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ABSTRACT
Besides the rating information, an increasing number of mod-
ern recommender systems also allow the users to add per-
sonalized tags to the items. Such tagging information may
provide very useful information for item recommendation,
because the users’ interests in items can be implicitly re-
flected by the tags that they often use. Although some
content-based recommender systems have made preliminary
attempts recently to utilize tagging information to improve
the recommendation performance, few recommender systems
based on collaborative filtering (CF) have employed tagging
information to help the item recommendation procedure.
In this paper, we propose a novel framework, called tag
informed collaborative filtering (TagiCoFi), to seamlessly in-
tegrate tagging information into the CF procedure. Experi-
mental results demonstrate that TagiCoFi outperforms its
counterpart which discards the tagging information even
when it is available, and achieves state-of-the-art perfor-
mance.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; H.2 [Database
Management]: Database Application—Data Mining

General Terms
Algorithms

Keywords
Collaborative filtering, recommender systems, tag

1. INTRODUCTION
Since the amount of information on the Web is increasing

at an astonishing rate that is much faster than our ability
to process it, recommendation plays a more and more im-
portant role for us to make effective use of the information
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available. Some representative examples include product
recommendation in Amazon.com [14], movie recommenda-
tion in Netflix [3] and MovieLens1 [16], reference recommen-
dation in CiteULike2, and bookmark recommendation in
Del.icio.us3. Existing recommender systems can be roughly
divided into two major categories [1]. Content-based sys-
tems [2, 12, 15] make use of profiles of the users or products
to characterize their nature. On the other hand, systems
based on collaborative filtering (CF) [4, 9, 16, 17, 19] do not
exploit explicit user profiles but only past activities of the
users, such as their transaction history or product satisfac-
tion expressed in ratings, to predict the future activities of
the users. In recent years, CF-based systems have become
more and more popular than content-based systems because
it is much easier to collect the past activities of users than
their profiles due to privacy considerations.

In recent years, besides the ratings on the items given
by the users, an increasing number of modern recommender
systems also allow the users to add personalized tags4, in
the form of words or phrases, to the items. For example,
users may add tags to movies in MovieLens, to web sites in
Del.icio.us and to references in CiteULike. Such tagging in-
formation may provide very useful information for item rec-
ommendation, because the users’ interests in items can be
implicitly reflected by the tags that they often use [21]. For
example, if two users often use the tags “Oscar” and “Tom
Hanks”, both of them may like the movie “Forrest Gump”.
In fact, the effectiveness of tags in representing users’ prefer-
ence or interests has been validated by Zanardi et al. in the
CiteULike dataset [27]. Very recently, some content-based
systems, such as those in [6, 22, 23], have made some pre-
liminary attempts to utilize tagging information to improve
the recommendation performance. However, there has been
little work on improving CF-based systems with the help of
tagging information. Because CF-based systems have be-
come more popular than content-based systems, it would be
a very worthwhile endeavor to devise novel CF techniques
which can also utilize tagging information for item recom-
mendation.

Existing CF methods can be divided into two main cat-

1http://movielens.umn.edu/
2http://www.citeulike.org/
3http://delicious.com/
4It should be emphasized that the setting in this paper is
different from those about tag recommendation [7, 24] in
which the recommended objects are tags. The recommended
objects in this paper are called items, whereas tags are other
objects about the items added by users.



egories [10]. Memory-based methods, such as [9, 19], try
to predict new ratings by (weighted) averaging the ratings
of similar users or items. On the other hand, model-based
methods, such as probabilistic matrix factorization (PMF) [17],
try to learn a model from data using statistical learning tech-
niques. To the best of our knowledge, there exists only one
CF method [25] which attempts to utilize tagging informa-
tion to improve item recommendation. This method is a
memory-based one. The experimental results in [25] show
that little improvement could be achieved on item recom-
mendation by integrating tagging information into the CF
procedure under the memory-based framework.

In this paper, we propose a novel framework, called tag
informed collaborative filtering (TagiCoFi), to seamlessly in-
tegrate tagging information into the model-based CF proce-
dure. More specifically, we use tagging information to regu-
larize the matrix factorization (MF) procedure of PMF [17]
which has been demonstrated to be one of the state-of-the-
art CF methods. Some promising properties of TagiCoFi
are highlighted here:

• To the best of our knowledge, TagiCoFi is the first
work that incorporates tagging information into a model-
based CF system for item recommendation.

• TagiCoFi outperforms its counterpart, PMF, which
discards the tagging information even when it is avail-
able. This shows that the tagging information does
contain useful information for item recommendation
and TagiCoFi can utilize it very effectively.

• TagiCoFi can overcome, or at least alleviate, the over-
fitting problem [17] suffered by most MF-based CF
methods due to the sparsity of the rating matrix.

• TagiCoFi can solve the cold-start problem [8, 11, 20]
in that it can give recommendations to novel users who
have no preference on any items.

The rest of this paper is organized as follows. In Section 2,
we will introduce the notations and some preliminaries. Sec-
tion 3 describes the details of our model. Experimental re-
sults are presented in Section 4 and, finally, we conclude the
paper in Section 5.

2. NOTATIONS AND PRELIMINARIES
In this section, we first introduce some notations used in

this paper. We then briefly review PMF [17] which is closely
related to our work.

2.1 Notations
We use boldface uppercase letters, such as A, to denote

matrices, and boldface lowercase letters, such as b, to denote
vectors. The ith row and the jth column of a matrix A are
denoted as Ai∗ and A∗j , respectively. The (i, j)th element
of A is denoted as Aij and the ith element of b as bi.

Suppose there are N users, M items and K tags. Let R be
the rating matrix in which Rij represents the rating of user i
for item j. The matrix R is sparse because many elements
are missing, and each such element Rij is assigned the value
of 0 to indicate that item j has not been rated by user i.
Y is the indicator matrix where Yij is an indicator variable
which is equal to 1 if user i rated item j and 0 otherwise.
MF-based methods [17] seek to find two low-rank matrices

U ∈ RD×N and V ∈ RD×M , where typically D � N, M ,
and use R̂ = UT V to approximate the rating matrix R.
The column vectors U∗i and V∗j represent the user-specific
and item-specific latent feature vectors, respectively.

Let Z be the tagging matrix, and each of its elements Zik

is the tf*idf value of user i and tag k [18, 23]:

Zik = tf(i, k)× log2

„
N

df(k)

«
, (1)

where tf(i, k) is the normalized frequency of tag k appeared
in user i’s tagging history and df(k) is the number of users
who have used tag k.

2.2 Probabilistic Matrix Factorization
PMF [17] seeks to derive the aforementioned low-rank ma-

trices U and V by analyzing the rating matrix R in a prob-
abilistic framework. The likelihood of the observed ratings
R is defined as follows:

p(R | U,V, σ2) =

NY
i=1

MY
j=1

h
N (Rij | UT

∗iV∗j , σ
2)

iYij

, (2)

where N (x | µ, σ2) denotes the (univariate) Gaussian distri-
bution with mean µ and variance σ2.

Putting zero-mean spherical Gaussian priors on the user-
specific and item-specific feature vectors:

p(U | σ2
U ) =

NY
i=1

N (U∗i | 0, σ2
UI)

p(V | σ2
V ) =

MY
j=1

N (V∗j | 0, σ2
V I),

we can obtain the maximum a posteriori (MAP) estimates
of U and V by minimizing the following objective function
defined based on the sum of squared errors:

E =
1

2

NX
i=1

MX
j=1

Yij(Rij −UT
∗iV∗j)

2

+
λU

2
tr(UT U) +

λV

2
tr(VT V), (3)

where λU = σ2/σ2
U and λV = σ2/σ2

V .

3. TAG INFORMED COLLABORATIVE FIL-
TERING

Because PMF [17] has achieved state-of-the-art perfor-
mance for CF tasks, we use it as the base model to make
further enhancement by integrating tagging information in a
principled way. The result is our tag informed collaborative
filtering method, which will be abbreviated as TagiCoFi in
the sequel. The key idea of TagiCoFi is to use tagging in-
formation to regularize the MF procedure of PMF. More
specifically, we seek to make two user-specific latent feature
vectors as similar as possible if the two users have similar
tagging history.

In the rest of this section, we first introduce some met-
rics for characterizing the similarity between users based on
tagging information. We then propose our TagiCoFi model
based on the computed user similarities.



3.1 Tag-based User Similarity Measures
We introduce several possible measures for characterizing

user similarities based on the tagging matrix Z. Here, T ij

denotes the index set of tags which are used by both user i
and user j.

3.1.1 Cosine Similarity
The cosine similarity is defined as follows:

Scos
ij =

P
k∈T ij ZikZjkqP

k∈T ij Z2
ik

qP
k∈T ij Z2

jk

. (4)

3.1.2 Pearson Similarity
The Pearson correlation coefficient between two users is

defined as follows:

ρ1(i, j) =

P
k∈T ij (Zik − Z̄i)(Zjk − Z̄j)qP

k∈T ij (Zik − Z̄i)2
qP

k∈T ij (Zjk − Z̄j)2
, (5)

where Z̄i =
P

k∈T ij Zik

|T ij | . The Pearson similarity is then

defined as:

Spea
ij =

1

1 + exp(−ρ1(i, j))
. (6)

3.1.3 Euclidean-based Similarity
The Euclidean distance between two users is defined as

follows:

ρ2(i, j) =

s X
k∈T ij

(Zik − Zjk)2. (7)

The Euclidean-based similarity is then defined as:

Seuc
ij = exp

„
− [ρ2(i, j)]

2

2σ2

«
, (8)

where σ is a user-controlled parameter.

3.2 Model Formulation of TagiCoFi
Like in PMF [17], we adopt a similar MF procedure to find

U and V by minimizing the following criterion function:

1

2

NX
i=1

MX
j=1

Yij(Rij −UT
∗iV∗j)

2 +
α

2

h
tr(UT U) + tr(VT V)

i
, (9)

where α is a regularization parameter for complexity control.
Furthermore, TagiCoFi employs the user similarities de-

fined based on the tagging information to regularize the MF
procedure, with the goal to make the user-specific latent fea-
ture vectors as similar as possible if the corresponding users
have similar tagging history. We can achieve this goal by
minimizing the following criterion function:

f1 =
1

2

NX
i=1

NX
j=1

Sij‖U∗i −U∗j‖2

=
1

2

NX
i=1

NX
j=1

h
Sij

DX
d=1

(Udi − Udj)
2
i

=

DX
d=1

Ud∗LUT
d∗

= tr(ULUT ), (10)

where Sij is the tag-based similarity between user i and
user j computed based on one of the measures defined in
Section 3.1, L = D−S is known as the Laplacian matrix [5]
with D being a diagonal matrix whose diagonal elements
Dii =

P
j Sij , and tr(·) denotes the trace of a matrix.

To integrate tagging information into the CF procedure,
TagiCoFi combines the criteria (9) and (10) to give the fol-
lowing objective function for minimization:

f =
1

2

NX
i=1

MX
j=1

Yij(Rij −UT
∗iV∗j)

2

+
α

2

h
tr(UT U) + tr(VT V)

i
+

β

2

h
tr(ULUT )

i
, (11)

where β is an additional regularization parameter to control
the contribution from the tagging information.

The formulation in (11) can be seen as an adaptation of
relation regularized matrix factorization (RRMF) [13] which
models relational data containing both relation information
and content information. The main difference between Tagi-
CoFi and RRMF is that TagiCoFi can handle missing data,
which is one of the key characteristics of CF.

3.3 Learning
The objective function in (11) can be rewritten as follows:

f =
1

2

NX
i=1

MX
j=1

Yij(Rij −UT
∗iV∗j)

2

+
1

2
tr

h
U(αI + βL)UT

i
+

α

2

h
tr(VT V)

i
, (12)

where I is the identity matrix. We use an alternating gra-
dient descent procedure to optimize (12). More specifically,
each time we fix one variable (U or V) and minimize the
objective function with respect to the other one (V or U).
This procedure is repeated for several iterations until some
termination condition is satisfied.

To learn U, we first rewrite (12) as follows:

f = g + h + C, (13)

where C is a constant independent of U, and

g =
1

2

NX
i=1

MX
j=1

Yij(Rij −UT
∗iV∗j)

2

h =
1

2

DX
d=1

Ud∗(αI + βL)UT
d∗. (14)

From (14), we can see that the rows of U in h are decou-
pled. Hence, we apply gradient descent to optimize one row
of U at a time with the other rows fixed.

Because

∂g

∂Udi
=

“ MX
j=1

YijV
2

dj

”
Udi−

MX
j=1

YijVdj(Rij −UT
∗iV∗j + UdiVdj), (15)



we have

∂g

∂Ud∗
= WUT

d∗ − x, (16)

where W is an N×N diagonal matrix with Wii =
PM

j=1 YijV
2

dj ,

and x is an N × 1 vector with xi =
PM

j=1 YijVdj(Rij −
UT
∗iV∗j + UdiVdj).
Then, we can get

∂f

∂Ud∗
=

∂g

∂Ud∗
+

∂h

∂Ud∗

= (W + αI + βL)UT
d∗ − x. (17)

The learning process of V is different from that of U,
because the columns (not rows) of V are decoupled. Hence,
we apply gradient descent to optimize one column of V at
a time with the other columns fixed. The gradient can be
computed as follows:

∂f

∂V∗j
=

“
αI +

NX
i=1

YijU∗iU
T
∗i

”
V∗j −

NX
i=1

YijRijU∗i. (18)

The overall learning procedure of TagiCoFi is summarized
in Algorithm 1 below.

Algorithm 1 Learning procedure of TagiCoFi

1: INPUT:
R – rating matrix
Z – tagging matrix
D – number of latent features
W – number of iterations
δ – step size for gradient descent

2: Compute user similarity matrix S based on Z
3: Compute Laplacian matrix L based on S
4: Initialize U0,V0

5: for w = 1 to W do
6: for d = 1 to D do
7: Uw

d∗ ← Uw−1
d∗ − δ ∂f

∂Ud∗
8: end for
9: for j = 1 to M do

10: Vw
∗j ← Vw−1

∗j − δ ∂f
∂V∗j

11: end for
12: end for
13: return UW ,VW

3.4 Complexity Analysis
The main computation of TagiCoFi is to evaluate the gra-

dients of the objective function with respect to the latent
variables and to compute the user similarities. The time
complexity of computing the gradient ∂f

∂Ud∗
is O(N2D)) and

that of ∂f
∂V∗j

is O(NMD). The time complexity of comput-

ing the user similarities and L is O(N2K). Hence, the time
complexity of the entire alternating gradient descent proce-
dure is O(W (N2D + NMD) + N2K).

4. EXPERIMENTAL EVALUATION
We have conducted several experiments to compare the

performance of our method with that of other methods.
Through the experiments, we have tried to answer the fol-
lowing questions:

1. How does TagiCoFi perform in real applications when
compared with state-of-the-art methods?

2. How effective are the different user similarity mea-
sures?

3. How does tagging information improve collaborative
filtering?

4. How does the number of latent features used affect the
performance of TagiCoFi?

5. Does TagiCoFi work for users without any training
ratings?

These questions are answered separately: question 1 in
Section 4.3, questions 2–4 in Section 4.4 as three different
subsubsections, and question 5 in Section 4.5.

4.1 Data Set
We evaluate our algorithm on the MovieLens dataset5,

which, as far as we know, is the only publicly available
dataset containing both tagging and rating information.

We first prune the dataset for our analysis. For the tag-
ging information, we only keep those tags which are added
on at least three distinct movies. As for the users, we only
keep those users who used at least 3 distinct tags in their
tagging history. For movies, we only keep those movies that
are annotated by at least 3 distinct tags. It should be em-
phasized that our model still works under situations where
there are users or movies with rating information only but
no tagging information. For those users without any tag-
ging information, the tag-based similarities between them
and the other users are 0, which means that the last term
in (11) will have no effect on those users. Subsequently, the
recommendation result for those users without tagging in-
formation only depends on the MF procedure of the rating
matrix, which is similar to the result of PMF. As the focus
of this paper is on evaluating the effectiveness of tagging
information in addition to rating information, we only keep
the users who have both rating history and tagging history
in the original rating records.

We obtain two kinds of records after pruning, the tag-
ging records and the rating records. The tagging records in-
clude 13,431 tagging applications6 contributed by 757 users
with 2,271 distinct tags. Based on the tagging records, we
construct the tagging matrix Z, whose elements are defined
by Equation (1) in Section 2.1. The rating records include
167,474 ratings rated by 757 users (the same as those in the
tagging records) on 9,485 movies, and based on these rating
records we construct the rating matrix R. More statistics
about the rating matrix R are shown in Table 1, where the
numbers behind ± denote the standard deviations.

Table 1: Description of rating data
Statistics Users Movies

Min. # of ratings 20 1
Max. # of ratings 2,634 625
Mean # of ratings 441.95± 420.88 35.27± 67.30

5http://www.grouplens.org/node/73
6If user i adds tag k on item j, we say this is a tagging
application.



4.2 Evaluation Metric
For consistency with experiments reported in the litera-

ture, we use the Mean Absolute Error (MAE) as evaluation
metric. MAE gives the average absolute deviation of predic-
tion from the ground truth:

MAE =

P
i

P
j Yij |Rij − R̂ij |P

i

P
j Yij

,

where Rij and R̂ij are the true and predicted rating values,
respectively. A smaller value of MAE indicates a better
performance.

In our experiments, we randomly split the rating records
into two parts, each of which contains 50% of the observa-
tions in the rating matrix. One part is used as the test set,
which is kept the same for all experiments. The other part
is used as a pool from which training sets are generated. For
example, a training set size of 20% means that 20% of the
records are randomly selected from the pool to form a train-
ing set. For each training set size, we randomly generate
10 different training sets based on which 10 experiments are
performed and the average result is reported.

4.3 Performance
In this section, we compare our method with PMF which

has been demonstrated to be one of the state-of-the-art CF
methods [17]. For fairness, we perform parameter tuning
in advance for each method and then use the best settings
found in all the experiments. For both methods, we initial-
ize the latent features to random numbers in [0, 1] and set
the step size for gradient descent to 0.001. The parame-
ters specific to our method are set as α = 1 and β = 50.
Actually, we find that the performance will be stable af-
ter about 1000 rounds of gradient decent (see Figure 3).
Hence, we set W = 1000 for all the following results. Fur-
thermore, we adopt the Pearson similarity for all the experi-
ments. The performance of other measures will be discussed
in Section 4.4.1.

The results reported in Table 2 are the average MAE val-
ues of PMF and TagiCoFi and their corresponding standard
deviations. The better results are shown in bold. It iss clear
that TagiCoFi achieves better performance than PMF.

To evaluate how significant TagiCoFi outperforms PMF,
we have conducted paired t-tests [26] on the results of PMF
and TagiCoFi. Given two approaches, say A and B, and
a set of n experiments, the MAE values are obtained for
both approaches, denoted by ai and bi for i = 1, 2, . . . , n.
Let di = ai − bi denote the difference of ai and bi and d̄
be the average of the di values for i = 1, 2, . . . , n. The null
hypothesis is d̄ = 0 whereas the alternative hypothesis is
d̄ > 0. The p-value is computed using the t-statistic:

T =
d̄

s/
√

n
,

where s is the standard deviation of d. A small p-value
(≤ 0.01) indicates the existence of statistically significant
evidence against the null hypothesis.

Table 3 shows the p-values obtained in our experiments.
It is easily observed that TagiCoFi significantly outperforms
PMF. Because the main difference between TagiCoFi and
PMF lies in the extra tagging information used by TagiCoFi,
we can conclude that the tagging information is very useful
and TagiCoFi can utilize it very effectively.

Table 3: p-values for the significance tests
D = 5 D = 10 D = 20

20% Training 3.91× 10−15 8.27× 10−17 1.04× 10−16

40% Training 4.11× 10−13 2.10× 10−16 4.52× 10−16

60% Training 1.35× 10−11 4.20× 10−12 4.15× 10−12

80% Training 1.24× 10−8 2.85× 10−12 5.99× 10−12

In order to compare TagiCoFi with PMF more thoroughly,
we compare their performance on users with different num-
bers of observed ratings. The results are shown in Figure 1,
from which we can find that TagiCoFi outperforms PMF for
all users and the improvement is more significant for users
with only few observed ratings. This is a very promising
property of TagiCoFi because those users with a small num-
ber of ratings are typically new customers who have just
started to use the system. If we can provide good recom-
mendation to them, we will have a higher chance to keep
them as our long-term customers. Otherwise we will likely
lose them.

1−10 11−20 21−40 41−80 81−160 161−320 >320
0
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Figure 1: Performance improvement of TagiCoFi
over that of PMF on different user rating scales (no
users in a 20% training set have more than 320 ob-
served ratings)

4.4 Sensitivity to Parameters

4.4.1 User Similarity Measures
In this section, we conduct a set of experiments to compare

the effectiveness of the aforementioned user similarity mea-
sures: cosine similarity, Pearson similarity and Euclidean-
based similarity. Due to the page limit restriction, we only
report results with parameters α = 1, β = 50, D = 10 in Fig-
ure 2. We have also observed the same trend in other param-
eter settings. From Figure 2, we see that the Pearson simi-
larity always gives the best performance and the Euclidean-
based similarity is always the worst. Although the difference
between these measures is obvious, Figure 2 shows that the
difference decreases as the training set size increases. One
may ask if changing the σ parameter in the Euclidean-based
similarity measure will help. We have tuned the parameter
by trying different values but cannot make it outperform the
other similarity measures. Based on this analysis, we adopt



Table 2: MAE comparison between PMF and TagiCoFi (×10−2)

Training
Set Size

User
Average

Movie
Average

D = 5 D = 10 D = 20
PMF TagiCoFi PMF TagiCoFi PMF TagiCoFi

20% 73.16±0.09 74.18±0.17 73.53±0.13 68.86±0.12 73.50±0.11 68.32±0.13 73.54±0.12 67.73±0.14
40% 72.76±0.07 71.98±0.09 68.79±0.08 66.06±0.12 68.88±0.06 65.82±0.07 68.91±0.08 65.46±0.14
60% 72.62±0.04 70.97±0.05 66.46±0.12 64.70±0.10 66.71±0.09 64.65±0.10 66.85±0.09 64.59±0.14
80% 72.53±0.02 70.39±0.04 64.88±0.14 63.53±0.10 65.15±0.10 63.64±0.10 65.42±0.07 63.84±0.11

20% 40% 60% 80%
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Figure 2: Comparison of similarity measures

the Pearson similarity as our similarity measure in all other
experiments.

4.4.2 Impact of Tagging Information
As we saw in Section 3, the contribution of tagging in-

formation is controlled by the parameter β. If β = 0, we
do not use tagging information at all and hence our method
degenerates to a special form of PMF; as β increases, we
put larger weight on the tagging information. To evaluate
the impact of tagging information on collaborative filtering,
we carry out a set of experiments by varying the value of
β. The MAE curves for different β values on 20% training
sets are plotted in Figure 3. The other parameters are set
as α = 1 and D = 10.

As we can see from Figure 3, adopting a larger β value
can help to avoid the overfitting problem suffered by most
MF-based CF methods [17]. When β ≤ 1, the overfitting
problem is apparent. If we set β ≥ 10, we do not experience
overfitting any more. This phenomenon clearly validates the
impact of tagging information, that is, adding more tagging
information can improve the generalization ability of the
model. Moreover, Figure 3 also shows that the performance
might degrade when β is too large. So in practice, we should
choose a moderate value of β. Actually, our method is not
sensitive to β within a wide range, such as 10 ≤ β ≤ 50.

4.4.3 Impact of Number of Latent Features
Another important parameter in our method is the num-

ber of latent features D. In this section, we conduct a set of
experiments on 20% training sets to study how D affects the
performance of our model. We use the following parameters:
α = 1, β = 50. The MAE values and their standard devia-
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Figure 3: Impact of β

tions are plotted in Figure 4. We also show the percentage
decrease in MAE with respect to that for 10 latent features
at the points 20, 30, 40 and 50.

Figure 4 shows that the MAE decreases as the number of
latent features increases. This agrees with our assumption,
because the more latent features, the more information can
be represented by the latent feature vectors. The figure
also shows that the improvement in MAE gets smaller as
D continues to increase. When D becomes large enough,
there is essentially no significant improvement because the
useful information has already been represented well by the
existing latent features. From Figure 4, we can see that
TagiCoFi can achieve good performance with D taking a
wide range of values.

4.5 Cold-Start Setting
One well-known problem of CF systems is the cold-start

problem, in which recommendations are required for users
or items which have no observed ratings [20, 8, 11]. Pure CF
methods, such as PMF, cannot work under a cold-start set-
ting, since no preference information is available to form any
basis for giving recommendation. Suppose tagging informa-
tion is available, TagiCoFi can solve the cold-start problem
by seamlessly integrating the tagging information for recom-
mendation.

To validate the above speculation, we conduct two sets of
experiments based on 20% training sets, where we randomly
select 50 and 100 users and discard their ratings. These
users, called cold-start users, are quite commonly found in
many recommender systems, such as newly registered users
in a system. In the experiments, the parameters of our
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Figure 5: PMF and TagiCoFi in cold-start settings

Table 4: MAE comparison in cold-start settings

Types
50 cold-start users 100 cold-start users

PMF TagiCoFi PMF TagiCoFi

Cold-start Users 0.7683± 0.0012 0.7500± 0.0009 0.7623± 0.0022 0.7425± 0.0011
All Users 0.7680± 0.0009 0.7299± 0.0016 0.7677± 0.0016 0.7303± 0.0024
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model are set as α = 1, β = 50 and D = 10. In our imple-
mentation of PMF, we use the item average to predict the
rating of cold-start users for an item, because the original
PMF cannot give prediction for those cold-start users. The
MAE curves of PMF and TagiCoFi during the first 1000
iterations are plotted in Figure 5.

Figure 5 shows that TagiCoFi significantly outperforms
PMF, validating our speculation that tagging information
could be used to perform recommendation for cold-start users.
Table 4 shows the MAE values of PMF and TagiCoFi to-
gether with their corresponding standard deviations on cold-
start users and all users respectively in two different settings.

It is clear that TagiCoFi performs better than PMF at all
levels.

5. CONCLUSION
We have proposed a novel framework, TagiCoFi, to seam-

lessly incorporate tagging information into collaborative fil-
tering for item recommendation. To the best of our knowl-
edge, TagiCoFi is the first work that incorporates tagging
information into a model-based CF system for item recom-
mendation. One promising property of TagiCoFi is that it
can overcome the overfitting problem suffered by most MF-
based CF methods. Moreover, TagiCoFi can also solve the
cold-start problem for novel users. Experimental results on
real data demonstrate that TagiCoFi can significantly out-
perform state-of-the-art collaborative filtering algorithms,
such as PMF, which discard the tagging information.

One of our future research directions is to extend TagiCoFi
by incorporating into it the tagging history of items. Fur-
thermore, we plan to extend TagiCoFi to incorporate addi-
tional sources of information to further improve the perfor-
mance of recommender systems.

6. ACKNOWLEDGMENTS
We thank the GroupLens research lab at the University of

Minnesota for their dataset. The research reported in this
paper is supported by research grant HIA98/99.EG01 from
the Hong Kong University of Science and Technology.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: a survey of the
state-of-the-art and possible extensions. IEEE



Transactions on Knowledge and Data Engineering,
17(6):734–749, June 2005.
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