetN
StrokeSet P Stroke
StrokeSet P Stroke, StrokeSet

Stroke P PrimitiveSet
PrimitiveSet P Primitive
PrimitiveSet P Primitive, PrimitiveSet
Primitive P MLineType, DirectionN
Primitive P loop
Primitive P dot
LineType P line D up D down
Direction P 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7

N
and

f the start symbol, S, is Character.

Note that no directional information is associated with
isolated dots. Also, for simplicity, we do not associate

directions with loops at this stage. The direction of a line
or a curve depends on the starting and ending points.
Fig. 7 shows some examples.

3.2. Model set

Before we can perform recognition, we need to de"ne
models for the corresponding character classes. Note that
all models should be distinct. In other words, there exist
no two models with the same number of strokes and the
same sequence of primitives in each stroke. Also, di!erent
character classes may have di!erent numbers of models
depending on the complexity of their structures. Fig. 8
shows some examples.

As shown in Fig. 8, some models look very similar but
have di!erent numbers of strokes. In some cases, we may
be able to combine some strokes together and hence
reduce the number of models in the model set. However,
for simplicity, we have not implemented this in our cur-
rent work.

3.3. Recognition process

After we have written a character on the digitizer, what
we get is only a sequence of points. In order to recognize
the character, we must "rst extract the structural primi-
tives from the point sequence to form a preliminary
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Fig. 9. Overview of the recognition process.

Fig. 10. Steps taken to extract the structure.

Fig. 11. Eliminating zig-zag line segments during structure extraction.

structure. Occasionally, some kinds of reconstruction
may be required if certain conditions are met. With the
"nalized structure, we then compare it with the models in
the model set and try to "nd a match. Here we apply
#exible structural matching in order to increase the
chance of "nding a match. However, we sometimes may
get ambiguous results and therefore need further classi-
"cation. Fig. 9 summarizes the major stages of the recog-
nition process.

4. Structure extraction and reconstruction

4.1. Structure extraction

In each character, there may be one or more strokes.
Each stroke consists of a number of points that trace out
a path on the writing surface from pen-down to pen-up
in normal handwriting style. Every pair of consecutive
points induces a direction. For points that follow the

same direction or have a slight turn, we group them into
one line segment. On the other hand, if there is a sharp
turn along a stroke, we will represent it with multiple line
segments. Fig. 10 shows the steps taken to extract the
structure of a digit &3'.

In practice, some writers produce characters which are
hard to recognize. Most cases are the result of di!erent
writing habits, for example, writing strokes in a reverse or
unusual order. However, some may be due to the poor
quality of the hardware. As a result, zig-zag line segments
sometimes occur. To solve the problem, we can simply
extract the mid-points of those zig-zag line segments and
connect them together to form a stroke. Fig. 11 shows
how zig-zag line segments are eliminated during struc-
ture extraction.

4.2. Structure reconstruction

After obtaining the preliminary structure, we some-
times may need to either combine some lines and curves
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Table 1
Some conditions for combining consecutive primitives

Primitive 1: Primitive 2: New primitive:
M¹

1
, D

1
N M¹

2
, D

2
N Condition MNewT, NewDN

Mline, D
1
N Mline, D

2
N D

1
"D

2
Mline, D

1
N

Mup, D
1
N or Mup, D

2
N or ¹

1
"¹

2
M¹

1
, NewDN

Mdown, D
1
N Mdown, D

2
N "JointType

Fig. 12. Combining two lines into one.

Fig. 13. Alternatives in changing from 2 to 4.

together under certain conditions, or further extract
some sub-structures, such as loops, if they are detected in
the original structure.

4.2.1. Combining lines and curves
Occasionally, a smooth stroke may be broken into

parts due to either poor writing or low-quality hardware.
In order to remedy this, we have to check each pair of
consecutive primitives in a stroke. If some conditions are
met, we will combine the two primitives together to form
a new one. Table 1 shows some conditions under which
consecutive primitives are combined.

Note that ¹
1

and ¹
2

denote the types of primitives
and D

1
and D

2
represent their directions, respectively.

The new primitive has New¹ as its type and NewD as its
direction (from the starting point of the "rst primitive to
the ending point of the second primitive).

As shown in Table 1, in order to combine two lines
together, their directions must be the same. Fig. 12 shows
an example.

Combining curves is slightly more complicated.
First of all, we have to determine the joining type
which describes how the curves are connected. For
example, if the direction of the last line segment of the
"rst primitive is 2 and that of the "rst line segment of the
second primitive is 4, it implies that the change is from
2 to 4. As shown in Fig. 13, there are two alternatives to
change from 2 to 4. Here we always choose the shorter
path, and therefore, JointType"find

}
joint
}

type (2, 4)
"up.

By comparing the value of JointType with the types of
both curves, we are then able to decide whether the two
curves can be combined. Fig. 14 illustrates when two
curves can and cannot be combined together.

After this stage, sets of characters which have only
slight variations in point locations can be grouped under
their corresponding structures. Fig. 15 shows some vari-
ations of the digit &3' which share the same structure.

4.2.2. Extraction of loops
As mentioned above, the only information from the

input is just a sequence of points. By checking the relative
positions of consecutive points, we can infer a chain code
that reveals the directional change of points. However,
such a chain code only allows us to detect lines and curves,
but not loops. Fig. 16 shows how two di!erent characters,
&C' and &O', have the same preliminary structure.

In addition to the directional information between
consecutive points, we may also measure the directional
information of points with respect to the starting point.
To obtain this additional code sequence, we use the same
method for calculating direction values as above.
The major di!erence here is that the value !1 will
be returned when the distance between the current point
and the starting point is less than a certain threshold.
As a result, this indicates that a loop is detected. Fig. 17

shows how this additional code sequence helps to detect
a loop.

In general, a loop can be found in three di!erent
locations of a stroke:

1. at the beginning,
2. in the middle, and
3. at the end.

Fig. 18 gives some examples.
When the loop is at the beginning of a stroke,

the method described above can detect its occurrence.
However, it does not help when the loop is either
in the middle or at the end of a stroke. Fortunately,
for these two cases, some forms of #uctuation often
occurs in the additional code sequence, as shown in
Fig. 18b and c.
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Fig. 14. Examples illustrating when two curves can and cannot
be combined together.

Fig. 15. Various occurrences which have the same structure as the digit &3' in Fig. 10
.

Fig. 16. Two di!erent characters have the same preliminary
structure.

Fig. 17. Detecting the occurrence of a loop.

When the loop is in the middle of a stroke, we can
check the distance between points, starting from the two
ends of the stroke. When the distance decreases, we will
continue to move inward until the distance is less than
a certain threshold. When this happens, a loop is said to
be found. For the case of having a loop at the end of
a stroke, we apply a similar method. However, we will "x
the ending point this time. Fig. 19 illustrates these two
cases.

In general, loops can be detected by using one of the
above methods, or a combination of some of them. For

example, &g' contains loops both at the beginning and in
the middle (sometimes, at the end) of the stroke. We,
therefore, require a combination of two methods for
detecting them. Fig. 20 shows some examples of combin-
ing several methods to extract loops from a stroke.

Detection of loops is not always trivial as loops may
appear in some characters in special ways. Sometimes,
even where the stroke starts may a!ect the methods used
to extract the loops. For example, if the starting position
is near the center of the character &8', two loops can easily
be found as indicated by the two values of !1 found in
the additional code sequence. However, if the starting
point is near the top of the character &8', only one value of
!1 is found. Luckily, the #uctuations in both the origi-
nal chain code and the additional code sequence give us
hints for detecting such double loops. Fig. 21 illustrates
these two examples.

In the two cases above, we should notice that the two
methods used are just variants of the method for detect-
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Fig. 18. Di!erent locations in which a loop can occur within
a stroke.

Fig. 20. Combination of several methods to extract loops from a stroke.

Fig. 19. Extracting loops from the middle and the end of
a stroke.

ing loops from the beginning of the stroke. In general, the
three major methods as shown in Fig. 18 are already
su$cient for "nding loops in characters.

5. Flexible structural matching

After extracting the structure of a character (possibly
with some reconstruction steps involved), we can then
match it against a set of models. However, due to di!er-
ent writing styles and habits, variations within the same
character class are not uncommon. In order to increase
the recognition rate, those characters that do not have an
exact match will be slightly varied in shape and direction
in an attempt to "nd approximate matches.

Most structural matching methods deal with graph
representations directly [7]. Our method, instead, works
on string representations. The following is our matching
algorithm:

Algorithm. Flexible structural matching

1. Load the set of models in Z.
2. Extract the structure of the test character C.
3. Initialize the deformation level ¸ to be 1.
4. Let S be the candidate set and S"deform(¸, C).
5. Let M be the match set and M"match(Z, S).
6. If M is not empty, return M. Otherwise, ¸"¸#1.
7. If ¸ is less than or equal to the maximum deformation

level, go to step (4). Otherwise, exit and report failure
of "nding an exact match.

After loading the set of models and extracting the
structure of the test character (as described in Section 4),
we start to "nd a match or matches. First of all, we will
simply compare the structure for the unknown character
against the set of models to see whether at least one
match can be found. If no match is resulted, we will
deform the test structure in certain ways so as to increase
the chance for "nding matches. When all the deformation
methods are exhausted and no matches are found, we
then report failure.

Basically, there are four levels of structural deforma-
tion. Here we have to emphasize again that the search
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Fig. 21. Variants of the original method for detecting loops
from the beginning of a stroke.

Fig. 22. Examples of structural deformations.

will stop once a match (or matches after deformation is
performed) has been found. As an example, a regularly
written &T' is likely to get correct classi"cation during the
"rst level of matching. However, in order to illustrate the
generality of our scheme, we will use this simple character
anyway as an illustrative example in our following
discussions:

1. No deformation: The test pattern has to be exactly the
same as one of the models.

2. Primitive type deformations: When there is no exact
match, we will vary the primitive type in an attempt
to "nd an approximate match. In so doing, line
may become either one of its two neighboring types,
i.e., up and down (since line is midway between up and
down). However, up can only become line, but
not down (since line is the only neighbor of up).
Similar restrictions also apply to down. As a result,
a &T' will have eight relaxed versions as shown in
Fig. 22a.

3. Directional deformations: Similarly, we may also vary
the direction. To do so, we "nd a neighboring code of
the current one. For example, Mline, 5N may become
Mline, 4N or Mline, 6N. As a result, a &T ' will have eight
relaxed versions, though two of them are the same, as
shown in Fig. 22b.

4. Simultaneous type and directional deformations: When
no exact pattern can be found during the previous
relaxation steps, we may consider "nding the nearest
match by deforming both the primitive type and
direction simultaneously. As a result, a much larger
number of patterns will be covered. For example, a &T '
will have 80 possible deformed versions.

Note that many false-positive cases may be resulted if
too much #exibility is allowed. Hence, we may need some

additional steps to verify the answer if domain-speci"c
information is available to narrow down the matching
results.

By using #exible structural matching, some previously
unmatched characters are able to "nd a match. This
increases the recognition rate and at the same time de-
creases the rejection rate. Fig. 23 shows some more varia-
tions of the digit &3' classi"ed under the same structure
as the &3' in Fig. 10.

6. Postprocessing

With #exible structural matching, some ambiguities
may occur. Here we have a choice either to report all the
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Fig. 23. Digits grouped under the same structure as the digit &3' in Fig. 10 after #exible structural matching.

Fig. 24. Outline of an algorithm for distinguishing between &D' and &P'.

Fig. 25. Outline of an algorithm for distinguishing between &u' and &y'.

ambiguous cases as answer, or to add some postproces-
sing steps to determine the most probable choice based
on additional information.

In general, there are two major types of ambiguities:

1. Some character classes are represented using the same
structure. For example, &D' and &P' are often classi"ed
under the structure MMMline, 6NN, MMdown, 6NNN. In
order to distinguish between them, we may consider
the relative position of the vertical stroke and the
curve. Fig. 24 outlines the algorithm for doing so.

2. Some character classes have similar appearances so
that ambiguous results are often produced, for
example, &1' and &7', &A' and &H', &u' and &y', and so on.
Fig. 25 outlines the algorithm for distinguishing be-
tween &u' and &y'. For this case, the di!erence between
the heights of the two primitives becomes crucial.

7. Experimental results and discussions

7.1. Experimental results

In our experiment, we used an on-line handwriting
dataset collected by the MIT Spoken Language Systems
Group [15]. It is a subset of the full set for isolated
alphanumeric characters only. There are 62 character
classes (10 digits, 26 uppercase and 26 lowercase letters)
in our set. Each character class has 150 di!erent entries
written by 150 di!erent people. Totally, there are 9300
characters. More than half of them are regularly written.
The remaining ones are those either with noise in the
data, poorly written, deliberately written in some strange
and unusual way, or with zig-zag line segments. Fig. 26
shows some examples of the characters in the dataset.
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Fig. 26. Some examples of the characters in the data set.

Table 2
Recognition results for di!erent character sets

Correct Incorrect Rejected

Digits
1479

1500
(98.60%)

1

1500
(0.07%)

20

1500
(1.33%)

Uppercase letters 3841

3900
(98.49%)

18

3900
(0.46%)

41

3900
(1.05%)

Lowercase letters 3800

3900
(97.44%)

56

3900
(1.43%)

44

3900
(1.13%)

All
9058

9300
(97.40%)

178

9300
(1.91%)

64

9300
(0.69%)

Table 3
Characters in di!erent character sets that have the same struc-
ture

Pairs Triples

All models share (C, c), (O, o), (P, p), (S, s), nil
the same structure(s) (V, v), (W, w), (X, x)
Some models share (M, m), (U, u), (Y, y) (I, l, 1),
the same structure(s) (O, o, 0)

For all character classes, we have developed algo-
rithms accordingly to resolve ambiguities during the
postprocessing steps. As a result, there are only three
possible outcomes in the recognition: correct, incorrect,
and rejected. Table 2 summarizes our results.

Note that some characters, for example, &0', &O' and &o',
have exactly the same structure in their corresponding
character sets. When they are mixed together in the
combined set, it is intrinsically impossible to determine
the correct class unless we have additional contextual
information. Hence, in our experiment, we treated this
kind of ambiguity as correct recognition. In other words,
if the result indicates that the test character &0' may be
either &0', &O' or &o', we regard this as a correct decision.
Table 3 shows all such examples.

In general, incorrect recognition is sometimes due to
the ambiguous nature of the characters. Fig. 27 shows
some examples. Rejection, on the other hand, is often the
result of abnormal writing style, e.g., &4', &8', &A', and &j' in
Fig. 26c.

If we do not count the rejected cases, the result is
shown in Table 4.

Note that rejection could simply be avoided by adding
the otherwise rejected case as a new model for its class.
Caution should be taken though, as the number of mod-
els will increase and some models may be so speci"c that
they are only responsible for very few (mostly just one)
examples. Table 5 shows the numbers of models used in
di!erent character sets.
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Fig. 27. Examples of some incorrectly recognized characters.

Table 4
Reliability rates for di!erent character sets obtained by exclud-
ing the rejected cases from the calculation

Reliability rate!

Digits
1479

1480
(99.93%)

Uppercase letters
3841

3859
(99.53%)

Lowercase letters
3800

3856
(98.55%)

All
9058

9236
(98.07%)

!The reliability rate refers to the percentage of correct classi-
"cation when rejected cases are excluded from the calculation.

Table 5
Number of models used in di!erent character sets

Number of models per character set

Minimum Maximum Average

Digits 2 10 5.40
Uppercase letters 1 14 4.96
Lowercase letters 1 10 4.27
All 1 14 3.90

Table 6
Similar pairs in di!erent character sets

Similar pairs Total
number

Digits (0, 6), (1, 7), (4, 9) 3

Uppercase (A, H), (B, R), (C, G), (C, L), (D, P), 14
letters (J, T), (K, R), (M, W), (N, U), (N, V),

(N, Y), (U, V), (U, Y), (X, Y)

Lowercase (a, d), (a, g), (a, q), (a, y), (b, h), 28
letters (b, p), (c, e), (c, l), (d, j), (d, q),

(d, u), (e, l), (f, t), (g, q), (g, s),
(g, y), (h, n), (h, u), (i, j), (m, w),
(n, r), (n, u), (n, v), (n, y), (r, v),
(u, v), (u, y), (x, y)

All All of the above, plus 62
(B, 8), (D, b), (G, 6), (G, a), (G, b),
(J, 5), (L, h), (T, 5), (Z, 2), (Z, 7),
(a, 9), (b, 6), (g, 9), (q, 9), (s, 9),
(y, 4), (y, 9)

7.2. Discussions

Here are some observations from the experimental
results:

1. Di!erent character sets have di!erent misclassi"cation
rates. The digit set has the smallest while the
combined set has the largest. To a great extent,
the misclassi"cation rate is correlated with the num-
ber of similar pairs in a character set, as shown in
Table 6.

2. The number of rejected characters for the combined
set is far less than the sum of those numbers for the

individual sets. This is due to the wider coverage when
all models are combined together. However, some
previously rejected characters are misclassi"ed. Some
examples are shown in Fig. 28.

3. When we combine all the models together, it seems
that the average number of models in the combined
set should be within the range of the minimum and
maximum. However, as shown in Table 5, the average
obtained in our experiment is even less than the
minimum (i.e., the average number of models in the
lowercase letter set). This is due to the elimination of
some duplicate models. As we mentioned above, some
characters, like &0', &O' and &o', &C' and &c', &M' and &m',
etc., have the same models in their corresponding sets.
When we combine all sets together, the duplicates
should be removed.

4. When writing a character, variations can occur in
di!erent ways, for example, in number of strokes, in
stroke order, and in stroke direction. One simple way
to tackle this problem is to add additional models.
However, in order to keep the number of models
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Fig. 28. Examples of some misclassi"ed characters in the combined set that were previously rejected in their corresponding sets.

Fig. 29. Results of applying some heuristics.

reasonably small and at the same time increase the
chance to "nd a match, an alternative way is to apply
heuristics to the unmatched test pattern and see if the
resulting pattern matches one or some of the models.
Some feasible heuristics, as depicted in Fig. 29, are:

(a) If the ending point of a stroke is very close to the
starting point of another stroke, we can combine
the two strokes together.

(b) If the primitives in a stroke are all in some
unusual directions (going up or going left),
we may try to reverse the writing directions of the
stroke.

(c) Some short segments may be the result of noise. By
eliminating them from the test pattern, we may "nd
a match.

5. In this research, we "rst work on three separate char-
acter sets, i.e., digits, lowercase and uppercase letters.
We then combine all three sets together. An advantage
of our approach is that we do not have to design
everything from scratch when we move from indi-
vidual sets to the combined set. Instead, we only have
to handle those characters which bear similarities

across character sets. Fig. 30 shows the relationships
between models formed from di!erent character sets.
The shaded region is the portion which requires extra
work when the combined set is formed.

Since the next stage of our research is to include some
mathematical symbols such as #, !, *, /, +, J ,
and :, we also performed a preliminary experiment
by adding the models of those symbols to the alpha-
numeric character set. As expected, we obtained a high
recognition rate of 92.74% without the need for any
modi"cation because there are very few similar pairs
between the mathematical symbols and those charac-
ters in the previously combined set. Further improve-
ment would be expected by adding procedures to
resolve ambiguities.

6. The matching algorithm used in this paper is very
simple and easy to understand. However, when the
test structure is a complicated one, it may become
ine$cient during the matching steps. Some heuristics,
e.g., designing a good cost function to guide the
search, may help in reducing the search time. It, how-
ever, is beyond the scope of this paper and will be
investigated in our future research.
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Fig. 30. Relationships between models formed from di!erent
character sets.

8. Conclusion

Nowadays, relatively few researchers use the structural
approach for character recognition. Our experiment
shows that, by making use of structural information
contained in a character together with a simple, #exible
matching mechanism and some additional post-process-
ing procedures, we can indeed achieve fairly good recog-
nition results. On the average, the recognition speed is
about 7.5 characters per second running in Prolog on
a Sun SPARC 10 Unix workstation and the memory
requirement is reasonably low. In addition, our approach
allows easy extensions to an existing system.

There are some more advantages with our approach:

1. Since our approach is a model-based one, all the
patterns have semantically clear representations that
can be used for subsequent manual veri"cation.

2. Training is not necessary, though it may be introduced
later to automate model construction possibly with
some optimality criteria used. New models may be
added any time, though some e!ort has to be put on
resolving con#icts between the new models and some
existing ones.

However, at this stage, model creation is not auto-
matic yet. In other words, we still have to manually
design the set of models in advance. Fortunately, auto-
matic extraction of models from data is feasible in our
scheme and it will be one of our future directions to
pursue.

In summary, with this simple and robust structural
approach, we already have an e!ective and e$cient
on-line character recognition module. This module
will be used as part of a larger system, a pen-based
mathematical equation editor [16], which is being
developed by the authors using a syntactical pattern
recognition approach and will be reported in depth
separately.
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