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ABSTRACT

In recent years, active learning methods based on experi-
mental design achieve state-of-the-art performance in text
classification applications. Although these methods can ex-
ploit the distribution of unlabeled data and support batch
selection, they cannot make use of labeled data which often
carry useful information for active learning. In this paper,
we propose a novel active learning method for text classifi-
cation, called supervised experimental design (SED), which
seamlessly incorporates label information into experimental
design. Experimental results show that SED outperforms
its counterparts which either discard the label information
even when it is available or fail to exploit the distribution of
unlabeled data.

Categories and Subject Descriptors

G.3 [Mathematics of Computing]: Probability and Statis-
tics—Experimental Design; H.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Clustering

General Terms

Algorithms, Theory

Keywords

Active Learning, Supervised Experimental Design, Text Clas-
sification, Convex Optimization

1. INTRODUCTION
There has been a long tradition of research on text classi-

fication in both the information retrieval and machine learn-
ing communities. In order to learn a good text classifier, a
large number of labeled documents are often needed for clas-
sifier training. However, labeling documents always needs
domain knowledge and thus is difficult, time consuming and
costly. On the other hand, it is much easier to obtain a large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

number of unlabeled documents, such as web pages, news-
papers and journal articles. In recent years, a new approach
called active learning [1, 3, 5, 6, 9, 11, 13, 14, 15, 16, 18, 20,
25] has been developed in the machine learning community
with the goal of reducing the labeling cost by identifying
and presenting the most informative examples from the un-
labeled examples for the human experts to label.

Although a lot of work has been done in active learning re-
search, most of the existing active learning methods are still
far from satisfactory with apparent shortcomings. In par-
ticular, many methods only take into consideration partial
information to determine the informativeness of examples.
Some methods consider information conveyed by the class
boundaries, some consider information conveyed by the dis-
tribution of unlabeled data, and some consider the disagree-
ment between learners when multiple learners are involved.
Unfortunately, none of these methods is consistently better
than others in all situations. Another drawback is that most
active learning algorithms select only one example at a time
for labeling. Compared with a batch approach [7, 9, 10]
which selects multiple examples in one iteration, this greedy
incremental approach is at best suboptimal and is not suit-
able for large-scale and parallel computing applications.

Experimental design [2, 20, 21], which is one of the state-
of-the-art active learning approaches for text classification,
can effectively exploit the distribution of unlabeled data
while supporting batch selection at the same time. Despite
their appealing properties, existing methods based on exper-
imental design cannot make use of label information even
when labeled data are available. Thus, these methods are
intrinsically unsupervised in nature.

In this paper, we propose a novel batch mode active learn-
ing algorithm, called supervised experimental design (SED),
which incorporates label information into the experimental
design procedure. SED is a supervised extension of exper-
imental design with a new regularization term that incor-
porates label information added to the objective function.
To the best of our knowledge, no work has been done so far
to utilize label information in the experimental design pro-
cedure. Some favorable properties of SED are highlighted
here:

∙ To the best of our knowledge, SED is the first work
that incorporates label information into experimental
design.

∙ SED outperforms (unsupervised) experimental design,
which discards the label information even when it is
available. This shows that label information does pro-
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vide useful information for active document selection
and SED can utilize the information very effectively.

∙ SED outperforms margin-based active learning under
highly unbalanced data distributions which are often
encountered in practice.

∙ SED is convex and thus global optimality can be guar-
anteed.

The remainder of this paper is organized as follows. In
Section 2, we will introduce the notations and some related
work. In Section 3, we first introduce transductive exper-
imental design and then present our SED model and algo-
rithm in detail. Extensive empirical studies conducted on
two real-world text corpora are presented in Section 4. Sec-
tion 5 concludes our paper.

2. NOTATIONS AND RELATED WORK
Throughout this paper, we use boldface uppercase letters

(e.g. X) to denote matrices and boldface lowercase letters
(e.g. x) to denote vectors. We use tr(X) to denote the trace
of X and XT to denote its transpose. Moreover, we use
calligraphic letters (e.g. A) to denote sets and ∣A∣ to denote
the size of A.

Given the whole data set represented as XP ∈ ℝ
M×D or

P = {x1, . . . ,xM}, in which each data point xi is a D ×
1 vector, a generic active learning problem [4, 11] can be
defined as selecting a subset of unlabeled data points from
a candidate set XC ∈ ℝ

N×D or C = {x1, . . . ,xN}, such
that if the selected data points are labeled and added to the
training set for re-training the classifier, the improvement
of the classifier will be maximized. We call the subset of
selected data the active set and denote it as XA ∈ ℝ

K×D or
A = {x1, . . . ,xK}.

1

The promise of active learning is appealing because it
can help to alleviate the labeled data deficiency problem
commonly encountered in many supervised learning appli-
cations. Existing active learning algorithms for text classifi-
cation either select the most uncertain data given the current
classifier [11], select the data with the smallest margin [18],
select the data on which multiple classifiers disagree most
with each other [5, 14, 17], or select the data that optimize
some information gain [6, 13, 16, 25].

Closely related to active learning is experimental design
in statistics [2]. Conventionally, experimental design consid-
ers the problem of learning a predictive function f(x) from
experiment-measurement pairs (xi, yi). Given that conduct-
ing an experiment is expensive, experimental design seeks
to select the most informative experiments to conduct such
that the number of measurements needed can be reduced.

Traditional experimental design considers the following
linear regression model:

y = wTx+ �,

where y is the measurement, x is the D × 1 feature vector
of the experiment, w is the D × 1 model parameter vector
and � is the noise term.

1The reader should note that points in different sets with
the same index are not necessarily the same point, although
we require that the points in C should appear in P and the
points in A should appear in C.

Given a set of labeled data {(xi, yi)}
M
i=1, the maximum

likelihood estimate (MLE) of the model parameter vector w
can be obtained by minimizing the residual sum of squares:

ŵ = argmin
w

{

J(w;X,y) =

M
∑

i=1

(wTxi − yi)
2

}

= (XTX)−1XTy, (1)

where X = [x1, . . . ,xM ]T is a matrix of the labeled data and
y is a vector of the corresponding target outputs.2

If we put a spherical Gaussian prior on the noise �, i.e.,
� ∼ N (0, �2), it can be proved easily that ŵ is an unbiased
estimate of w with covariance:

cov[ŵ] = cov
[

(XTX)−1XTy
]

= (XTX)−1XT cov[y]X(XTX)−1

= �
2(XTX)−1

.

Traditional experimental design aims at minimizing the
covariance of ŵ, which characterizes the model uncertainty
in some sense. Three criteria have been commonly used in
the literature:

∙ D-optimal design: minimizing the determinant of cov[ŵ];

∙ A-optimal design: minimizing the trace of cov[ŵ];

∙ E-optimal design: minimizing the maximum eigenvalue
of cov[ŵ].

Recently, Yu et al. [20] proposed a method, called trans-
ductive experimental design (TED), which selects the most
informative examples by reducing the model uncertainty on
all of the unlabeled data and thus effectively exploits the
distribution of the unlabeled data. He et al. [8] applied sim-
ilar ideas to content-based image retrieval (CBIR), where a
Laplacian regularization term is added and then the model
uncertainty, represented by a new covariance matrix, con-
siders the smoothness among data points.

Despite the appealing properties which include clear math-
ematical formulation and the ability of batch selection, algo-
rithms based on experimental design often have to deal with
combinatorial complexity and are NP-hard. Since the opti-
mization problems involved are non-convex, the solutions
obtained may correspond to poor local minima. To address
this problem, some approximation methods based on convex
relaxation have been developed [21, 23].

3. SUPERVISED EXPERIMENTAL DESIGN
Existing active learning methods based on experimental

design, such as TED, are formulated under the setting that
all available data are unlabeled. As such, they cannot make
use of the label information even when it is available.

Since label information has been found very useful to ex-
ample (or document) selection [5, 11, 14, 16, 18], incorporat-
ing label information into the example selection procedure
of experimental design is a very worthwhile direction to ex-
plore.

In this section, we first briefly review TED in Section 3.1
and then present our method, SED, in Section 3.2. The
algorithm for SED will be summarized in Section 3.3 and its
complexity analysis will be presented in Section 3.4.
2In the sequel, we will also refer to them as labels even
though the term ‘label’ is more appropriately used for clas-
sification problems.
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3.1 Transductive Experimental Design
TED [20] seeks to choose XA from XC such that a func-

tion f learned from XA has the smallest predictive variance
on XP . The goal can be achieved by solving the following
optimization problem:

min
XA

tr
[

XP
(

XT
AXA + �I

)−1

XT
P

]

s.t. XA ⊂ XC , ∣A∣ = K, (2)

where I is an identity matrix whose dimensionality is de-
termined by the problem and K is the number of examples
selected. The objective function may also be considered as
model uncertainty overXP . We note that it only depends on
the input features of the training examples and thus is inde-
pendent of the labels. This is because in the error function
J(w;X,y) of the linear regression model in Equation (1),
the model parameter vector w is only coupled with the la-
bels yi linearly and hence a second derivative with respect
to w makes all the yi terms disappear.

Since the TED optimization problem is non-convex and
can easily get stuck in local optima, Yu et al. [21] proposed a
convex relaxation of TED (Convex TED). The optimization
problem of Convex TED is defined as follows:

min
�,�i

∑M

i=1

(

∣∣xi −XT
C�i∣∣

2 +
∑N

j=1

�2

ij

�j

)

+ 
∣∣�∣∣1

s.t. xi ∈ XP ,�i ∈ ℝ
N ,� ∈ ℝ

N×1,� ≥ 0, (3)

where the variables �j , j = 1, . . . , N , control the inclusion of
examples in XC into the training set XA, the ℓ1-norm ∣∣�∣∣1
enforces the sparsity of �, and �ij denotes the jth element
of �i. According to [20, 21], TED and Convex TED tend to
select examples representative of all the unlabeled data and
hence exploit the distribution of the whole data space.

Since experimental design based methods do not use la-
bel information, we call them unsupervised active learning
methods here. In the next subsection, we will present our
supervised extension, SED, which can effectively utilize the
available label information to select the most informative
examples.

3.2 Supervised Experimental Design
Given a set of labeled data points (training set), we can

learn a classifier f from the data. In a typical active learn-
ing setting in which labeled data are scarce, f may not be
accurate enough and hence it is desirable to select some un-
labeled data points for labeling to enlarge the training set.
However, although f is not accurate enough, it still carries
some useful information about the data points. Let f be a
vector of decision values on the candidate set XC and f̃ be
the vector after taking the absolute value of each element
of f . For example, in support vector machine (SVM), f̃ in-
dicates the uncertainty of the current classifier about the
labels of the examples. The smaller the jth element f̃j of f̃
is, the less certain is the classifier about the example. Intu-
itively speaking, the most informative examples should be
those with the smallest f̃j values.

Based on the above intuition and the formulation of TED,
we can choose the most informative XA by solving the fol-
lowing optimization problem,

min
XA

tr
[

XP
(

XT
AXA + �I

)−1

XT
P

]

+ 
 f̃A

s.t. XA ⊂ XC , ∣A∣ = K, (4)

where f̃A is similar to f̃ but is defined only on the active
set XA and 
 is a user-defined parameter controlling the
contribution of model uncertainty due to the current labeled
data. In other words, 
 controls the contribution of label
information.

Since the optimization problem in Equation (4) is NP-
hard, non-convex and can easily get trapped in local minima,
we borrow ideas from [21] to reformulate it in a convex form
and define our SED problem as follows.

Definition 1. Supervised Experimental Design (SED)

min
�,�i

∑M

i=1

(

∣∣xi −XT
C�i∣∣

2 +
∑N

j=1

�2

ij

�j

)

+ 
1∣∣�∣∣1 + 
2�
T f̃

s.t. xi ∈ XP ,�i ∈ ℝ
N ,� ∈ ℝ

N×1,� ≥ 0. (5)

We can further prove that SED is a convex problem.

Theorem 1. SED is convex w.r.t. � and {�i}.

Proof. Let the objective function of SED be F = F1 +

F2, where F1 =
∑M

i=1

(

∣∣xi −XT
C�i∣∣

2 +
∑N

j=1

�2

ij

�j

)

+
1∣∣�∣∣1

and F2 = 
2�
T f̃ . Because f̃ is constant, F2 is linear in �.

Thus F2 is convex with respect to �. Since F1 is also convex
with respect to � and {�i}

3 and F1 +F2 is a convex combi-
nation of two convex functions F1 and F2, F is thus convex
with respect to � and {�i}. This completes the proof.

3.3 Algorithm
It is convenient to find the local optimum of Problem (5),

which is also the global optimum, by updating � and {�i}
iteratively. More specifically, we can find the analytical so-
lution for updating one variable while fixing the other as
follows:

�j =

√

√

√

⎷

1


1 + 
2f̃j

M
∑

i=1

�2

ij , j = 1, . . . , N, (6)

�i = (diag(�)−1 +XCX
T
C )
−1XCxi, i = 1, . . . ,M. (7)

The proposed algorithm is summarized in Algorithm 1.

3.4 Complexity Analysis
The main computation of SED is to update � and {�i}.

The time complexity of updating � (Equation (6)) isO(MN)
and that of updating {�i} (Equation (7)) is O(N3). Hence,
the time complexity of one iteration isO(N3+MN). Though
our algorithm converges very quickly in practice, it is inter-
esting and worthwhile to explore more efficient techniques
to solve the problem, and we leave it as future work.

4. EMPIRICAL ANALYSIS
We conduct several experiments to compare SED with

some other related methods. We have the following ques-
tions in mind while designing and conducting the experi-
ments:

1. How does SED perform when compared with other
state-of-the-art active learning methods?

2. How effective is label information for experimental de-
sign?

3The proof can be found in [21].
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Algorithm 1 Algorithm for SED

1: INPUT:
ℒ0 – set of labeled data points
U0 – set of unlabeled data points
T – number of active learning iterations
K – number of examples selected in each iteration

2: for t = 1 to T do
3: Train classifier f based on ℒt−1.
4: Compute absolute decision values f̃ .
5: Initialize {�i}.
6: repeat
7: Fix {�i}, update � using Equation (6).
8: Fix �, update {�i} using Equation (7).
9: until converge w.r.t. objective value of Problem (5).
10: Choose K examples with the largest � values into

Xt−1

A
and request their labels.

11: Update ℒt ← ℒt−1 ∪Xt−1

A
and U t ← U t−1 ∖Xt−1

A
.

12: end for
13: Train classifier f based on ℒT .
14: return f

3. How does varying the size of the candidate set affect
the performance of SED?

These questions are answered in separate subsections: ques-
tion 1 in Section 4.3, question 2 in Section 4.4.1, and ques-
tion 3 in Section 4.4.2.

4.1 Data Sets
We conduct experiments on two public benchmark data

sets. The first one is a subset of the Newsgroups corpus [21],
which consists of 3, 970 documents with TFIDF features of
8, 014 dimensions. Each document belongs to exactly one of
the four categories: autos, motorcycles, baseball and hockey.
The other one is the Reuters data set, which is a subset of
the RCV1-v2 data set [12]. We randomly choose from the
original data set 5, 000 documents with TFIDF features of
6, 451 dimensions. Each document belongs to at least one
of the four categories: CCAT, ECAT, GCAT and MCAT.
Some characteristics of the two data sets are summarized in
Table 1 respectively.

Table 1: Characteristics of Data Sets

Data Sets Category # of Documents # of Features

Newsgroups

Autos 988

8, 014
Motorcycles 993
Baseball 992
Hockey 997

Reuters

CCAT 907

6, 451
ECAT 1, 259
GCAT 1, 524
MCAT 2, 337

4.2 Experimental Settings and Metrics
In the experiments, we simply treat the multi-class/label

classification problem as a set of binary classification prob-
lems by using the one-versus-all scheme, i.e., documents
from the target category are labeled as positive examples
and those from the other categories are labeled as negative
examples. We use area under the ROC curve (AUC) as the
performance measure to measure the overall classification

performance, because in our setting, each binary classifica-
tion task is unbalanced (only about 25% of the documents in
each Newsgroups data set and about 30% of the documents
in each Reuters data set are positive). Note that a larger
value of AUC indicates a better performance.

At each iteration of our experiments, an active learning
method selects a set of K = 5 unlabeled examples from the
candidate set. The selected examples are then labeled and
added to the training set ℒ. The classifier is then trained
on the expanded training set and used to predict the class
labels of all documents. An AUC score is then computed
based on the predictions. In order to randomize the ex-
periments as well as to reduce the computational cost, we
restrict the candidate set to randomly cover only a fraction
of all the unlabeled documents. Ten different candidate sets
are generated for each experiment and the average AUC
value, together with the standard deviation, is reported.

We compare SED with four popular active learning meth-
ods for text classification:

∙ Convex TED [21], which is a convex relaxation of
TED.

∙ Sequential TED [20], which sequentially selects ex-
amples using TED.

∙ Margin, which chooses the examples closest to the
class boundary. This method implements the basic
idea of [18] but uses the squared loss instead of the
hinge loss. We use this method because it performs
much better than [18] in practice.

∙ Random Sampling, which randomly selects exam-
ples from the candidate set.

We note that all the methods use kernel ridge regres-
sion, which is essentially equivalent to least squares SVM
(LS-SVM), as the base classifier. LS-SVM has been re-
ported to give state-of-the-art performance in text classi-
fication tasks [22, 24]. Since no labeled data exists in the
beginning of each experiment, we use Convex TED to select
the first K = 5 examples for SED and Margin.

4.3 Performance Evaluation

4.3.1 Comparison of Methods on Newsgroups Data

We first compare the five methods on the Newsgroups
data set. For each method, we restrict the candidate set to
cover 50% of the unlabeled data and set the parameters as
� = 0.01, 
1 = 0.1
max, 
2 = 1.4

The AUC values averaged over four binary classification
tasks are reported in Table 2, where each row corresponds to
one iteration. We use boldface numbers to indicate the best
results among the five methods. It is obvious that SED con-
sistently outperforms the other methods. To evaluate how
significant SED outperforms other methods, we have con-
ducted paired t-tests [19] on the results of SED and the sec-
ond best method, Convex TED. The p-value is 2.37× 10−5,
indicating that SED achieves a significantly better result.
It is not surprising that Random Sampling performs the
worst because the randomly selected examples may not pro-
vide much useful information to the classifier. We also note

4
1 ≤ 
max = maxj∈C

∑

i∈P
(xT

i xj)
2 is a necessary condi-

tion for the cardinality constraint ∥�∥0 ≥ 1. The reader is
referred to [21] for details.

302



Table 2: Comparison of Methods (in Average AUC) on Newsgroups Data

∣ℒ∣ SED Convex TED Sequential TED Margin Random Sampling

5 0.8854±0.0256 0.8854±0.0256 0.8195±0.0299 0.8854±0.0256 0.7138±0.0295
10 0.9179±0.0133 0.9057±0.0134 0.8501±0.0244 0.8800±0.0274 0.7703±0.0354
15 0.9327±0.0115 0.9186±0.0120 0.9023±0.0120 0.8914±0.0270 0.8006±0.0234
20 0.9456±0.0067 0.9244±0.0103 0.9219±0.0122 0.9027±0.0163 0.8261±0.0231
25 0.9512±0.0061 0.9361±0.0076 0.9304±0.0105 0.9115±0.0103 0.8460±0.0169
30 0.9546±0.0042 0.9407±0.0058 0.9362±0.0095 0.9171±0.0093 0.8639±0.0159
35 0.9573±0.0055 0.9446±0.0049 0.9406±0.0081 0.9212±0.0090 0.8782±0.0164
40 0.9609±0.0041 0.9471±0.0054 0.9434±0.0073 0.9262±0.0098 0.8904±0.0138
45 0.9631±0.0051 0.9493±0.0051 0.9460±0.0062 0.9321±0.0081 0.9009±0.0132
50 0.9655±0.0043 0.9514±0.0046 0.9486±0.0068 0.9363±0.0074 0.9076±0.0126

that the methods based on experimental design, i.e., Con-
vex TED and Sequential TED, perform better than Margin.
This indicates that exploiting the distribution of unlabeled
data can provide more useful information than selecting only
examples near the class boundary. We also observe that in
the beginning of the learning procedure, examples selected
by Margin actually degrade the performance. This is be-
cause the labeled data are scarce at that time and hence the
class boundary learned by training on the labeled data is not
accurate enough and hence may be misleading for document
selection.
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0.88

0.9

0.92

0.94

0.96

0.98

Number of Training Examples

A
U

C

SED

Convex TED

Margin

Figure 1: Learning Curves on Newsgroups Data

We plot the learning curves of SED, Convex TED and
Margin in Figure 1. As we can see, SED performs better
than its two counterparts by a large margin. This obser-
vation validates that considering label information and the
distribution of unlabeled data together can provide more
useful information for active selection than only considering
either of them.

To further understand the properties of SED, we plot the
learning curves of SED, Convex TED and Margin for four
binary classification tasks in Figure 2. For three categories,
i.e., autos, baseball and hockey, SED consistently outper-
forms the second best, Convex TED, by a large margin. For
the motorcycles category, SED and Convex TED perform
similarly. We note that Margin is consistently the worst
with the largest variance for all tasks. We conjecture that
Margin always selects the outliers, which stay close to the
class boundary but are not useful to the learner. On the
other hand, SED and TED can exploit the distribution of
unlabeled data and hence have a smaller chance to select the
outliers.

4.3.2 Comparison of Methods on Reuters Data

We now compare the five methods on the Reuters data set.
Each candidate set covers 20% of the unlabeled documents.
The parameters are set as � = 0.01, 
1 = 0.1
max, 
2 = 10.
The AUC values averaged over the four tasks are reported

in Table 3. Again the best results are shown in bold. As
in the Newsgroups data set, SED significantly outperforms
Convex TED (the p-value of paired t-test is 2.26 × 10−5),
validating the effectiveness of label information. It is in-
teresting to find that Margin performs better than Convex
TED. This can be attributed to two reasons. First, the
data are very balanced in this data set and Margin selects
the most discriminative examples without querying the out-
liers. Second, the representative examples selected by TED
might not be as helpful as those discriminative ones. How-
ever, SED can take advantage of both criteria and always
performs the best, especially in the early stage.

 5 10 15 20 25 30 35 40 45 50
0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

Number of Training Examples

A
U

C

SED

Convex TED

Margin

Figure 3: Learning Curves on Reuters Data

The learning curves of SED, Convex TED and Margin
are plotted in Figure 3. From the figure, SED outperforms
Convex TED and Margin especially in the early stage. This
observation again validates the contribution of label infor-
mation to experimental design.

We also plot the learning curves of SED, Convex TED
and Margin for the four tasks in Figure 4. SED again out-
performs its counterpart, Convex TED, for all tasks. It is
interesting to observe that when the data are rather bal-
anced, such as in MCAT, Margin performs better than Con-
vex TED. This is actually possible, because when the data
are balanced, discriminative examples near the class bound-
ary will provide the most useful information to the learner.
Note that the effectiveness of SED can be further improved
if we put more weight on the label information for this task.
Nevertheless, we leave the issue of automatically learning
the weight of label information to our future research.
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(b) Motorcycles
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(c) Baseball
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Figure 2: Learning Curves for Four Binary Classification Tasks on Newsgroups Data

Table 3: Comparison of Methods (in Average AUC) on Reuters Data

∣ℒ∣ SED Convex TED Sequential TED Margin Random Sampling

5 0.7347±0.0416 0.7347±0.0416 0.7910±0.0250 0.7347±0.0401 0.6932±0.0669
10 0.8215±0.0201 0.8039±0.0267 0.8137±0.0232 0.7942±0.0264 0.7579±0.0434
15 0.8565±0.0216 0.8327±0.0190 0.8397±0.0135 0.8341±0.0203 0.7945±0.0246
20 0.8720±0.0117 0.8416±0.0154 0.8551±0.0117 0.8538±0.0215 0.8235±0.0227
25 0.8842±0.0066 0.8550±0.0126 0.8668±0.0131 0.8646±0.0233 0.8383±0.0190
30 0.8902±0.0078 0.8645±0.0106 0.8725±0.0137 0.8775±0.0168 0.8536±0.0226
35 0.8963±0.0069 0.8709±0.0091 0.8807±0.0139 0.8897±0.0114 0.8684±0.0162
40 0.8992±0.0088 0.8774±0.0085 0.8850±0.0118 0.8993±0.0129 0.8749±0.0130
45 0.9024±0.0085 0.8789±0.0080 0.8898±0.0126 0.9042±0.0117 0.8864±0.0108
50 0.9048±0.0087 0.8856±0.0068 0.8932±0.0120 0.9093±0.0101 0.8948±0.0096

4.4 Discussions

4.4.1 Effectiveness of Label Information

As we have discussed in Section 3, the contribution of la-
bel information is controlled by the parameter 
2. If 
2 = 0,
we do not use the label information at all and hence our
method degenerates to Convex TED; as 
2 increases, we
put larger weight on the label information. To evaluate the
contribution of label information, we carry out a set of ex-
periments by varying the value of 
2 in the autos task of the
Newsgroups data set. As before, each candidate set covers
50% of the unlabeled documents and the parameters are set
to be � = 0.01, 
1 = 0.1
max.

The learning curves of SED with different 
2 values are
plotted in Figure 5. As we can see, using a large enough

2 value, e.g. 
2 = 1, can greatly speed up the learning
procedure, while using small values, e.g. 
2 = [0, 0.1], will
not improve much.

This observation validates the effectiveness of label infor-
mation for experimental design. It should be noted that if


2 is too large, e.g. 
2 = 10 or 100, the learning rate will be
slower than that with moderate 
2 values in the early stage
of learning.

This is because the training set is too small in this stage
and the class boundary learned is not very accurate, so
adopting too large 
2 values will mislead example selection
by querying the outliers. The risk can be mitigated as the
size of the training set increases. We also note that choos-
ing 
2 = 1 will achieve the best performance not only in the
early stage but also in the later stage.

Similar experiments are conducted for the MCAT task of
the Reuters data set. As before, the random candidate sets
cover 20% of the unlabeled documents and the parameters
are set to be � = 0.01, 
1 = 0.1
max. The learning curves of
SED with different 
2 values are plotted in Figure 6.

From Figure 6, it is interesting to observe that, differ-
ent from what we have found in Figure 5, adopting a larger
value of 
2 will always improve the active learning proce-
dure. This is because in the MCAT task, about 50% of the
documents are positive, but in the autos task, only 25% of
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Figure 4: Learning Curves for Four Binary Classification Tasks on Reuters Data
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Figure 5: Effect of Varying 
2 on Autos Task

the documents are positive. Since the data distribution is
more balanced in the MCAT task, adopting a larger value of

2 will always choose those discriminative examples without
taking the risk of querying the outliers.

4.4.2 Effect of Candidate Set Size

In this section, we conduct several experiments to investi-
gate the effect of the candidate set size by randomly choos-
ing 20%, 40%, 60% and 80% of the unlabeled documents to
form different candidate sets. For the autos task, the param-
eters are set to be � = 0.01, 
1 = 0.1
max, 
2 = 1, and the
learning curves for different candidate set sizes are plotted
in Figure 7. For the MCAT task, the parameters are set to
be � = 0.01, 
1 = 0.1
max, 
2 = 10, and the learning curves
are plotted in Figure 8.
As we can see from Figure 7, using a larger candidate set

will greatly speed up the learning procedure. We note that
as the size of the candidate set increases, the performance
gap between the learned classifiers becomes smaller. How-
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Figure 6: Effect of Varying 
2 on MCAT Task

ever, in Figure 8, the learning curves are not so sensitive to
the candidate set size as those in Figure 7. This can again
be explained by the distribution of data. The more balanced
the data are, the less sensitive is the method to the candi-
date set size. We should note that the candidate set size
has great impact on the optimization problem. Specifically,
the larger the candidate set is, the longer time we need to
solve the problem. Thus, in practice, we should maintain a
tradeoff between performance and the time cost and use a
candidate set of a reasonable size.

5. CONCLUSION
In this paper, we have proposed a novel active learning

method, SED, to seamlessly incorporate label information
into the document selection procedure of experimental de-
sign. To the best of our knowledge, SED is the first work
that uses label information to improve experimental design.
One promising property of SED is that it can effectively use
label information and the distribution of unlabeled data in a
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Task

unified framework. In particular, SED can greatly speed up
the learning procedure when the distribution of unlabeled
data is balanced, while existing methods based on experi-
mental design always perform badly in this case. Moreover,
SED can greatly outperform margin-based active learning
when the distribution of unlabeled data is unbalanced. As
another promising property, SED is convex and thus global
optimality is guaranteed. Experiments conducted on two
text corpora demonstrate that SED outperforms state-of-
the-art active learning algorithms, such as TED and margin-
based methods, which take into consideration only partial
information.

One of our future research directions is to automatically
learn from data the contribution of label information, i.e.

2. Another possible research direction is to apply SED to
other information retrieval applications.
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