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MILD: Multiple-Instance Learning via

Disambiguation

Wu-Jun Li, Dit-Yan Yeung

Abstract

In multiple-instance learning (MIL), an individual example is called an instance and a bag

contains a single or multiple instances. The class labels available in the training set are associated

with bags rather than instances. A bag is labeled positive if at least one of its instances is positive;

otherwise, the bag is labeled negative. Since a positive bag may contain some negative instances

in addition to one or more positive instances, the true labels for the instances in a positive bag may

or may not be the same as the corresponding bag label and, consequently, the instance labels

are inherently ambiguous. In this paper, we propose a very efficient and robust MIL method,

called MILD (Multiple-Instance Learning via Disambiguation), for general MIL problems. First, we

propose a novel disambiguation method to identify the true positive instances in the positive bags.

Second, we propose two feature representation schemes, one for instance-level classification and

the other for bag-level classification, to convert the MIL problem into a standard single-instance

learning (SIL) problem that can be solved by well-known SIL algorithms, such as support vector

machine. Third, an inductive semi-supervised learning method is proposed for MIL. We evaluate

our methods extensively on several challenging MIL applications to demonstrate their promising

efficiency, robustness and accuracy.
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1 INTRODUCTION

1.1 Multiple-Instance Learning

The task of drug activity prediction [1] is to classify aromatic molecules according to whether or

not they are “musky”. Here, the same molecule can manifest several different steric configurations

(i.e., molecular shapes), each with very different energy properties. A molecule is said to be

musky if it binds itself to a particular receptor when it is in one or some of its configurations,

although it cannot bind itself to the receptor in its other configurations. When a molecule cannot

bind itself to the receptor in any of its configurations, it is said to be non-musky.

A new learning paradigm called multiple-instance learning (MIL) was proposed in [1] to

model learning problems like drug activity prediction. In an MIL problem [1], an individual

example is called an instance and a bag contains a single or multiple instances. A bag is labeled

positive if at least one of its instances is positive; otherwise, the bag is labeled negative. In the

example of drug activity prediction, a bag corresponds to a molecule, and an instance corresponds

to a configuration. A configuration is said to be positive if it can make the molecule bind to

the receptor. Otherwise, it is called negative. In MIL, the class labels available in the training

set are associated with bags rather than instances. For example, we only know whether or not

a molecule is musky, but do not know in what configuration a molecule can bind itself to the

receptor.

As more and more applications have been formulated as MIL problems, some of them are

slightly different from the original formulation of MIL in [1]. Recent works [2], [3] have pointed

out that there are actually two different settings for MIL. One setting is based on the existential

assumption, which assumes that a bag can be determined to be positive as long as one single

positive instance exists in it. This setting is the same as the original formulation in [1]. The

other setting is based on the collective assumption [3], which assumes that a bag’s label is

collectively determined by a set of instances or even all the instances in the corresponding bag.

One representative application conforming to the collective assumption is the region-based image

classification task [4], [5], where the label of an image always refers to some object in that image.

Because current automatic image segmentation methods may cut the object responsible for the

label of the image into multiple parts, any single part cannot represent the object satisfactorily.

It is the collective property of multiple parts that determines the label of the image.
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From the formulation of MIL, we can easily see that a positive bag may contain some negative

instances in addition to one or more positive instances. Hence, the true labels for the instances in

a positive bag may or may not be the same as the corresponding bag label and, consequently, the

instance labels are inherently ambiguous. In the MIL literature [2], true positive instances and

false positive instances refer to the positive and negative instances, respectively, in the positive

bags.

1.2 Motivation

Since labels are not available for the training instances, some methods [2], [6] simply assume

that all instances in a bag have the same label as the bag label. However, this assumption can be

very unreasonable for positive bags because a positive bag may contain as few as only one true

positive instance. If the majority of the negative instances in a positive bag are mislabeled this

way, the features learned for distinguishing positive instances from negative instances may end

up being very misleading. Other methods [7], [8], [9] try to extend some standard single-instance

learning (SIL) methods for multi-instance data by adding some constraints. Unfortunately, the

resulting methods typically require solving non-convex optimization problems which suffer from

the local minima problem and have high computation cost.

Considering the limitations of some previous methods, we advocate here the necessity of

instance label disambiguation as a way to eventually improve the prediction accuracy of the bag

labels. In the context of MIL, disambiguation essentially refers to identifying the true positive

instances in the positive bags.

However, existing disambiguation methods cannot achieve promising performance. The APR

(axis-parallel rectangle) method [1] tries to find an axis-parallel rectangle (or, more generally,

hyper-rectangle) in the feature space to represent the area of the true positive instances. This

rectangle should include at least one instance from each positive bag but exclude all instances

from the negative bags. Although APR works quite well for the drug activity prediction problem,

it is highly possible that no APR can be found for some other applications, such as image or

text categorization, to satisfy the requirement that at least one instance from each positive bag

is included while all instances from the negative bags are excluded. Moreover, APR is very

sensitive to labeling noise. Suppose only one negative bag is mislabeled as a positive one. In

order to include at least one instance from this mislabeled negative bag, the computed APR may
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contain so many negative instances that it cannot represent the area of true positive instances

at all (cf. Section 3.2.3). DD (diverse density) value [10] is proposed to measure how many

different positive bags have instances near a point in the feature space and how far the negative

instances are from that point. The DD method tries to find the point with the highest DD value

as the target concept. The DD method is very sensitive to labeling noise too since the DD value

at a point will be exponentially reduced if an instance from some negative bag is close to that

point (cf. Section 3.2.3). This phenomenon has been validated empirically by [11]. Moreover,

since the DD landscape contains local maxima, searching for the point with the highest DD value

generally requires multiple restarts and hence incurs high computation cost. Other methods, such

as mi-SVM [7], adopt some heuristic methods to solve the optimization problem, which may

lead to local minima and incur high computation cost.

1.3 Main Contributions

In this paper, we propose a very efficient and robust MIL method, called MILD (Multiple-

Instance Learning via Disambiguation), for general MIL problems. The main contributions of

this paper can be summarized as follows:

• By investigating the properties of true positive instances in depth, we propose a novel

disambiguation method for identifying the true positive instances in the positive bags. This

method is not only very efficient but also very robust.

• Two feature representation schemes, one for instance-level classification and the other for

bag-level classification, are proposed to convert the MIL problem into a standard single-

instance learning problem that can be solved directly by well-known SIL algorithms, such

as support vector machine (SVM).

• By combining the two feature representation schemes, a multi-view semi-supervised learning

method based on co-training [12] is proposed for MIL. To the best of our knowledge, this

is the first inductive semi-supervised learning method for MIL.

• To demonstrate the promising performance of our method, we extensively compare our

method with many state-of-the-art MIL methods in diverse applications, including drug

activity prediction, protein sequence classification and image classification.

One of the most attractive advantages of our methods is that, after instance label disambigua-

tion, the MIL problem is converted into a standard single-instance learning problem. As a result,
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many existing supervised and semi-supervised learning methods can be easily adapted for MIL

applications.

2 RELATED WORK

Over the past few years, many applications have been formulated as MIL problems. These include

drug activity prediction [1], [13], [14], [15], image classification [4], [11], [16], [17], [18], text

classification [2], [7], stock selection [7], [10], protein family modeling [19], computer aided

diagnosis [20], [21], and security applications [22]. To solve these problems, many MIL methods

have been proposed. The first MIL method is APR [1], which represents the target concept by

an axis-parallel rectangle (or hyper-rectangle) in the feature space. The rectangle includes at

least one instance from each positive bag but excludes all instances from the negative bags. [10]

proposed a measure called DD (diverse density), which essentially measures how many different

positive bags have instances near a point in the feature space and how far the negative instances

are from that point. A DD-based method tries to find the point with the highest DD value as the

target concept. EM-DD [23], [24] combines expectation-maximization (EM) [25] with the DD

formulation by using EM to search for the most likely concept.

Several other methods try to modify standard single-instance learning methods for MIL by

introducing constraints derived from the MIL formulation. [7] proposed two methods based on

SVM, one (mi-SVM) for instance-level classification and the other (MI-SVM) for bag-level clas-

sification. Both methods are formulated as mixed integer quadratic programming problems. [26]

applied deterministic annealing to the SVM formulation to find better local mimima compared to

the heuristic methods. [6] proposed a kernel function directly for bags. With this multi-instance

(MI) kernel, in principle any kernel-based classifier can be trained for classifying the bags. [27]

extended this work by proposing a marginalized MI kernel to convert the MIL problem from an

incomplete data problem to a complete data problem. [28] proposed an SVM-based method for

sparse positive bags by directly enforcing the desired constraint that at least one of the instances

in a positive bag is positive. [9] proposed to apply transductive SVM for solving MIL problems.

Recently, some methods try to convert MIL into a standard single-instance problem and then

solve it with conventional methods by representing the bags as feature vectors. [4] proposed the

DD-SVM method through a feature mapping defined on some instance prototypes learned by

DD. [11] proposed another method, called MILES (Multiple Instance Learning via Embedded
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instance Selection), based on a novel instance-based feature mapping and the 1-norm SVM

model for simultaneous feature selection and classification.

However, most of the existing methods cannot answer the essential question giving rise to

the gap between multiple-instance learning and single-instance learning: which are true positive

instances and what property do the true positive instances have? This motivates the work in this

paper.

3 MILD: MULTIPLE-INSTANCE LEARNING VIA DISAMBIGUATION

In this section, our disambiguation method is described in detail, and then two feature rep-

resentation schemes are presented for instance-level classification and bag-level classification,

respectively, based on which the MIL problem is converted into a standard single-instance leaning

problem that can be directly solved by SIL algorithms, such as SVM. In addition, multi-view

learning [12] can be easily adapted for MIL by combining the two views, the instance-level view

and the bag-level view, of the bags.

3.1 Notations

B+
i denotes a positive bag and B−

i denotes a negative bag. When the label of a bag does not

matter, we simply denote the bag as Bi. B+
ij denotes an instance in a positive bag B+

i and B−
ij

is an instance in a negative bag B−
i . Let B = {B+

1 , B
+
2 , . . . , B

+
n+ , B

−
1 , B

−
2 , . . . , B

−
n−} denote the

set of n+ positive and n− negative training bags. l(Bi) ∈ {+1,−1} is the bag label of Bi and

l(Bij) ∈ {+1,−1} is the instance label of Bij . In general, we always represent all instances

as feature vectors of the same dimensionality. Hence, in this paper, an instance also refers to a

feature vector.

3.2 Disambiguation

According to the MIL formulation, all instances in the negative bags are negative and hence

there exists no ambiguity in the negative bags if there is no labeling noise. As for the positive

bags, the only thing we know is that each positive bag must contain at least one true positive

instance, but it may also contain many negative instances. Thus, ambiguity arises in the positive

bags since we do not know the labels of the instances there. The goal of disambiguation is to

identify the true positive instances in the positive bags.
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3.2.1 Some Properties of True Positive Instances

Assumption 1: We assume that given a true positive instance t, the probability that an instance

Bij is positive is calculated as follows:

Pr (l(Bij) = +1 | t) = exp

(
−‖t−Bij‖2

σt
2

)
, (1)

where ‖x‖ ,
√∑

k x
2
k denotes the 2-norm of the vector x, and σt is a parameter 1 larger than

0.

Remark 1: The rationale of Assumption 1 is similar to that of kernel density estimation with

the kernel being a Gaussian. Kernel density estimation can be thought of as placing a small

“bump” at each observation, which will give higher probability density near the observations.

Similarly, if we have already observed an instance t to be truly positive, then the chance that

an instance near t is truly positive will be relatively high. However, one key point that should

be noted is that unlike kernel density estimation which tries to estimate a probability density

function, Assumption 1 is used to compute a conditional probability. From (1), we can easily

see that 0 ≤ Pr(l(Bij) = +1 | t) ≤ 1, Pr(l(Bij) = +1 | t) = 0 when ‖t − Bij‖ = +∞,

and Pr(l(Bij) = +1 | t) = 1 when ‖t − Bij‖ = 0. Obviously, this is a reasonable probability

function, but not a reasonable probability density function. Furthermore, the assumption in (1)

also coincides well with our intuition. If we have known that t is a true positive instance and

‖t − Bij‖ = 0, Bij will definitely be a true positive instance because Bij is just equal to t,

which means that Pr(l(Bij) = +1 | t) = 1 is reasonable. Similarly, if ‖t− Bij‖ = +∞, Bij is

infinitely far away from the true positive instance t, Pr(l(Bij) = +1 | t) = 0 is also reasonable.

The farther Bij is away from t, the lower is the probability that Bij is positive given t, which

is reasonable based on our intuition.

Remark 2: We try to deal with the general case that all the true positive instances are

not necessarily identical to a single point in the instance space, but are generated from some

probability distribution over the whole instance space. Hence, each point in the instance space

is associated with a probability value to indicate how confidently that point is truly positive.

Definition 1: The most-likely-cause estimator for estimating the probability that a bag Bi is

1. This parameter will be learned from the training data by the algorithm introduced later.

March 1, 2009 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 8

a positive bag given a true positive instance t is defined as follows:

Pr(l(Bi) = +1 | t) = max
Bij∈Bi

Pr(l(Bij) = +1 | t)

= max
Bij∈Bi

exp

(
−‖t−Bij‖2

σ2
t

)

= exp

(
−d

2(t, Bi)

σ2
t

)
, (2)

where

d(t, Bi) = min
Bij∈Bi

‖t−Bij‖. (3)

In other words, the distance d(t, Bi) between an instance t and a bag Bi is simply equal to the

distance between t and the nearest instance in Bi.

The definition of the most-likely-cause estimator completely follows the underlying principle

of the MIL formulation. Let Bik be the instance in bag Bi which is the most likely one to be

positive, i.e., Pr(l(Bik) = +1 | t) is the largest among all instances in Bi. If Pr(l(Bik) = +1 | t)

is small enough, certainly we should assign Bi to be negative. Otherwise, Bi should be positive,

even if all instances in Bi other than Bik have low probabilities to be positive. Moreover, the

definition is also consistent with intuition. If d(t, Bi) = 0, which implies that t is an instance

of Bi, Pr(l(Bi) = +1 | t) will be 1. This is reasonable, because Bi contains a true positive

instance t. In general, the larger d(t, Bi) is, the lower is the probability that Bi is positive given

the true positive instance t.

Theorem 1: Given a true positive instance t, there exists a threshold θt which makes the

decision function defined in (4) label the bags according to the Bayes decision rule.

ht
θt

(Bi) =

 +1 d(t, Bi) ≤ θt

−1 otherwise
(4)

Proof: According to the Bayes decision rule [29, page 23], the label of Bi given a true

positive instance t should be decided as follows:

l(Bi | t) =

 +1 Pr(l(Bi) = +1 | t) ≥ Pr(l(Bi) = −1 | t)

−1 otherwise
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From Definition 1, we have

Pr(l(Bi) = +1 | t)− Pr(l(Bi) = −1 | t)

= exp

(
−d

2(t, Bi)

σ2
t

)
−
[
1− exp

(
−d

2(t, Bi)

σ2
t

)]
= 2 exp

(
−d

2(t, Bi)

σ2
t

)
− 1.

Furthermore, we have

Pr(l(Bi) = +1 | t) ≥ Pr(l(Bi) = −1 | t)

⇔ Pr(l(Bi) = +1 | t)− Pr(l(Bi) = −1 | t) ≥ 0

⇔ 2 exp

(
−d

2(t, Bi)

σ2
t

)
− 1 ≥ 0

⇔ d(t, Bi) ≤ σt

√
ln 2. (5)

Hence, if θt = σt

√
ln 2, the decision function defined in (4) will label the bags in accordance

with the Bayes decision rule.

Therefore, if t is a true positive instance, there must exist a decision function as defined in

(4) to label the bags well, meaning that the distances from t to the positive bags are expected

to be smaller than those to the negative bags.

For a negative instance (i.e., false positive instance), however, its distances to the positive and

negative bags do not exhibit the same distribution as those from t. Since some positive bags

may also contain negative instances just like the negative bags, the distances from the negative

instance to the positive bags may be as random as those to the negative bags. This distributional

difference provides an informative hint for identifying the true positive instances.

3.2.2 Disambiguation Method

Unlike in the previous subsection, t does not necessarily refer to a true positive instance in this

subsection. However, we still define a decision function as that in (4) even when t is a negative

instance. The difference is that if t is a negative instance, the corresponding decision function

cannot label the bags well. It is this very phenomenon that forms the basis of our disambiguation

method.

Definition 2: The empirical precision of the decision function in (4) is defined as follows:

Pt(θt) =
1

n+ + n−

n++n−∑
i=1

1 + ht
θt

(Bi) l(Bi)

2
, (6)
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where Bi ∈ B is a training bag.

The empirical precision essentially measures how well the decision function ht
θt

(·) with

threshold θt mimics l(·) in predicting the bag labels.

Now, the question is that we do not know the scaling factor σ2
t of the function in (2) for a

specific instance t. As such, we cannot compute the threshold θt. It will be desirable to learn σ2
t

from the training data automatically. To do so, we find the best threshold θ∗t that maximizes the

empirical precision to estimate σ2
t : θ∗t = arg maxθt Pt(θt). Thus the best (maximum) empirical

precision P ∗(t) for t is given by:

P ∗(t) = max
θt

Pt(θt). (7)

Remark 3: The basic idea of finding θ∗t is analogous to maximum likelihood estimation (MLE)

which finds the parameters that best explain the observed data. However, the criterion used here

is the empirical precision as defined in (6) rather than the likelihood. Furthermore, our method

is totally different from the DD method. The objective function of DD is multiplicative, making

DD very sensitive to noise. Howerver, the objective function of our method is the empirical

precision in (6) with an additive form, which guarantees the robustness of our method. The

robustness of our method will be further discussed later.

In essence, P ∗(t) reflects the ability of instance t in discriminating the training bags. The

larger P ∗(t) is, the more likely is t a true positive instance.

It is worth noting that although θt is a continuous-valued variable, we can find θ∗t by checking

a finite set of candidate values only. This is guaranteed by Theorem 2.

Theorem 2: The best empirical precision P ∗(t) for t is achieved when θt is an element in

the set {d(t, B+
i ) | i = 1, . . . , n+}.

Proof: Let θ∗t be a value satisfying Pt(θ
∗
t ) = P ∗(t) and θ′t be the maximum value in

{d(t, B+
i ) | i = 1, . . . , n+} that is no larger than θ∗t .

If B+
i is correctly labeled when θt = θ∗t , then d(t, B+

i ) ≤ θ∗t , and hence d(t, B+
i ) ≤ θ′t.

Therefore, any correctly labeled positive bag when θt = θ∗t is also correctly labeled when

θt = θ′t. Similarly, if B−
i is correctly labeled when θt = θ∗t , then d(t, B−

i ) > θ∗t , and hence

d(t, B−
i ) > θ′t. Therefore, any correctly labeled negative bag when θt = θ∗t is also correctly

labeled when θt = θ′t.

Thus we have, Pt(θ
′
t) = Pt(θ

∗
t ) = P ∗(t).
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Therefore, to estimate the best threshold θ∗t (and hence σ2
t ), we only need to compute the

distance from t to each positive training bag. This procedure can be done very efficiently.

Ideally, disambiguation should identify all the true positive instances in the positive bags.

However, the only thing we know is that each positive bag contains at least one true positive

instance, but we do not know the exact number of true positive instances for one specific positive

bag. Different positive bags may have different number of positive instances, and furthermore,

the discriminative ability of the true positive instances from different positive bags might also be

different. Hence, although we know in general the true positive instances will have higher ability

to discriminate the training bags than negative instances, it is not easy to find a simple rule to

identify all the true positive instances in the positive bags. Actually, from our experiments (cf.

Section 4.3), we find that identifying all the true positive instances might exceed the requirement

necessary for us to complete common MIL tasks, and consequently incur some unnecessary cost.

Here, we design a simple disambiguation method to identify just one positive instance from each

positive bag, which is enough for most MIL tasks based on our experiments 2.

Since the MIL formulation requires that each positive bag contains at least one true positive

instance, it is always possible to find a true positive instance in a positive bag. In our algorithm,

we select from each positive training bag the instance with the largest P ∗ value as a candidate true

positive instance. After true positive instance selection, the disambiguation process is completed.

Algorithm 1 summarizes the disambiguation method presented above.

3.2.3 Comparison with Other Disambiguation Methods

APR (axis-parallel rectangle) [1] and DD (diverse density) [10] are two well-known disam-

biguation methods. Compared with them, our disambiguation method is more efficient and

robust. Quantitative empirical comparison will be performed in the next section. We first give a

qualitative comparison here with respect to the robustness property.

APR represents the target concept by an axis-parallel rectangle which includes at least one

instance from each positive bag but excludes all instances from the negative bags. Figure 1 gives a

toy example to show how APR works. There are altogether nine bags (B+
1 , B

+
2 , B

+
3 , B

+
4 , B

−
5 , B

−
6 , B

−
7 , B

−
8 , B

−
9 )

in the two-dimensional feature space. If there is no noise, APR will choose the area in the red

2. The extension of our simple version of disambiguation method for some complex tasks will be discussed in Section 3.5.1.
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Algorithm 1 Disambiguation Method
Input: All training bags B+

1 , . . . , B
+
n+ , B

−
1 , . . . , B

−
n−

Initialize: X = {x1, x2, . . . , xp} is the set of re-indexed instances from all positive training

bags; T ∗ = φ (empty set), where T ∗ is used to keep the set of selected true positive instances.

for k = 1 to p do

Compute P ∗(xk) according to (7)

end for

for i = 1 to n+ do

t∗i = arg maxB+
ij∈B+

i
P ∗(B+

ij )

Add t∗i to T ∗

end for

Output: T ∗

(smaller) rectangle as the true positive area, which is a very reasonable choice for this noise-free

case. However, if we mislabel even just one negative bag, say B−
5 , to be positive, APR can no

longer find a rectangle to include at least one instance from each positive bag but exclude all

instances from the negative bags. If B−
6 is not in the training set, then the algorithm will choose

the blue (bigger) rectangle, which is obviously not the real true positive area. Hence, APR is

very sensitive to labeling noise. Furthermore, in many applications such as image classification,

it is very difficult or even impossible for APR to find a rectangle that satisfies all the constraints.

As for DD [10], it finds a single point in the feature space as well as the best feature weights

corresponding to that point to represent the concept and then decides the label of each bag based

on the distance from the bag to the concept point. If the weighted distance from the concept

point to any instance of a bag is below a threshold, the bag will be labeled as positive. Hence,

the true positive area of DD is an ellipse (or, more generally, hyperellipsoid). In the toy example

in Figure 1, we can assume that both features have equal weights and hence the computed

true positive area is a circle. When there is no noise, DD finds the red point as the computed

concept point and the red (smaller) circle as the true positive area. This result is quite reasonable.

However, DD is also very sensitive to labeling noise, which has been pointed out in [11]. From

the toy example, we can also observe this phenomenon easily. If we mislabel only one positive
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bag, say B+
1 , to be negative, then the concept point will move to the blue point and the true

positive area will be the blue (bigger) circle, which is also not the real true positive area.

B+
11

B+
21

B+
31 B+

41

B+
12B−51

B−81

B−61

B+
22 B−71

B−91

B+
32

B−52

B−82

B−62

B+
42 B−72

B−92

Fig. 1. A toy example to show that APR and DD are sensitive to labeling noise. B+
ij and

B+
ik are two instances from the same positive bag B+

i , while B−
ij and B−

ik are two instances

from the same negative bag B−
i .

On the contrary, our disambiguation method is much more robust. In the empirical precision

measure defined in (6), negating a small number of labels will not change the overall precision

value significantly. This makes our method more robust towards labeling noise. To illustrate

this, let us assume that x+ is a true positive instance from a positive training bag and x−

is a negative instance (false positive instance) from the same bag. The precisions P ∗(x+) and

P ∗(x−) are computed from (7). Since negative instances also exist in positive bags, the distances

from x− to the positive bags are as random as those to the negative bags. Hence, P ∗(x−) may

approach 50% while P ∗(x+) is relatively high because d(x+, B+
i ) is expected to be smaller

than d(x+, B−
j ). If we add noise by changing the labels of d% of positive bags and d% of

negative bags, then P ∗(x−) may still be about 50% but P ∗(x+) may decrease by up to d%.

However, as long as P ∗(x+)− d% > P ∗(x−), the selected true positive instance is still x+. In

real applications, P ∗(x+) can be very high, even 100%, if all the true positive instances form a
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cluster and most negative instances are relatively far away from the cluster, implying that some

of the true positive instances can still be correctly selected even if the noise level is very high.

This will be illustrated in our experiments to be presented later in the experiment section.

In the toy example of Figure 1, if we mislabel a positive bag, say B+
1 , to be negative, our

method can still find that B+
21, B+

31 and B+
41 are true positive instances. On the other hand, if we

mislabel one negative bag, say B−
5 , to be positive, B+

11, B+
21, B+

31 and B+
41 can still be correctly

computed as positive instances. However, from the above analysis, DD and APR will fail with

these kinds of mislabeling information.

Moreover, a promising property of our method is that it has no parameters to tune. The

only parameter θt can be determined entirely from the training data. From Theorem 2, we only

need to set θt to each of the distances from t to the positive bags and then find the value

that gives the highest empirical precision. This is very promising as no effort is needed for

parameter tuning using time-consuming methods such as cross validation. In fact, it is almost

real-time in our experimental evaluation. For example, it only takes 0.06 second on a 2GHz

PC in our experiment to complete the disambiguation process for one fold of the 10-fold cross

validation on the MUSK1 data set (cf. Section 4.1.1). As a result, the overall method based on

our disambiguation method is one order of magnitude faster than DD-based methods based on

experimental evaluation on the drug activity prediction task (cf. Table 7).

3.3 Maximum Margin Formulation of MIL

Maximum margin classifiers such as SVM deliver promising generalization performance because

model complexity or capacity is controlled well by maximizing the margin [30]. However, due

to ambiguities in the label information, such classifiers designed for standard single-instance

learning cannot be applied to MIL directly. In this section, we propose two feature representation

schemes based on the disambiguation method presented above to directly adapt SVM to the MIL

setting. One scheme is for instance-level classification (called MILD I) while the other one is

for bag-level classification (called MILD B). The best choice between them will depend on the

application domain, which will be described at the end of this subsection.
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3.3.1 Instance-Level Classification

After disambiguation as described above, the set of true positive instances, T ∗, is computed.

Moreover, all instances in the negative bags are assumed to be negative. We can make use of

these labeled instances to train a classifier and then use it to predict the labels of the instances

in any new bag. If at least one instance of a bag is predicted to be positive, then the bag is

labeled positive. Otherwise, the bag is labeled negative.

In some MIL problems, however, some bags may contain a large number of instances. If we

use all the labeled instances described above to train a classifier, its computational and storage

requirements may become too large. One possible remedy is to select a representative set of

instances for training. Selecting one instance from each bag can enhance diversity and hence

representation power. Since T ∗ in Algorithm 1 contains one instance from each positive bag,

it is reasonable to choose T ∗ as the set of positive training instances. For the negative training

instances, we select one representative instance N−
k from each negative bag B−

k based on the

positive training set T ∗, as follows:

N−
k = arg min

B−
kj∈B−

k

{
min
t∗∈T ∗

||B−
kj − t∗||2

}
, (8)

which is the instance in B−
k nearest to T ∗. The rationale of this selection scheme is that the

negative instances selected will likely define the negative side of the margin, playing a role

similar to the support vectors in SVM. Moreover, selecting one instance from each bag enhances

diversity in the training set.

After selecting the representative instances, we propose a novel instance-level feature repre-

sentation scheme. For any instance xk in the training set, we embed it into a feature space with

each dimension corresponding to one of the positive and negative training bags. The feature

vector of the embedded instance is given by:

ψ(xk) = [d(xk, B
+
1 ), . . . , d(xk, B

+
n+),

d(xk, B
−
1 ), . . . , d(xk, B

−
n−)]T , (9)

where d(xk, Bi) denotes the distance from xk to a bag Bi computed according to (3).

Intuitively, if an instance is a true positive instance, then the feature values in (9) corresponding

to the positive bags will be smaller while those corresponding to the negative bags will be larger.

For a negative instance, on the other hand, its feature values do not give the same distribution.
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Since some positive bags may also contain negative instances just like the negative bags, the

distances from the negative instance to the positive bags are as random as those to the negative

bags. Experimental results in Section 4.4.1 show that the proposed feature representation scheme

is much more discriminative than using the original instance features.

Afterwards, an SVM classifier is trained based on this feature representation. Suppose a bag

to predict during the prediction stage is Bi and the trained SVM is f(·). Here, f(·) refers to

the (continuous) decision value before thresholding but not the (discrete) prediction label. Since

having a single positively classified member instance is necessary and sufficient to classify a

bag as positive, the following rule is adopted to predict the label of a new bag based on the

instance-level classifierf(·):

l(Bi) = sign

(
max

Bij∈Bi

f(Bij)

)
. (10)

3.3.2 Bag-Level Classification

Since the labels of the training bags are already known, we can train an SVM to classify the

bags directly. Like in DD-SVM [4], we propose a similar feature mapping to map every bag Bi

to a point µ(Bi) as follows:

µ(Bi) = (d(t∗1, Bi), d(t
∗
2, Bi), . . . , d(t

∗
n+ , Bi))

T , (11)

where t∗k ∈ T ∗, and T ∗ is the set of selected true positive instances in Algorithm 1.

3.3.3 Choice between MILD I and MILD B

From (10), it is not difficult to see that MILD I is only suitable for application domains satisfying

the existential assumption. On the contrary, MILD B is suitable for application domains satisfy-

ing either the existential or the collective assumption. In MILD B, for a specific bag Bi, different

instances Bij in it might be selected as the nearest instances to compute the distance d(t∗k, Bi) for

different t∗k. So the feature vector µ(Bi) actually implicitly encodes the collective contribution

of those instances nearest to the selected positive instances in T ∗. Moreover, to compute µ(B+
i )

for a positive bag B+
i , MILD B automatically excludes the contribution of those instances far

away from the selected true positive instances in T ∗. This is promising because those excluded

instances are most likely to be negative. Hence, most information encoded in the feature vector

µ(B+
i ) for a positive bag is from the positive instances in the bag, which makes our method

much more attractive than other methods that unreasonably assume all the instances from a
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positive bag as positive. As for applications satisfying the existential assumption, as long as at

least one positive instance exists in a bag Bi, to compute µ(Bi), the distance between t∗k and

Bi is expected to be smaller than the distance from t∗k to a negative bag. Hence, containing one

positive instance is enough to discriminate a positive bag from the negative bags.

Therefore, choosing between MILD I and MILD B is by no means an ad hoc decision. If

the existential assumption is satisfied, both of them are good candidates. Otherwise, we should

choose MILD B. In practice, it is not difficult to check which assumption is satisfied for a

specific application.

3.4 Multi-View Learning for MIL

The instance-level classifier and the bag-level classifier provide us with multiple views, the

instance-level view and the bag-level view, to look at a bag. Hence, the multi-view learning

approach [31] can be easily adapted for MIL. Here, we adopt co-training [12] to perform semi-

supervised MIL. The basic idea of co-training is to train one learner based on each view of the

labeled examples and to iteratively use each learner to label the unlabeled examples with the

highest prediction confidence. More specifically, if we want to label some unlabeled examples

as positive, we will choose those with the largest prediction values 3 as candidates. Otherwise, if

we want to label some unlabeled examples as negative, we will choose those with the smallest

prediction values as candidates.

Algorithm 2 summarizes the co-training method for MIL, in which Fi and Fb denote the

instance-level classifier and bag-level classifier, respectively. We can see that in each iteration,

2n1 + 2n2 unlabeled bags will be assigned labels by the classifiers trained based on the existing

labeled data, and then these newly labeled data are added into the existing labeled data to get

an expanded set of labeled data. This process iterates for several rounds till some termination

condition is satisfied. After the whole algorithm is terminated, the final Fi and Fb will be used

for prediction.

3. Here, the prediction value refer to the (continuous) decision value before thresholding but not the (discrete) prediction

label.

March 1, 2009 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 18

Algorithm 2 Co-training Method for Multiple-Instance Learning
Input: A set of labeled training bags L; a set of unlabeled training bags U ; the number of

co-training iterations Q.

Initialize: Construct a pool U ′ of bags by randomly selecting u bags from U .

for q = 1 to Q do

Train a classifier Fi based on the labeled training bags L;

Train a classifier Fb based on the labeled training bags L;

Use Fi to label n1 positive and n2 negative bags with the highest prediction confidence

from U ′;

Use Fb to label n1 positive and n2 negative bags with the highest prediction confidence

from U ′;

Move these self-labeled bags from U ′ to L;

if the number of bags in U is less that 2n1 + 2n2 then

break;

end if

Randomly select 2n1 + 2n2 bags from U and move them from U to replenish U ′;

end for

3.5 Discussion

3.5.1 Extension of Current Disambiguation Method

For the applications satisfying the existential assumption, if we want to identify all the true

positive instances in the positive bags, one direct way is to use the selected true positive instances

in Algorithm 1 to train an instance-level classifier based on the method introduced in Section

3.3.1. Then we can apply this trained classifier to classify all the instances from the positive

training bags to identify all the true positive instances.

In some cases that the collective assumption is satisfied, if we know that at least K positive

instances exist in each positive bag, we can extend Algorithm 1 to select from each positive

training bag K instances with the largest P ∗ values as candidate true positive instances.

March 1, 2009 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 19

3.5.2 Disambiguation Versus Instance Selection

Unlike MILD which tries to select positive instances only from positive training bags, some

other methods, such as MILES [11] and the AdaBoost based method [32] 4, try to select some

instances from the training bags, including both positive and negative bags, and then learn a bag-

level classifier based on the selected instances. Hence, both MILES and the AdaBoost based

method [32] have to compute a much larger feature matrix in (12) and, consequently, incur

higher computation cost than MILD, which will be discussed in detail in Section 4.7.

Furthermore, the goal of MILD is different from that of MILES and the AdaBoost based

method [32]. MILD tries to identify the true positive instances while the other two methods

cannot guarantee the selected instances to be truly positive. Actually, from the experiments in

[11] and [32], we can see that the other two methods will select many negative instances for

classifier training. Hence, based on the selected instances by the other two methods, it is not

easy to train an instance-level classifier.

3.5.3 Computation Cost

In Algorithm 1, for each one of the p re-indexed instances from all positive training bags, we

have to compute the distances from it to the instances from all the training bags. Let v denote

the total number of instances in the whole training bags. We can see that the computation cost

is O(pv) with v > p, which will be prohibitive when the number of positive training bags is

large. In this case, we can use the idea of the vocabulary generating process for generic object

recognition [34] to reduce the computation cost. More specifically, we can randomly select part

of the training bags to complete the disambiguation procedure. This is reasonable because from

our experiment, in general, we observe that identifying only part of the true positive instances

might not necessarily decrease the classification accuracy (cf. Section 4.3).

4 EXPERIMENTAL EVALUATION

In all the experiments, the Gaussian kernel is used for the SVM training for our method. We

use LIBSVM [35] to train all the SVM classifiers with the output being probability estimates.

4. The AdaBoost based method in [32] is for generic object recognition, which can also be seen as an MIL problem when

each image is represented as a set of local regions. This is similar to the formulation of localized content-based image retrieval

[33].

March 1, 2009 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 20

4.1 Data Sets for Evaluation

We evaluate our proposed method based on some publicly available benchmarks: the MUSK

data sets [1] for drug activity prediction, the TrX data set for protein sequence classification

[19], and the SIVAL set [5] for image retrieval.

4.1.1 MUSK Data Sets

The MUSK data sets [1], MUSK1 and MUSK2, consist of descriptions of molecules. A molecule

is considered as a bag and each of its steric configurations (i.e., molecular shapes) is an

instance. Each configuration is represented by a 166-dimensional feature vector derived from the

surface properties. MUSK1 contains 47 musk molecules (positive bags) and 45 similar non-musk

molecules (negative bags). MUSK2 contains 39 musk molecules and 63 non-musk molecules. A

total of 72 molecules are shared between MUSK1 and MUSK2. MUSK1 contains approximately

5.17 instances per bag and MUSK2 contains 64.69 instances per bag.

4.1.2 TrX Data Set

The goal of the identification of Thioredoxin (TrX) proteins is to classify the given protein

sequences according to whether they are from the family of TrX proteins [19]. Due to low

conservation of the primary sequences [36] in the protein superfamily Thioredoxin-fold (Trx-

fold), conventional classification methods such as hidden Markov model (HMM) cannot model

it well. In fact, it is natural to formulate this problem as an MIL problem. As pointed out by

[36], “All Trx-fold proteins satisfy one of the following conditions and few non-Trx-fold proteins

satisfy any of them: (a) a Kyte-Doolittle value of −4.5 around position 85 and a Kyte-Doolittle

value of −0.75 near position 10; (b) a Kyte-Doolittle value of 3.5 near position 55 and Kyte-

Doolittle value of 4.25 near position 92 and Kyte-Doolittle value of 1.5 near position 25; etc.”

Hence, the class labels of the proteins (Trx-fold or non-Trx-fold) are decided by one or several

positions in the primary sequences of the proteins. However, the conditions responsible for the

labels of the protein sequences, such as those in (a) and (b) above, are not a priori known.

Instead, we must learn them from the training data. This is exactly what our disambiguation

method tries to do if the problem is formulated as follows: a bag corresponds to an aligned

primary sequence around the motif and an instance in the bag corresponds to a position in the

sequence. In the TrX data set [19], for each sequence, the primary sequence motif (typically

March 1, 2009 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 21

CxxC), which is known to be conserved in all TrX-fold proteins, is first found. Then, a window

of size 214 around the motif (30 residues upstream, 180 downstream) is extracted and aligned

around the motif. Each aligned protein is represented by a bag. An instance corresponds to a

position, which is represented by an 8-dimensional profile of the amino acid at that position.

Some information about the TrX data set is summarized in Table 1.

TABLE 1

Information about the TrX data set.

#Positive Bags #Negative Bags #Instances #Dimensions

20 168 25855 8

4.1.3 SIVAL Image Set

The SIVAL image set [33] contains 1,500 images of 25 categories, with 60 images for each cate-

gory. These categories are complex objects photographed against 10 different highly diverse back-

grounds. Six different images are taken for each object-background pair. For each object category,

the same physical object is used in all scenes but the scenes are highly complex and diverse. The

objects are photographed at different angles and they can appear at any location in the images. The

target object occupies only about 10–15% of the whole image area in most images. Category 1 to

category 25 are: “AjaxOrange”, “Apple”, “Banana”, “BlueScrunge”, “CandleWithHolder”, “Card-

boardBox”, “CheckeredScarf”, “CokeCan”, “DataMiningBook”, “DirtyRunningShoe”, “Dirty-

WorkGloves”, “FabricSoftenerBox”, “FeltFlowerRug”, “GlazedWoodPot”, “GoldMedal”, “Green-

TeaBox”, “JuliesPot”, “LargeSpoon”, “RapBook”, “SmileyFaceDoll”, “SpriteCan”, “StripedNote-

Book”, “TranslucentBowl”, “WD40Can”, and “WoodRollingPin”. Figure 2 shows some sample

images from the SIVAL image set.

For image retrieval, each image corresponds to a bag, and an image will be segmented into

several regions with each region corresponding to an instance. We use the same preprocessing

method as that in [5], [33] to generate the bags. Hence, each image is represented as a bag of

32 30-dimensional instances.
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Apple

Apple

BananaBlueScrunge

AjaxOrange CokeCan

Fig. 2. Sample images from the SIVAL image set.

4.2 Evaluation of Disambiguation Method

Although many data sets from diverse application areas have been used as benchmarks for MIL,

few of them, with the exception of the augmented SIVAL image set [5], [37] and the semi-

synthetic 20 Newsgroups set [37], provide ground truth labels for the instances in the bags. The

SIVAL image set is adopted to evaluate the performance of our disambiguation method. We use

the 60 images (bags) containing the object “FabricSoftenerBox” as positive training bags and the

60 images containing the object “CheckeredScarf” as negative training bags. One instance from

each positive training bag is selected based on Algorithm 1. Experimental results show that all

the selected instances (i.e., elements of T ∗ in Algorithm 1) have +1 as their ground truth label,

which demonstrates the effectiveness of our disambiguation method.

4.3 Varying the Number of Selected Instances

First, we perform 10-fold cross-validation on the MUSK1 data set using a simple instance

selection strategy which extends Algorithm 1 to select from each positive training bag K

instances with the largest P ∗ values. The average accuracy of 10-fold cross-validation is shown

in Figure 3. We can see that when K = 1, which corresponds to the disambiguation strategy in

Algorithm 1, both MILD B and MILD I achieve very promising performance. However, adding

extra instances (K = 2, 3, 4) will deteriorate the performance, especially for MILD I. Hence, we

can assert that there must be some negative instances selected when K = 2, 3, 4. Furthermore,

compared with the case of K = 2, the much better performance of MILD I when K = 1 confirms
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that the identified instances in Algorithm 1 are most likely to be true positive instances. This also

conforms to our prior knowledge that the MUSK data sets satisfy the existential assumption.

MILD_I MILD_B
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Fig. 3. Accuracy on MUSK1 data set against the number (K) of instances selected from

each positive bag.

Second, we use the selected positive instances when K = 1 to train an instance-level classifier

based on the method introduced in Section 3.3.1, and subsequently use this trained classifier to

classify all the instances in the positive training bags. In one of the 10-fold cross-validation, we

have 42 positive training bags, 192 instances from which are classified to be positive by the

trained instance-level classifier. Then, based on these 192 selected instances, we train MILD I

and MILD B, the performance of which is almost the same as those using 42 initially selected

positive instances. Compared with the poor results of the simple strategy above by setting K =

2, 3, 4, the good results here mean that the extension strategy in Section 3.5.1 is effective to

identify all the true positive instances. Another finding is that it is unnecessary to identify all

the true positive instances and Algorithm 1 is enough for many MIL problems satisfying the

existential assumption.

Third, we study the extension strategy in Section 3.5.1 when the existential assumption is not

satisfied. From prior domain knowledge about localized content-based image retrieval [33], it

is not difficult to realize that this application does not satisfy the existential assumption but the

collective assumption. Hence, only MILD B is suitable for this application. We use a simple

instance selection strategy which extends Algorithm 1 to select from each positive training bag

K instances with the largest P ∗ values. We study the effect of K on the SIVAL image set. We

treat the 60 images of Category 1 (“AjaxOrange”) as positive and the other 1,440 images as

negative. We randomly select eight positive and eight negative images to form the training set

and the remaining 1,484 images to form the test set. The results are reported based on 30 rounds
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of independent test. Average AUC (area under the ROC curve) values with 95% confidence

interval of MILD B over 30 rounds of test against the number of instances selected from each

positive bag are shown in Figure 4. We can see that there is no significant difference among

the performances for different values of K when K < 10. When K < 10, all the selected

instances are not necessarily to be truely positive, but the performance of MILD B will not be

significantly affected if only a small part of negative instances exist in the selected instances,

which also conforms to the findings in Figure 3. Hence, for applications satisfying the collective

assumption, the simple extension strategy in Section 3.5.1 is also enough. How to choose K can

be directly observed from the training data. For example, in the SIVAL image set, each image

(i.e., bag) contains 32 instances, and we observe that the target object occupies about 10–15%

of the whole image area in most images. Hence, any K ≤ 5 (32× 15%) will be suitable, which

also conforms to our experimental results.
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Fig. 4. Performance on SIVAL data set against the number (K) of instances selected

from each positive bag.

Another finding from Figure 4 is that when K > 10 the performance will deteriorate dramat-

ically. This is because the number of selected negative instances will exceed that of the selected

positive instances when K > 10, which will make the feature representation in (11) contain too

much noisy information. The SIVAL data set differs from other image sets, such as those for

generic object recognition [34], in many aspects. In many other image sets, the target object

occupies a large portion of the whole image, while in SIVAL the main part of an image is the

background (cf. Figure 2). Furthermore, the background of some category in other image sets

is always specific to that category of images. For example, in general, the background in the
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images of “Computers” is very different from the background in the images of “Horses”. But for

SIVAL, the background for one category can appear for another category. The poor performance

of MILD B when K > 10 on the SIVAL set also implies that the universal bag-of-visual-words

(BOV) representation [38] might not be suitable for the SIVAL data set, because BOV based

methods randomly select some local regions (either positive or negative) from some images

(either positive or negative) to build a vocabulary. For the SIVAL-like image sets, in which

the main part of an image is the background, most words in the built vocabulary will be from

the background. Because the background can appear in either positive or negative images, the

information in the histogram for an image will be dominated by the background information.

For example, in Figure 2, the first two images in the upper row will give higher similarity than

the two images in the leftmost column if universal BOV representation is adopted, which is not

expected by us. One possible strategy to tackle this problem is to adopt the adapted vocabularies

in [34] or to integrate the label information into the vocabulary generating process, which is

beyond the scope of this paper. Anyhow, our method can achieve very promising performance

by identifying the true positive instances.

4.4 Performance of Supervised Methods

4.4.1 Drug Activity Prediction

In LIBSVM [35], there are two parameters, the cost parameter c and the Gaussian kernel parame-

ter g, for SVM training. In our experiment, both of them are chosen from {2−10, 2−9, . . . , 20, . . . , 29, 210},

and those values giving the minimum 2-fold cross-validation error on the training set are selected

to set the two parameters. We found that {c = 24, g = 2−5} for MILD I and {c = 22, g = 2−1}

for MILD B gave the minimum 2-fold cross-validation error on MUSK1, and {c = 27, g = 2−6}

for MILD I and {c = 22, g = 2−1} for MILD B gave the minimum 2-fold cross-validation error

on MUSK2. We fix these values for all the subsequent experiments. We apply 10-fold cross-

validation with 20 random splits of the data to estimate the prediction accuracy on the test data.

For MUSK1, the prediction accuracy ranges of MILD I and MILD B over 20 runs are [87.8%,

94.4%] and [87.8%,93.3%], respectively. As for MUSK2, the accuracy ranges are [86.0%, 93.0%]

and [83.0%,89.0%], respectively.

The average accuracy and 95% confidence interval of the results over 20 runs of 10-fold

cross-validation are reported in Table 2. We also list some other results on the same data sets
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for comparison. Furthermore, we report the results of another instance-level classifier, called

MILD I0, based on the original instance features rather than our proposed feature mapping

in (9). Compared with MILD I0, the better performance of MILD I confirms the effectiveness

of our instance-level feature representation scheme. From the table, we can see that both the

instance-level and the bag-level classifiers achieve performance comparable with the state-of-

the-art results, which once again confirms that our disambiguation method is very effective. The

performance of our methods on MUSK1 is better than those of all the other methods, with the

exception of APR. Note that the APR result is based on choosing the parameters to maximize

the test set (not training set) performance and hence it is not a fair comparison. Furthermore,

APR has been designed specially for drug activity prediction but not for general MIL tasks.

The good performance of MILD I implies that the drug activity prediction task satisfies the

existential assumption, which conforms to our prior knowledge about this domain.

TABLE 2

Performance on MUSK data sets (in %, the 95% confidence intervals of the results of

MILES and our methods are shown in the square brackets).

Method MUSK1 MUSK2

MI-SVM [7] 77.9 84.3

mi-SVM [7] 87.4 83.6

DD [10] 88.9 82.5

EM-DD [23] 84.8 84.9

APR [1] 92.4 89.2

MissSVM [9] 87.6 80.0

DD-SVM [4] 85.8 91.3

MILES [11] 86.3:[84.9,87.7] 87.7:[86.3,89.1]

MILD I0 87.9:[87.3,88.5] 84.4:[83.5,85.2]

MILD I 91.1:[90.5,91.7] 89.6:[88.7,90.4]

MILD B 90.2:[89.5,90.9] 86.5:[85.8,87.1]
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4.4.2 Identification of TrX Proteins

Ray et al. [2] empirically compared several well-known MIL methods and their single-instance

counterparts on the TrX data set. All these methods are briefly described in Table 3.

TABLE 3

MIL methods and their single-instance counterparts evaluated by Ray et al [2]. The

single-instance counterparts are in italics.

Method Description

Gauss The single-instance counterpart of DD.

DD(1) DD(k) refers to diverse density with k disjuncts (i.e., different concept points) {c1, . . . , ck},

where the probability that an instance belongs to a concept is computed as follows:

Pr(Bij ∈ {c1, . . . , ck}) ∝ softmax(Pr(Bij ∈ c1), . . . , Pr(Bij ∈ ck)). DD(1) is the same as the original DD

method.

DD(3) Diverse density with 3 disjuncts.

DD(5) Diverse density with 5 disjuncts.

FOIL A relational learner [39] defining a target relation over instances by assuming that all instances from a positive bag

in the training set satisfy this relation while none from the negative bags does.

MI/FOIL The MI counterpart of FOIL that defines the target relation over bags.

LR The ordinary logistic regression by assuming that all instances in the positive bags are positive.

MI/LR MI counterpart of LR, which adopts LR to estimate the probability of the instances being positive, and then computes

the probability of a bag to be positive by applying softmax to combine the probabilities of the instances.

SVM(Stat) SVM with the minimax kernel [6].

SVM(NSK) SVM with the normalized set kernel [6].

SVM(Quad) The single-instance counterpart of SVM(Stat) and SVM(NSK), which assumes that every instance in a bag has the

same label as that of the bag, and then trains an SVM with a quadratic kernel to classify the instances.

We use the same experimental settings as those in [2] to evaluate MILD on the TrX data set.

We adopt the AUC value, which is also used in [2], as the performance measure. The result

is reported in Table 4, in which the AUCs of the methods in Table 3 are also included for

comparison. Our method, MILD B, achieves the best result on this data set. The performance

of MILD I is comparable to the best result. In particular, compared with the similar methods

using SVM as classifier, both MILD I and MILD B achieve far better results, verifying once
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again that our disambiguation method is very effective. Furthermore, it is meaningful to compare

our instance-level classifier with SVM(Quad) because the difference between them is that our

method tries to disambiguate the labels of the instances in the positive bags while SVM(Quad)

simply assumes all instances in the positive bags to be positive. The performance of MILD I is

far better than that of SVM(Quad), showing that disambiguation is very necessary and significant

for MIL.

TABLE 4

Protein classification results.

Method AUC

Gauss 0.340

DD(1) 0.805

DD(3) 0.797

DD(5) 0.828

FOIL 0.721

MI/FOIL 0.543

LR 0.720

MI/LR 0.752

SVM(Quad) 0.584

SVM(Stat) 0.550

SVM(NSK) 0.716

MILD I 0.797

MILD B 0.850

4.4.3 Localized Content-Based Image Retrieval

We evaluate our methods on the SIVAL image set for localized content-based image retrieval

[33]. For each category, we use the one-versus-the-rest strategy to evaluate the performance.

We randomly select eight positive and eight negative images to form the training set and the

remaining 1,484 images to form the test set. The results are reported based on 30 rounds of

independent test. Because the existential assumption is not satisfied here, we only report the

result of MILD B. Based on the results in Section 4.3, we simply set K = 3. The average AUC

values with 95% confidence interval for the 25 categories are reported in Table 5, in which
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ACCIO! [33] uses an ensemble of hypotheses learned by EM-DD [23] for classification. We can

find that our method achieves the best performance, which verifies our claim that the feature

representation scheme for MILD B can encode the collective contribution of a set of instances

in a bag.

TABLE 5

Average AUC values (in percent) with 95% confidence interval over 30 rounds of test on

the SIVAL image set (The best performance is shown in bold face).

Category ID MILD B MILES MISSL [5] ACCIO! [33]

1 92.3 ± 2.3 90.2 ± 2.3 90.0 ± 2.1 77.0 ± 3.4

2 66.3 ± 2.9 64.5 ± 2.5 51.1 ± 4.4 63.4 ± 3.4

3 66.7 ± 2.8 68.1 ± 3.1 62.4 ± 4.3 65.9 ± 3.3

4 70.5 ± 2.8 72.6 ± 2.5 76.8 ± 5.2 69.5 ± 3.4

5 82.7 ± 2.5 84.0 ± 2.3 84.5 ± 0.8 68.8 ± 2.3

6 80.9 ± 2.5 81.2 ± 2.7 69.6 ± 2.5 67.9 ± 2.2

7 95.2 ± 0.8 93.7 ± 1.2 88.9 ± 0.7 90.8 ± 1.6

8 91.3 ± 2.0 92.4 ± 0.8 93.3 ± 0.9 81.5 ± 3.5

9 74.0 ± 3.3 71.1 ± 3.2 77.3 ± 4.3 74.7 ± 3.4

10 85.9 ± 2.0 85.3 ± 1.7 78.2 ± 1.6 83.7 ± 1.9

11 75.3 ± 3.0 77.1 ± 3.1 73.8 ± 3.4 65.3 ± 1.5

12 97.9 ± 0.5 97.1 ± 0.7 97.7 ± 0.3 86.6 ± 3.0

13 95.1 ± 0.8 93.9 ± 0.7 90.5 ± 1.1 86.9 ± 1.7

14 73.6 ± 2.6 68.2 ± 3.1 51.5 ± 3.3 72.7 ± 2.3

15 80.1 ± 3.2 80.7 ± 2.9 83.4 ± 2.7 77.7 ± 2.6

16 94.0 ± 1.3 91.2 ± 1.7 80.4 ± 3.5 87.3 ± 3.0

17 80.9 ± 2.4 78.7 ± 2.9 68.0 ± 5.2 79.2 ± 2.6

18 60.4 ± 1.8 58.2 ± 1.6 50.2 ± 2.1 57.6 ± 2.3

19 68.3 ± 2.1 61.7 ± 2.4 61.3 ± 2.8 62.8 ± 1.7

20 76.1 ± 3.0 77.5 ± 2.6 80.7 ± 2.0 77.4 ± 3.3

21 80.6 ± 3.3 80.4 ± 2.0 81.2 ± 1.5 71.9 ± 2.5

22 73.4 ± 2.5 68.7 ± 2.4 70.2 ± 2.9 70.2 ± 3.2

23 74.8 ± 2.2 73.2 ± 3.1 63.2 ± 5.2 77.5 ± 2.3

24 92.3 ± 0.9 88.1 ± 2.2 93.9 ± 0.9 82.0 ± 2.4

25 66.3 ± 2.2 62.1 ± 2.5 51.6 ± 2.6 66.7 ± 1.7

Average 79.8 78.4 74.8 74.6
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4.5 Performance of Semi-Supervised Methods

We evaluate the co-training method presented in Algorithm 2 on the MUSK1 data sets. Since

semi-supervised learning is usually most useful when the number of labeled examples available is

small, we use the following settings to evaluate our method. We apply 10-fold cross validation

for evaluation, with nine folds for training and one fold for testing. Then, from the training

set, we randomly choose 10 positive and 10 negative bags to form the labeled set L and the

remaining training bags to form the unlabeled set U . The original co-training method [12] also

creates another smaller pool U ′ for example selection during the training process. But in our

implementation, we directly perform example selection from the remaining unlabeled examples

rather than U ′ because the training set is relatively small for the MUSK1 data sets. In Algorithm 2,

both n1 and n2 are set to 2. The iterative process will stop when there are not enough unlabeled

training examples for selection. This 10-fold cross validation process is repeated for 10 rounds

of independent test.

The average accuracy of the results over 10 runs of 10-fold cross-validation is shown in Figure

5, in which MILES, MILD I, MILD B are supervised methods trained on the initial labeled

data only, while Semi I, Semi B are the corresponding semi-supervised versions of MILD I and

MILD B that also make use of the unlabeled data via co-training. It shows that using unlabeled

data for training can dramatically improve the classification accuracy.

MILES MILD_I MILD_B Semi_I Semi_B
0.6

0.65

0.7

0.75

0.8

A
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ac

y

Fig. 5. Performance of semi-supervised MIL.

4.6 Sensitivity to Labeling Noise

We use the same setting as that in MILES [11] to evaluate the noise sensitivity based on the

COREL image set [11]. We add d% of noise by changing the labels of d% of positive bags and
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d% of negative bags. We compare our methods with DD-SVM and MILES under different noise

levels based on 200 images from Category 2 (Historical buildings) and Category 7 (Horses). The

training and test sets are of the same size. The average classification accuracy over 20 randomly

generated test sets is shown in Figure 6. MILES and all our methods are much more robust than

DD-SVM. MILD I is more sensitive to noise than MILES when the noise level is low (<25%),

but its robustness is comparable to MILES when the noise level is high. Actually, it is more

meaningful to compare MILD B with DD-SVM, because the only difference between them is

that MILD B uses our disambiguation method to find some true positive instances while DD-

SVM uses DD to find some instance prototypes. The better performance of MILD B implies

that our disambiguation method is more robust than the DD method.
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Fig. 6. Sensitivity to labeling noise.

4.7 Efficiency

Compared with other MIL methods, our methods are significantly more efficient in terms of the

computation time.

Before applying 1-norm SVM to perform feature selection, MILES needs to compute the
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following feature matrix:

[m+
1 , . . . ,m

+
n+ ,m

−
1 , . . . ,m

−
n− ] (12)

= [m(B+
1 ), . . . ,m(B+

n+),m(B−
1 ), . . . ,m(B−

n−)]

=



s(x1, B
+
1 ) s(x1, B

+
2 ) · · · s(x1, B

−
n−)

s(x2, B
+
1 ) s(x2, B

+
2 ) · · · s(x2, B

−
n−)

...
... . . . ...

s(xn, B
+
1 ) s(xn, B

+
2 ) · · · s(xn, B

−
n−)


,

where m+
i = m(B+

i ) (m−
i = m(B−

i )) is used to denote the feature mapping of B+
i (B−

i ),

s(xk, Bi) = exp
(
−d2(xk,Bi)

σ2

)
, σ is a scaling coefficient, and {x1, x2, . . . , xn} is the set of re-

indexed instances from all the positive and negative training bags.

As for MILD, for each instance from the positive training bags, we compute the distances from

the instance to all training bags to compute P ∗ in (7). This corresponds to one row in the feature

matrix of MILES. However, an important difference is that MILD need not compute those rows

in (12) corresponding to instances from the negative training bags. From our experiments, we

find that the main computation cost of MILD is for the computation of these distances. Hence,

MILD is more efficient than MILES even if other costs are not considered. Table 6 shows the

computation time required to compute the feature matrix for MILES and that to compute all the

distances for MILD on the MUSK data sets. The time for each MUSK data set is the total time

for 10-fold cross validation.

Table 75 compares the overall computation time required by DD-SVM, MILES and our

methods on MUSK data sets. The training time after SVM model selection and the time spent

on model selection are reported separately. The result of DD-SVM is from [11], and the training

5. For MILES, the results shown in this table are different from those reported by [11]. Obviously, in their reported results,

the “training time after SVM model selection” does not include the time for computing the feature matrix. For fair comparison,

we add the time listed in Table 6 to their original results because the reported results for MILD also include all the computation

costs.
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TABLE 6

Time for computing all the distances (in minutes).

Method MUSK1 MUSK2

MILES 0.4 160

MILD 0.2 24

of MILES and our methods were performed on a 2GHz PC. The training time on each MUSK

data set is the total training time for 10-fold cross validation. We can find that all our methods

are much more efficient than DD-SVM and MILES.

TABLE 7

Computation time comparison (in minutes): training time after SVM model selection +

time spent on model selection.

Method MUSK1 MUSK2

DD-SVM [11] 500 + 112 1500 + 240

MILES 0.5 + 29 161.2 + 129

MILD B 0.2 + 0.5 24 + 0.7

MILD I 0.4 + 0.8 25.6 + 1.1

A major advantage of our method is that no parameter tuning is needed during the disam-

biguation process. The only time spent on parameter tuning is for SVM model selection, which

is needed for many other methods too. Hence, for our methods, most of the time is spent on

the computation of the distances. With our feature representation schemes, the dimensionality

of the examples is very low, which directly results in the very low computation cost for SVM

training. For example, it only takes about 3 seconds to perform 441 (21 values each for c and g)

rounds of 2-fold cross validation on the training set for parameter selection on MUSK1, which

implies that the training process for SVM after model selection is almost real-time. Compared

with MILD B, MILD I has to spend some extra time for the representative negative instance

selection defined in (8) and for the instance-level feature mapping defined in (9). Another finding
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is that the disambiguation process is very fast after the distance matrix has been computed. It

only takes 0.01 minute and 0.05 minute to complete disambiguation for MUSK1 and MUSK2,

respectively. The time spent on each MUSK data set is the total time for 10-fold cross validation.

This promising efficiency of our disambiguation method is directly resulted from Theorem 2.

5 CONCLUSION AND FUTURE WORK

The inherent ambiguity of instance labels in MIL makes MIL problems difficult to solve. In

this paper, we propose a very efficient and robust method for MIL via disambiguation. Our

method is based on an instance label disambiguation method which exploits the distinguishing

properties of true positive instances to identify the true positive instances in the positive bags.

Based on the disambiguation method, two feature representation schemes, one for instance

classification and the other for bag classification, are proposed to represent the bags from two

different views. Moreover, the two views can be integrated into a multi-view learning framework

for semi-supervised MIL. We have conducted extensive experimental evaluation on a number

of applications to show that our method delivers very promising performance and compares

favorably with state-of-the-art MIL methods.

The underlying principle of our method is to try to bridge the gap between multiple-instance

learning and single-instance learning. Moreover, our method can be used to perform either

instance-level or bag-level classification. In addition, unlike MISSL [5] which is only transductive

in nature, our semi-supervised MIL method is inductive, which, to the best of our knowledge,

is the first inductive semi-supervised MIL method proposed thus far.

The most attractive properties of our method are highlighted as follows:

• Unlike most existing MIL methods, our method can answer the essential question giving

rise to the gap between MIL and standard single-instance learning.

• The classification accuracy of our method is at least comparable with the state-of-the-art

MIL methods in diverse applications.

• Our method is much more efficient than existing methods.

• Our method is very robust.

Once we have converted an MIL problem into a single-instance problem, many standard single-

instance methods can be applied for MIL based on our feature representation schemes. Besides
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the co-training method, many sophisticated semi-supervised learning methods can effectively

utilize both labeled and unlabeled data to build better models. Currently, very few MIL methods,

except [5], exploit the unlabeled data during model training. With our feature representation

schemes, other semi-supervised learning methods such as graph-based methods based on graph

Laplacians [40] can also be extended for MIL. This will be our future pursuit.
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[6] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-instance kernels.” in International Conference on Machine

Learning, 2002.

[7] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector machines for multiple-instance learning.” in Advances in

Neural Information Processing Systems, 2002, pp. 561–568.

[8] P.-M. Cheung and J. T. Kwok, “A regularization framework for multiple-instance learning.” in International Conference

on Machine Learning, 2006.

[9] Z.-H. Zhou and J.-M. Xu, “On the relation between multi-instance learning and semi-supervised learning.” in International

Conference on Machine Learning, 2007.

[10] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance learning.” in Advances in Neural Information

Processing Systems, 1997.

[11] Y. Chen, J. Bi, and J. Z. Wang, “MILES: Multiple-instance learning via embedded instance selection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 1931–1947, 2006.

[12] A. Blum and T. M. Mitchell, “Combining labeled and unlabeled sata with co-training.” in Annual Conference on Learning

Theory, 1998, pp. 92–100.

March 1, 2009 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 36

[13] J. Davis, V. S. Costa, S. Ray, and D. Page, “An integrated approach to feature invention and model construction for drug

activity prediction.” in Proceedings of the International Conference on Machine Learning, 2007.

[14] P. Auer, “On learning from multi-instance examples: Empirical evaluation of a theoretical approach.” in Proceedings of

the International Conference on Machine Learning, 1997, pp. 21–29.

[15] J. Ramon and L. D. Raedt, “Multi-instance neural networks,” in ICML-2000 Workshop on Attribute-Value and Relational

Learning, 2000.

[16] Z.-H. Zhou and M.-L. Zhang, “Multi-instance multi-label learning with application to scene classification,” in Advances

in Neural Information Processing Systems, 2006, pp. 1609–1616.

[17] J. Bi, Y. Chen, and J. Z. Wang, “A sparse support vector machine approach to region-based image categorization.” in

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1), 2005, pp. 1121–

1128.

[18] O. Maron and A. L. Ratan, “Multiple-instance learning for natural scene classification.” in Proceedings of the International

Conference on Machine Learning, 1998, pp. 341–349.

[19] Q. Tao, S. Scott, N. V. Vinodchandran, and T. T. Osugi, “SVM-based generalized multiple-instance learning via approximate

box counting.” in International Conference on Machine Learning, 2004.

[20] J. Bi and J. Liang, “Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular

structure.” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007.

[21] G. Fung, M. Dundar, B. Krishnapuram, and R. B. Rao, “Multiple instance learning for computer aided diagnosis.” in

Advances in Neural Information Processing Systems, 2006.

[22] G. Ruffo, “Learning single and multiple decision trees for security applications,” Ph.D. dissertation, Univ. of Turin, Italy,

2000.

[23] Q. Zhang and S. A. Goldman, “EM-DD: An improved multiple-instance learning technique.” in Advances in Neural

Information Processing Systems, 2001.

[24] Q. Zhang, S. A. Goldman, W. Yu, and J. Fritts, “Content-based image retrieval using multiple-instance learning.” in

Proceedings of the International Conference on Machine Learning, 2002, pp. 682–689.

[25] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the

Royal Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[26] P. V. Gehler and O. Chapelle, “Deterministic annealing for multiple-instance learning.” in International Conference on

Artificial Intelligence and Statistics, 2007.

[27] J. T. Kwok and P.-M. Cheung, “Marginalized multi-instance kernels.” in International Joint Conferences on Artificial

Intelligence, 2007.

[28] R. C. Bunescu and R. J. Mooney, “Multiple instance learning for sparse positive bags.” in International Conference on

Machine Learning, 2007.

[29] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition). Wiley-Interscience, 2000.

[30] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.

Cambridge University Press, 2000.
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