Hidden-Mode Markov Decision Processes for
Nonstationary Sequential Decision Making

Samuel P. M. Choi, Dit-Yan Yeung, and Nevin L. Zhang

Department of Computer Science,
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
{pmchoi,dyyeung,lzhang}@cs.ust.hk

1 Introduction

Problem formulation is often an important first step for solving a problem effec-
tively. In sequential decision problems, Markov decision process (MDP) (Bellman
1957b; Puterman 1994) is a model formulation that has been commonly used,
due to its generality, flexibility, and applicability to a wide range of problems.
Despite these advantages, there are three necessary conditions that must be
satisfied before the MDP model can be applied; that is,

1. The environment model is given in advance (a completely-known environ-
ment).

2. The environment states are completely observable (fully-observable states,
implying a Markovian environment).

3. The environment parameters do not change over time (a stationary environ-
ment).

These prerequisites, however, limit the usefulness of MDPs. In the past, re-
search efforts have been made towards relaxing the first two conditions, leading
to different classes of problems as illustrated in Figure 1.

Model of Environment

Known Unknown
Completely MDP Traditional
States of Observable RL
Environment _
Partially Partially Hidden-state
Observable | Observable MDP RL

Fig. 1. Categorization into four related problems with different conditions. Note that
the degree of difficulty increases from left to right and from upper to lower.

This paper mainly addresses the first and third conditions, whereas the sec-
ond condition is only briefly discussed. In particular, we are interested in a spe-
cial type of nonstationary environments that repeat their dynamics in a certain
manner. We propose a formal model for such environments. We also develop al-
gorithms for learning the model parameters and for computing optimal policies.

Before we proceed, let us briefly review the four categories of problems shown
in Figure 1 and define the terminology that will be used in this paper.

1.1 Four Problem Types
Markov Decision Process

MDP is the central framework for all the problems we discuss in this section.
An MDP formulates the interaction between an agent and its environment. The
environment consists of a state space, an action space, a probabilistic state tran-
sition function, and a probabilistic reward function. The goal of the agent is to
find, according to its optimality criterion, a mapping from states to actions (i.e.
policy) that maximizes the long-term accumulated rewards. This policy is called
an optimal policy. In the past, several methods for solving Markov decision prob-
lems have been developed, such as value iteration and policy iteration (Bellman
1957a).

Reinforcement Learning

Reinforcement learning (RL) (Kaelbling et al. 1996; Sutton and Barto 1998) is
originally concerned with learning to perform a sequential decision task based
only on scalar feedbacks, without any knowledge about what the correct ac-
tions should be. Around a decade ago researchers realized that RL problems
could naturally be formulated into incompletely known MDPs. This realization
is important because it enables one to apply existing MDP algorithms to RL
problems. This has led to research on model-based RL. The model-based RL ap-
proach first reconstructs the environment model by collecting experience from
its interaction with the world, and then applies conventional MDP methods to
find a solution. On the contrary, model-free RL learns an optimal policy directly
from the experience. It is this second approach that accounts for the major dif-
ference between RL and MDP algorithms. Since less information is available, RL
problems are in general more difficult than the MDP ones.

Partially Observable Markov Decision Process

The assumption of having fully-observable states is sometimes impractical in
the real world. Inaccurate sensory devices, for example, could make this con-
dition difficult to hold true. This concern leads to studies on extending MDP
to partially-observable MDP (POMDP) (Monahan 1982; Lovejoy 1991; White
III 1991). A POMDP basically introduces two additional components to the
original MDP, i.e. an observation space and an observation probability function.

Observations are generated based on the current state and the previous action,
and are governed by the observation function. The agent is only able to perceive
observations, but not states themselves. As a result, past observations become
relevant to the agent’s choice of actions. Hence, POMDPs are sometimes referred
to as non-Markovian MDPs. Traditional approaches to POMDPs (Sondik 1971;
Cheng 1998; Littman et al. 1995b; Cassandra et al. 1997; Zhang et al. 1997) main-
tain a probability distribution over the states, called belief state. It essentially
transforms the problem into an MDP one with an augmented (and continuous)
state space. Unfortunately, solving POMDP problems exactly is known to be
intractable in general (Papadimitriou and Tsitsiklis 1987; Littman et al. 1995a).

Hidden-State Reinforcement Learning

Recently, research has been conducted on the case where the environment is
both incompletely known and partially observable. This type of problems is
sometimes referred to as hidden-state reinforcement learning, incomplete per-
ception, perception aliasing, or non-Markovian reinforcement learning. Hidden-
state RL algorithms can also be classified into model-based and model-free ap-
proaches. For the former, a variant of the Baum-Welch algorithm (Chrisman
1992) is typically used for model reconstruction, and hence turns the problem
into a conventional POMDP. Optimal policies can then be computed by using
existing POMDP algorithms. For the latter, research efforts are diverse, ranging
from state-free stochastic policy (Jaakkola et al. 1995), to recurrent Q-learning
(Schmidhuber 1991; Lin and Mitchell 1992), to finite-history-window approach
(McCallum 1995; Lin and Mitchell 1992). Nevertheless, most of the model-free
POMDP algorithms yield only sub-optimal solutions. Among the four classes
of problems aforementioned, hidden-state RL problems are expected to be the
most difficult.

1.2 Nonstationary Environments

Traditional MDP problems typically assume that environment dynamics (i.e.,
MDP parameters) are always fixed (i.e., stationary). This assumption, however,
is not realistic in many real-world applications. In elevator control (Crites and
Barto 1996), for example, the passenger arrival and departure rates can vary
significantly over one day, and should not be modeled by a fixed MDP.

Previous studies on nonstationary MDPs (Puterman 1994) presume that
changes of the MDP parameters are exactly known in every time step. Given this
assumption, solving nonstationary MDP problems is trivial, as the problem can
be recast into a stationary one (with a much larger state space) by performing
state augmentation. Nevertheless, extending the idea to incompletely-known en-
vironmental changes (i.e., to the reinforcement learning framework) is far more
difficult.

In fact, RL (Kaelbling et al. 1996; Sutton and Barto 1998) in nonstationary
environments is an impossible task if there exists no regularity in the way envi-
ronment dynamics change. Hence, some degree of regularity must be assumed.

Typically, nonstationary environments are presumed to change slowly enough
such that on-line RL algorithms can be employed to keep track of the changes.
The online approach is memoryless in the sense that even if the environment
ever reverts to the previously learned dynamics, learning must still start all over
again. There are a few heuristic approaches along this line (Littman and Ackley
1991; Sutton 1990; Sutton and Barto 1998).

1.3 The Properties of Our Proposed Model

Herein we propose a formal environment model (Choi et al. 1999) for the nonsta-
tionary environments that repeat their dynamics over time. Our model is inspired
by observations from an interesting class of nonstationary RL tasks. Throughout
this section we illustrate the properties of such nonstationary environments by
using the elevator control problem as an example.

Property 1: A Finite Number of Environment Modes

The first property we observed is that environmental changes are confined to a
finite number of environment modes. Modes are stationary environments that
possess distinct environment dynamics and require different control policies. At
any time instant, the environment is assumed to be in exactly one of these modes.
This concept of modes seems to be applicable to many, though not all, real-world
tasks. In the elevator control problem, a system might operate in a morning-rush-
hour mode, an evening-rush-hour mode and a non-rush-hour mode. One can also
imagine similar modes for other real-world control tasks, such as traffic control,
dynamic channel allocation (Singh and Bertsekas 1996), and network routing
(Boyan and Littman 1994).

Property 2: Partially Observable Modes

Unlike states, environment modes cannot be directly observed. Instead, the cur-
rent mode can only be estimated according to the past state transitions. It is
analogous to the elevator control example in that the passenger arrival rate and
pattern can only be partially observed through the occurrence of pick-up and
drop-off requests.

Property 3: Modes Evolving as a Markov Process

Normally, mode transitions are stochastic events and are independent of the
control system’s response. In the elevator control problem, the events that change
the current mode of the environment could be an emergency meeting in the
administrative office, or a tea break for the staff on the 10th floor. Obviously,
the elevator’s response has no control over the occurrence of these events.

Property 4: Infrequent Mode Transitions

Mode transitions are relatively infrequent. In other words, a mode is more likely
to retain for some time before switching to another one. Take the emergency
meeting as an example, employees on different floors take time to arrive at the
administrative office, and thus would generate a similar traffic pattern (drop-off
requests on the same floor) for some period of time.

Property 5: Small Number of Modes

It is common that, in many real-world applications, the number of modes is
much fewer than the number of states. In the elevator control example, the state
space comprises of all possible combinations of elevator positions, pick-up and
drop-off requests, and certainly would be huge. On the other hand, the mode
space could be small. For instance, an elevator control system can simply have
the three modes as described above to approximate the reality.

Based on these properties, an environment model is now proposed. The whole
idea is to introduce a mode variable to capture environmental changes. Each
mode specifies an MDP and hence completely determines the current state tran-
sition function and reward function (property 1). A mode, however, is not di-
rectly observable (property 2), and evolves with time according to a Markov
process (property 3). The model is therefore called hidden-mode model.

Note that the hidden-mode model does not impose any constraint to satisfy
properties 4 and 5. In other words, the model is flexible enough to work for
environments where these two properties do not hold. Nevertheless, as will be
shown later, these properties can be utilized to help the learning in practice.

The hidden-mode model also has its limitations. For instance, one may argue
that the mode of an environment should preferably be continuous. While this
is true, for tractability, we assume the mode is discrete. This implies that our
model, as for any other model, is only an abstraction of the real world. Moreover,
we assume that the number of modes is known in advance. We will seek to relax
these assumptions in future research.

1.4 Related Work

Our hidden-mode model is closely related to the nonstationary environment
model proposed by Dayan and Sejnowski (1996). Although our model is more
restrictive in terms of representational power, it involves much fewer parameters
and is thus easier to learn. Besides, other than the number of possible modes that
should be known in advance, we do not assume any other knowledge about the
way environment dynamics change!. Dayan and Sejnowski, on the other hand,
assume that one knows precisely how the environment dynamics change.

! That is, the transition probabilities of the Markov process governing mode changes,
though fixed, are unknown in advance.

The hidden-mode model can also be viewed as a special case of the hidden-
state model, or partially observable Markov decision process (POMDP). As will
be shown later, a hidden-mode model can always be represented by a hidden-
state model through state augmentation. Nevertheless, modeling a hidden-mode
environment via a hidden-state model will unnecessarily increase the problem
complexity. We discuss the conversion from the former to the latter in Section
2.2.

1.5 Owur Focus

In order for RL to take place, one may choose between the model-based and
model-free approaches. This paper is primarily concerned with the model-based
approach, and concentrates on how a hidden-mode model can be learned based
on the Baum-Welch algorithm. The issue of finding the optimal policy will only
be addressed briefly.

1.6 Organization

The rest of this paper is organized as follows. In the next section, we describe
the hidden-mode model by defining the hidden-mode Markov decision process
(HM-MDP) and illustrate how it can be reformulated into a POMDP. Section
3 will subsequently discuss how a hidden-mode model can be learned in two
different representations — a POMDP or an HM-MDP. A variant of the Baum-
Welch algorithm for learning HM-MDP is proposed. These two approaches are
then compared empirically in Section 4. In Section 5, we will briefly discuss how
hidden-mode problems can be solved. Then we highlight the assumptions of our
model and discuss its applicability in Section 6. Finally, Section 7 pinpoints some
directions for future research and Section 8 summarizes our research work.

2 Hidden-Mode Markov Decision Processes

This section presents our hidden-mode model. Basically, a hidden-mode model is
defined as a finite set of MDPs that share the same state space and action space,
with possibly different transition functions and reward functions. The MDPs
correspond to different modes in which a system operates. States are completely
observable and their transitions are governed by an MDP. In contrast, modes are
not directly observable and their transitions are controlled by a Markov chain.
We refer to such a process as a hidden-mode Markov decision process (HM-MDP).
Figure 2 gives an example of HM-MDP.

2.1 Formulation

Formally, an HM-MDP is defined as an 8-tuple (@, S, A, X,Y, R, II,¥), where @,
S and A represent the sets of modes, states and actions respectively; the mode
transition function X maps mode m to n with a fixed probability of z,,,; the

Moden

Fig. 2. A 3-mode, 4-state, 1-action HM-MDP. The values Tmn and ym (s,a,s’) are the
mode and state transition probabilities respectively.

state transition function Y defines transition probability, vy, (s,a, s'), from state
s to s’ given mode m and action a; the stochastic reward function R returns
rewards with the mean value r,(s,a); II and ¥ denote the prior probabilities of
the modes and of the states respectively. The evolution of modes and states is
depicted in Figure 3.

2.2 Reformulating HM-MDP as POMDP

HM-MDP is a subclass of POMDP. In other words, it is always possible to re-
formulate the former as a special case of the latter. In particular, one may take
an ordered pair of any mode and observable state in the HM-MDP as a hidden
state in a POMDP, and any observable state of the former as an observation of
the latter. Suppose the observable states s and s’ are in modes m and n respec-
tively. These two HM-MDP states together with their corresponding modes form
two hidden states (m, s) and (n,s’) for its POMDP counterpart. The transition
probability from {m, s) to (n, s’} is then simply the mode transition probability
ZTmn multiplied by the state transition probability v.,(s,a, s'). For an M-mode,

Time

Mode (m, (e ——(m ——(m,) (mo)
Action eeoe @\a\@ e e e
Sae (& N AN GD

Fig. 3. The evolution of an HM-MDP. Each node represents a mode, action or state
variable. The arcs indicate dependencies between the variables.

N-state, K-action HM-MDP, the equivalent POMDP thus has N observations
and M N hidden states. A formal reformulation is detailed in Figure 4.

POMDP = (S, A",T",R,Z',Q', IT")
$'=Qx8S, Z =8 A=A
T : {pij(a) = Tmn " Ym(s,a,8") | i =(m,s) € ', j=(n,s") € §'}

1 : ifs=y¢

@itaen={ | T limmaes, Sez)

R :{ri(a) = rm(s,a) | i=(m,s) € §'}

II'={n} =mm s | i=(m,s) € §'}

Fig. 4. Reformulating HM-MDP into POMDP

Note that S', A", T',R',0',Q',IT' are the state space, action space, state
transition function, reward function, observation space, observation function,
and prior state probabilities of the resulting POMDP respectively. The following
lemmas prove that HM-MDPs are indeed a subclass of POMDPs.

Lemma 1. The HM-MDP to POMDP transformation satisfies the state tran-
sition function requirement, namely)" p;;j(a) = 1.
J

Proof: From the transformation, we know that

dYopifl@)= Y Pmsins (@)
J

(n,s’)EQ' xS’

= Z Z Tmn - Ym(s,a,s")

neQ’ s'eS’

Z Tmn * Z ym(s,a,s')

neq’ s'eS’

Zwmn-l

neq’
=1 o

Lemma 2. HM-MDPs form a subclass of POMDPs.

Proof: Given an HM-MDP and its corresponding POMDP, there is a 1-1 map-
ping from the mode-state pairs of the HM-MDP into the states of the POMDP.
This implies that for every two different pairs of mode and state (m,s) and
{m', s'), there are corresponding distinct states in the POMDP. The transforma-
tion ensures that the two states are the same if and only if m = m/ and s = s'.
It also imposes the same transition probability and average reward between two
mode-state pairs and for the corresponding states in the POMDP. It implies that
the transformed model is equivalent to the original one. Therefore HM-MDPs
are a subclass of POMDPs. O

Figure 5 demonstrates the reformulation for a 3-mode, 4-state, 1-action HM-
MDP and compares the model complexity with its equivalent POMDP. Note
that most state transition probabilities (dashed lines) in the POMDP are col-
lapsed into mode transition probabilities in the HM-MDP through parameter
sharing. This saving is significant. In the example, the HM-MDP model has a
total of 57 transition probabilities, while its POMDP counterpart has 144. In
general, an HM-MDP contains much fewer parameters (N?M K + M?) than its
corresponding POMDP (M2N2K).

3 Learning a Hidden-Mode Model

Now it becomes clear that there are two ways to learn a hidden-mode model:
either learning an HM-MDP directly, or learning an equivalent POMDP. In this
section, we first briefly discuss how the latter can be achieved by a variant of
the Baum-Welch algorithm, and then develop a similar algorithm for HM-MDP.

3.1 Learning a POMDP Model

Traditional research in POMDP (Monahan 1982; Lovejoy 1991) assumes a known
environment model and is concerned with finding an optimal policy. Chrisman
(1992) was the first to study the learning of POMDP models from experience.

N

DA N NN S

an' ym (S, a, S}) K A A A N AN G YN AN
o ’ \

A
G

Fig. 5. Reformulating a 3-mode, 4-state, 1-action HM-MDP described in Figure 2 as
an equivalent POMDP. For brevity, exact transition probability values are not shown.
State s of mode m in Figure 2 is relabeled as <m, s >. Note that HM-MDP has much
fewer model parameters than its POMDP counterpart.

Chrisman’s work is based on the Baum-Welch algorithm, which was originally
proposed for learning hidden Markov models (HMMs) (Rabiner 1989). Based on
the fact that a POMDP can be viewed as a collection of HMMs, Chrisman
proposed a variant of the Baum-Welch algorithm for POMDP. This POMDP
Baum-Welch algorithm requires ©(M2N?2T) time and ©O(M2N2K) storage for
learning an M-mode, N-state, K-action HM-MDP, given T data items. How-
ever, Chrisman’s algorithm does not learn the reward function. One possible
extension is to estimate the reward function by averaging the obtained rewards,
weighted by the estimated state certainty. The effectiveness of the algorithm will
be examined in the next section.

3.2 HM-MDP Baum-Welch Algorithm

We now extend the Baum-Welch algorithm to the learning of an HM-MDP
model. The outline of the algorithm, called HM-MDP Baum-Welch, is shown in
Figure 6. This new algorithm is similar to the POMDP version, except that the
auxiliary variables are redefined.

Given a collection of data and an initial model parameter vector 6.
repeat

=0

Compute forward variables «,. (Figure 7)

Compute backward variables 3;. (Figure 8)

Compute auxiliary variables & and ;. (Figure 9)

Compute the new model parameter . (Figure 10)
until max 0; — 6] < e

Fig. 6. The skeleton of HM-MDP Baum-Welch algorithm

The intuition behind both algorithms remains the same; i.e., estimating the
parameters of the hidden variables by counting their expected number of tran-
sitions. This counting, however, can only be inferred from the observations by
maintaining a set of auxiliary variables. Suppose that the number of transitions
from the hidden variable i to j is known, the transition probability from i to j
can then be computed by the following equation:

. the number of transitions from 4 to j
Pr(jli) =

the number of visits to ¢

where the denominator is simply the numerator summing over all j.

The central problem now becomes how to count the transitions of the hidden
variables. While its exact value is unknown, it is possible to estimate the expected
value through inferences on the observation sequence. We define &:(i, j) as the
expected number of state transitions from ¢ to j at time step t. Given a sequence
of T observations, i.e., T — 1 transitions, the total number of transitions from

T T
state ¢ to j becomes Y &(%,), and the total number of visits toiis > > &3, j).
t=1 j t=1
Thus far, our algorithm is not different from the standard BaumJ—Welch algo-
rithm. The key difference between the two algorithms comes from the inference
part (i.e., maintaining the auxiliary variables). As the observed state sequence
is shifted one step forward in our model, additional attention is needed for han-
dling the boundary cases. In the subsequent sections, the intuitive meanings and
definitions of the auxiliary variables will be given.

Computing Forward Variables

Let the collection of data D be denoted as (S, A, R), where S is the observation se-
quence s; S5 - - - s, A the random? action sequence a; as - - - ar, and R the reward

% It is worth mentioning that although the optimal action is a function of modes and
states, the choice of action should be at random in the model-learning phase, or
called exploration phase.

sequence r1 72 - - - r7. We define forward variables a; (i) as Pr(sy, sa, ..., 8¢, my 1 =
i|6,A), i.e. the joint probability of observing the partial state sequence from s;
up to s; and the mode at time ¢ — 1 being in i, given the model 8 and the ran-
dom action sequence A. To compute the forward variables efficiently, a dynamic
programming approach is depicted in Figure 7.

t t+1

Computing Forward Variables:

Y (st ar, St
for all i € Q, e

a1(8) = s,

for all i € Q,
a2(i) =T Tpsl yi(sla ai, 32)

for all j € @,

a1 (f) = 2o (i) zij yi(se, ar, se41) %u(i) %uall)
1€EQ

Fig. 7. Computing forward variables

Computing Backward Variables

Backward variable §;(i) denotes the probability Pr(s¢t1, Sty2,- -, sT|st, M1 =
1,0, A), which represents the probability of obtaining the partial state sequence
St+1,St+2 Up to sr, given the state s¢;, the mode being ¢ at time ¢t — 1, the
model 8, and the random action sequence A. Unlike forward variables, backward
variables are computed backward from [r. The computational steps required
for the backward variables are illustrated in Figure 8.

Computing Auxiliary Variables

With the forward and backward variables, two additional auxiliary variables
&(i,7) and v(¢) can now be defined. Formally, &:(3, j) is defined as Pr(m;—1 =
i,m¢ = j|S, A, 0), i.e. the probability of being in mode 7 at time t—1 and in mode j
at time ¢, given the state and action sequences, and the model 8. Figure 9 depicts
how the forward and backward variables can be combined to compute &%,).

Auxiliary variable v, (i) is defined as Pr(m; = i|S, A, 8), i.e. the probability of
being in mode 7 at time ¢, given the state and action sequences, and the model
8. Then (i) is simply the sum of &1 (¢,) over all possible resultant modes j;
that is,

Computing Backward Variables:

for all i € Q, yi(st, a, su)
pr(i) =1
Ya(St, at, Sw1)
for all i € Q,

Be(3) = X2 mij yi (st at, se41) Be+1(4)
i€

for alli € Q, (St A, St)
Bi(3) = > mj yi(s1,a1,52) Ba2(4) B(i) Bdi)
JEQ
Fig. 8. Computing backward variables
t-1 t t+1 t+2

Xij Yj (St, at, S+

a1 (h) a(i) Bueaj) Brea(K)

N
%) = &41(i,J)
j=1

Parameter Reestimation

With these auxiliary variables, the model parameters can be updated. In par-
ticular, the prior mode distribution 7;, i.e. the probability of being in mode ¢ at
time ¢ = 1, is simply the auxiliary variable ~; (7).

The mode transition probability z;; is the number of mode transitions from
i to j divided by the number of visits to mode i. Although these two values
cannot be known exactly, they can be estimated by summing up the variables &
and + respectively:

expected number of mode transitions from ¢ to j

Tij =

expected number of visits to mode ¢

Computing Auxiliary Variables:
For all 4,5 € @,
oy 0 (8) @i Y (Se, @ty Se41) Braa ()
§(4,9) = kE:Q ar (k)

For all i € Q,
V(i) = > &e41(3,9)
Ire)

Fig. 9. Computing auxiliary variables

Similarly, the state transition probabilities and reward function can be rees-
timated by the following;:

expected number of visits to mode 7 state j, with action k and resulting in [

g’t(]: kal) =

expected number of visits to mode i state j, with action k

Z Ve (%) 6(s¢,5) 6(ar, k) 6(se41,1)
T

Z Z Y:(4) 0(s¢,5) 0(ag, k) 6(s¢41, h)

expected reward received by taking action k£ at mode ¢ state j

Fi(ja k) =

expected number of visits to mode 4 state j with action a

> %) 8ar, k) 8(se, 5) 1

The function d(a,b) is defined as 1 if a = b, or 0 otherwise. It is used for
selecting the particular state and action. For a small data set, it is possible that
some states or actions do not occur at all. In that case, the denominators of
the formulae are equal to zero, and the parameters should remain unchanged.
Figure 10 summarizes the parameter reestimation procedure.

T .. .
22 Et('l,]) . i
=2—— : if denominator # 0
-))
Tij = t=1
Tij ¢ otherwise
s (4) 0(s¢,7) 0(s¢41,1) 6(at, k)
e Y, YT : if denominator # 0
7:(4,k, 1) = IEZS =1 7(8) 6(s¢,) 6(se+1,1) 8(at, k)
yi(4, k, 1) : otherwise
T-1 . .
5 7:(9) 6(as, k) 6(se,) re
e : if denominator # 0
FG k)= = @) dank) (s, 5)
ri(4, k) : otherwise
i = 71(4)

Fig. 10. Parameter reestimation for HM-MDP Baum-Welch algorithm

It is not difficult to see that the HM-MDP Baum-Welch algorithm requires
only ©(M?2T) time and O(M N2K + M?) storage, which gives a significant re-
duction when compared with ©(M2N2T) time and @(M2N?K) storage in the
POMDP approach.

4 Empirical Studies

This section empirically examines the POMDP Baum-Welch® and HM-MDP
Baum-Welch algorithms in terms of the required data size and time. Experi-
ments on various model sizes and settings were conducted. The results are quite
consistent. In the following, some details of a typical run are presented for illus-
tration.

4.1 Experimental Setting

The experimental model is a randomly generated HM-MDP with 3 modes, 10
states and 5 actions. Note that this HM-MDP is equivalent to a fairly large

3 Chrisman’s algorithm also attempts to learn a minimal possible number of states.
Here we are concerned only with learning of the model parameters.

POMDP, with 30 hidden states, 10 observations and 5 actions. In order to sim-
ulate the infrequent mode changes, each mode is set to have a minimum proba-
bility of 0.9 in looping back to itself. In addition, each state of the HM-MDP has
3 to 8 non-zero transition probabilities, and rewards are uniformly distributed
between 7., (s,a) +0.1. This reward distribution, however, is not disclosed to the
learning agents.

The experiments were run with data of various sizes, using the same initial
model. The model was also randomly generated in the form of HM-MDP. To
ensure fairness, the equivalent POMDP model was used for POMDP Baum-
Welch learning. For each data set, the initial model was first loaded, and the
selected algorithm iterated until the maximum change of the model parameters
was less than a threshold of 0.0001. After the algorithm terminated, the model
learning time was recorded, and the model estimation errors were computed.
The experiment was then repeated for 11 times with different random seeds in
order to compute the median.

4.2 Performance Measure

The HM-MDP and POMDP Baum-Welch algorithms learn a hidden-mode model
in different representations. To facilitate comparison, all models were first con-
verted into POMDP form. Model estimation errors can then be measured in
terms of the minimum difference between the learned model and the actual
model. As the state indices for the learned model might be different from the
actual one, a renumbering of the state indices is needed. In our experiment, an
indexing scheme that minimizes the sum of the squares of differences on the
state transition probabilities between the learned and the actual models was
used (provided the constraints on the observation probabilities are preserved).
Figure 11 (a) and (b) report respectively the sum of the squares of differences on
the transition function and on the reward function using this indexing scheme.

Regarding the computational requirement of the algorithms, the total CPU
running time was measured on a SUN Ultra I workstation. Table 1 reports the
model learning time in seconds.

Data Set Size
1000 \ 2000\ 3000 \ 4000 \ 5000
HM-MDP| 4.60 |18.72| 15.14 | 9.48 | 10.07
POMDP |189.40(946.78/|2164.20(3233.56|4317.19

Approach

Table 1. CPU time in seconds

4.3 Empirical Results

Conclusion can now be drawn. Generally speaking, both algorithms can learn a
more accurate environment model as the data size increases (Figure 11). This

result is not surprising since both algorithms are statistically based, and hence
their performances rely largely on the amount of data provided. When the train-
ing data size is too small (less than 1000 in this case), both algorithms perform
about equally poorly. However, as the data size increases, HM-MDP Baum-Welch
improves substantially faster than POMDP Baum-Welch.

Our experiment reveals that HM-MDP Baum-Welch was able to learn a fairly
accurate environment model with a data size of 2500. POMDP Baum-Welch,
on the contrary, needs a data size of 20000 (not shown) in order to achieve a
comparable accuracy. In fact, in all the experiments we conducted, HM-MDP
Baum-Welch always required a much smaller data set than the POMDP Baum-
Welch. We believe that this result holds in general because in most cases, an
HM-MDP consists of fewer free parameters than its POMDP counterpart.

In terms of computational requirement, HM-MDP Baum-Welch is much
faster than POMDP Baum-Welch (Table 1). We believe this is also true in
general for the same reason described above. In addition, computational time
is not necessarily monotonically increasing with the data size. It is because the
total computational requirements depend not only on the data size, but also on
the number of iterations being executed. From our experiments, we notice that
the number of iterations tends to decrease as the data size increases.

5 Solving Hidden-Mode Problems

In this section we describe briefly how hidden-mode problems can be solved.
Since HM-MDPs are a special class of POMDPs, a straightforward approach is
first to convert a hidden-mode problem into a POMDP one and subsequently to
apply POMDP algorithms. Nevertheless, POMDP algorithms do not exploit the
special structures of HM-MDPs. Herein, we develop a value iteration approach
for HM-MDPs?. The main idea of the algorithm is to exploit the HM-MDP
structure by decomposing the value function based on the state space. This
algorithm is akin to the POMDP value iteration conceptually but is much more
efficient.

5.1 Value Iteration for HM-MDPs

Many POMDP algorithms maintain a probability distribution over the state
space known as belief state. As a result, a policy is a mapping from belief states
to actions. In HM-MDPs, a probability distribution over the mode space is main-
tained. We name it belief mode. Unlike the POMDP approach, the belief mode
divides the belief states into an observable part (i.e. the observable states) and
an unobservable part (i.e. the hidden modes). This representation minimizes the
number of hidden variables. For every observed state and action, the belief mode
b is updated as follows.

4 A more detailed description of the algorithm can be found in (Choi 2000).

> meg Pr(m'|m) - Pr(s'|m, s, a) - b(m)
Zm,eQ ZmeQ Pr(m!|m) - Pr(s'|m, s,a) - b(m)
> me@ Tm'm - Ym(s,a,s') - b(m)
YomieQ 2omeq Tm'm - Ym(8;a,s') - b(m)

g (m') =

where b%(m') is the probability of being in mode m’, given the action a and
the state s’. The numerator computes the likelihood of the next mode and the
denominator is the normalization factor.

An HM-MDP policy now becomes a mapping from belief modes and states
to actions. Specifically, an optimal action for a belief mode b and the current
state s maximizes the following value function:

V (b, 5) = max(Y rml(s,a)-b(m)+7 Y Pr(s'|b,5,a)V(by,s") (1)
meQ s'eS

where 7r,,(s,a) is the reward function and + is the discount factor. Since s is a
discrete variable, one can view the value function V' as | S| value functions. Note
that these decomposed value functions are still piecewise linear and convex. One
can therefore use Equation (1) for the value iteration to compute the optimal
value function for each state in S.

5.2 Empirical Results

We implement Equation (1) by using a variant of incremental pruning (Zhang
and Liu 1997; Cassandra et al. 1997) and run the program on a SPARC Ultra
2 machine. A number of experiments were conducted based on some simplified
real-world problems. The descriptions of the problems can be found in (Choi
2000). Table 2 gives a summary of the tasks. In these experiments, a discount
factor of 0.95 and a solution tolerance of 0.1 were used. Table 3 reports the CPU
time in seconds, the number of vectors in the resulting value functions, and the
number of required epochs. While incremental pruning is considered as one of
the most efficient POMDP algorithms, our experiment showed that it is unable
to solve any of these problems within the specified time limit.

There are two main reasons why the HM-MDP approach is more efficient
than the POMDP one. First, the dimension of the vector is significantly reduced
from |Q| - |S] to |@|. Second, the most time-consuming part of the algorithm,
namely the cross sum operation, no longer needs to be performed on the whole
value function due to decomposition of the value function.

6 Discussions

The usefulness of a model depends on the validity of the assumptions made. In
this section, we revisit the assumptions of HM-MDP, discuss the issues involved,

Table 2. HM-MDP problems

‘ Problem HModes‘States‘Ac‘cions‘
Traffic Light| 2 8 2
Sailboat 4 16 2
Elevator 3 32 3

Table 3. Solving HM-MDP problems by using incremental pruning

Problem POMDP Approach HM-MDP Approach
Time [Vectors|Epochs| Time |[Vectors|Epochs

Traffic Light|>259200{ - - 4380 | 404 114

Sailboat |[>259200| - - 170637 1371 112

Elevator |>259200| - - 186905 3979 161

and shed some light on its applicability to real-world nonstationary tasks. Some
possible extensions are also discussed.

A Finite Number of Environment Modes

MDP is a flexible framework that has been widely adopted in various applica-
tions. Among these there exist many tasks that are nonstationary in nature and
are more suitable to be characterized by several, rather than a single, MDPs. The
introduction of distinct MDPs for modeling different modes of the environment
is a natural extension to those tasks.

One advantage of having distinct MDPs is that the learned model is more
comprehensible: each MDP naturally describes a mode of the environment. In
addition, this formulation facilitates the incorporation of prior knowledge into
the model initialization step.

Partially Observable Modes

While modes are not directly observable, they may be estimated by observing the
past state transitions. It is a crucial, and fortunately still reasonable, assumption
that one needs to make.

Although states are assumed to be observable, it is possible to extend the
model to allow partially observable states, i.e., to relax the second condition
mentioned in Section 1. In this case, the extended model would be equivalent
in representational power to a POMDP. This could be proved by showing the
reformulation of the two models in both directions.

Modes Evolving as a Markov Process

This property may not always hold for all real-world tasks. In some applica-
tions, such as learning in a multi-agent environment or performing tasks in an
adversary environment, the agent’s actions might affect the state as well as the
environment mode. In that case, an MDP instead of a Markov chain should be
used to govern the mode transition process. Obviously, the use of a Markov chain
involves fewer parameters and is thus preferable whenever possible.

Infrequent Mode Transitions

This is a property that generally holds in many applications. In order to char-
acterize this property, a large transition probability for a mode looping back to
itself can be used. Note that this is introduced primarily from a practical point
of view, but is not a necessary condition for our model. In fact, we have tried to
apply our model-learning algorithms to problems in which this property does not
hold. We find that our model still outperforms POMDP, although the required
data size is typically increased for both cases.

Using high self-transition probabilities to model rare mode changes may not
always be the best option. In some cases mode transitions are also correlated
with the time of a day (e.g. busy traffic in lunch hours). In this case, time (or the
mode sequence) should be taken into account for identifying the current mode.
One simple way to model this property is to strengthen left-to-right transitions
between modes, as in the left-to-right HMMs.

Small Number of Modes

This nice property significantly reduces the number of parameters in HM-MDP
compared to that in POMDP, and makes the former more applicable to real-
world nonstationary tasks.

The number of states can be determined by the learning agent. States can be
distinguished by, for instance, transition probabilities, mean rewards, or utilities.
McCallum (1995) has detailed discussions on this issue.

Likewise, the number of modes can be defined in various ways. After all,
modes are used to discern changes of environment dynamics from noise. In prac-
tice, introducing a few modes is sufficient for boosting the system performance.
More modes might help further, but not necessarily significantly. A trade-off be-
tween performance and response time must thus be decided. In fact, determining
the optimal number of modes is an important topic that deserves further studies.

7 Future Work

There are a number of issues that need to be addressed in order to broaden
the applicability of HM-MDPs. First, the number of modes is currently assumed
to be known. In some situations, choosing the right number of modes can be

difficult. Hence, we are now investigating the possibility of using Chrisman’s or
McCallum’s hidden-state-splitting techniques (Chrisman 1992; McCallum 1993)
to remove this limitation. Next, the problem-solving algorithm we presented
here is preliminary. Further improvement, such as incorporating the point-based
improvement technique (Zhang et al. 1999), can be achieved. We are also inves-
tigating an algorithm that further exploits the characteristics of the HM-MDP.
We will present this algorithm in a separate paper. Finally, the exploration-
exploitation issue is currently ignored. In our future work, we will address this
important issue and apply our model to real-world nonstationary tasks.

8 Summary

Making sequential decisions in nonstationary environments is common in real-
world problems. In this paper we presented a formal model, called hidden-mode
Markov decision process, for a broad class of nonstationary sequential decision
tasks. The proposed model is based on five properties observed in a special
type of nonstationary environments, and is applicable to many traffic control
type problems. Basically, the hidden-mode model is defined as a fixed number
of partially observable modes, each of which specifies an MDP. While state and
action spaces are fixed across modes, the transition and reward functions may
differ according to the mode. In addition, the mode evolves according to a Markov
chain.

HM-MDP is a generalization of MDP. In addition to the basic MDP charac-
teristics, HM-MDP also allows the model parameters to change probabilistically.
This feature is important because many real-world tasks are nonstationary in
nature and cannot be represented accurately by a fixed model. Nevertheless, the
hidden-mode model also adds uncertainty to the model parameters and makes
the problem, in general, more difficult than the MDPs.

HM-MDP is a specialization of POMDP:; it can always be transformed into a
POMDP with an augmented state space. While POMDPs are superior in terms
of representational power, HM-MDPs require fewer parameters, and therefore
can provide a more natural formulation for certain type of nonstationary prob-
lems. Our experiments also show that this simplification significantly speeds up
both the model-learning and the problem-solving procedures of HM-MDPs.

9 Acknowledgment

This research work is supported by Hong Kong Research Grants Council Grant:
HKUST6152/98E.

References

R. E. Bellman, (1957). Dynamic Programming. Princeton University Press, Princeton,
NJ.

R. E. Bellman, (1957). A Markovian decision process. Journal of Mathematics and
Mechanics, 6:679-684.

J. A. Boyan and M. L. Littman, (1994). Packet routing in dynamically changing
networks: a reinforcement learning approach. In Advances in Neural Information
Processing Systems 6, pages 671-678, San Mateo, California. Morgan Kaugmann.

A. R. Cassandra, M. L. Littman, and N. Zhang, (1997) Incremental pruning: A sim-
ple, fast, exact algorithm for partially observable Markov decision processes. In
Uncertainty in Artificial Intelligence, Providence, RI.

H.-T. Cheng, (1988). Algorithms for Partially Observable Markov Decision Processes.
PhD thesis, University of British Columbia, British Columbia, Canada.

S. P. M. Choi, (2000). Reinforcement Learning in Nonstationary Environments. PhD
thesis, Hong Kong University of Science and Technology, Department of Computer
Science, HKUST, Clear Water Bay, Hong Kong, China, Jan.

S. P. M. Choi, D. Y. Yeung, and N. L. Zhang, (1999). An environment model for non-
stationary reinforcement learning. In Advances in Neural Information Processing
Systems 12. To appear.

L. Chrisman, (1992). Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In AAAI-92.

R. H. Crites and A. G. Barto, (1996). Improving elevator performance using reinforce-
ment learning. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in
Neural Information Processing Systems 8.

P. Dayan and T. J. Sejnowski, (1996). Exploration bonuses and dual control. Machine
Learning, 25(1):5-22, Oct.

T. Jaakkola, S. P. Singh, and M. 1. Jordan, (1995). Monte-Carlo reinforcement learning
in non-Markovian decision problems. In G. Tesauro, D. S. Touretzky, and T. K.
Leen, editors, Advances in Neural Information Processing Systems 7, MA. The MIT
Press.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, May.

L. J. Lin and T. M. Mitchell, (1992). Memory approaches to reinforcement learning
in non-Markovian domains. Technical Report CMU-CS-92-138, Carnegie Mellon
University, School of Computer Science.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, (1995a). Learning policies
for partially observable environments: Scaling up. In A. Prieditis and S. Russell,
editors, Proceedings of the Twelfth International Conference on Machine Learning,
pages 362-370, San Francisco, CA. Morgan Kaufmann.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, (1995b). Efficient dynamic-
programming updates in partially observable Markov decision processes. Technical
Report TR CS-95-19, Department of Computer Science, Brown University, Provi-
dence, Rhode Island 02912, USA.

M. L. Littman and D. H. Ackley, (1991). Adaptation in constant utility non-stationary
environments. In R. K. Belew and L. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 136-142, San Mateo, CA,
Dec. Morgan Kaufmann.

W. S. Lovejoy, (1991). A survey of algorithmic methods for partially observed Markov
decision processes. Annals of Operations Research, 28:47—66.

A. McCallum, (1993). Overcoming incomplete perception with utile distinction mem-
ory. In Tenth International Machine Learning Conference, Amherst, MA.

A. McCallum, (1995). Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester, Dec.

G. E. Monahan, (1982). A survey of partially observable Markov decision processes:
Theory, models and algorithms. Management Science, 28:1-16.

C. H. Papadimitriou and J. N. Tsitsiklis (1987). The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441-450.

M. L. Puterman (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons.

L. R. Rabiner, (1989). A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2), Feb.

J. H. Schmidhuber (1990). Reinforcement learning in Markovian and non-Markovian
environments. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Ad-
vances in Neural Information Processing Systems, volume 3, pages 500-506, San
Mateo, CA. Morgan Kaufmann.

S. Singh and D. P. Bertsekas, (1997). Reinforcement learning for dynamic channel allo-
cation in cellular telephone systems. In Advances in Neural Information Processing
Systems 9, 1997.

E. J. Sondik, (1971). The Optimal Control of Partially Observable Markov Processes.
PhD thesis, Stanford University, Stanford, California, USA.

R. S. Sutton, (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning, pages 216-224. Morgan Kaufmann.

R. S. Sutton and A. G. Barto, (1998). Reinforcement Learning: An Introduction. The
MIT Press.

C. C. White III, (1991). Partially observed markov decision processes: A survey. Annals
of Operations Research, 32.

N. L. Zhang, S. S. Lee, and W. Zhang, (1999). A method for speeding up value iteration
in partially observable markov decision processes. In Proceeding of 15th Conference
on Uncertainties in Artificial Intelligence.

N. L. Zhang and W. Liu, (1997). A model approximation scheme for planning in
partially observable stochastic domains. Journal of Artificial Intelligence Research,
7:199 — 230.

Comparing POMDP and HM-MDP Baum-Welch
100 T T T T T T T

'POMDP Baum-Welch’ —-—
'HM-MDP Baum-Welch' —+--

Error in Transition Function

O Il Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Window Size

(a) Error in Transition Function

Comparing POMDP and HM-MDP Baum-Welch
30 T T T T T T T
'POMDP Baum-Welch’ ——
'HM-MDP Baum-Welch® —+--

Error in Reward Function

0 L | 1 1 e P \ \ ,
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Window Size

(b) Error in Reward Function

Fig. 11. Model learning errors in terms of the transition probabilities and rewards. All
environment models are in their POMDP form for comparison. The errors are measured
by summing the squares of differences on the state transition probabilities and on the
reward function respectively.

