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Abstract— While distance function learning for supervised
learning tasks has a long history, extending it to learning tasks
with weaker supervisory information has only been studied
recently. In particular, some methods have been proposed for
semi-supervised metric learning based on pairwise similarity or
dissimilarity information. In this paper, we propose a kernel
approach for semi-supervised metric learning and present in
detail two special cases of this kernel approach. The metric
learning problem is thus formulated as an optimization problem
for kernel learning. An attractive property of the optimization
problem is that it is convex and hence has no local optima.
While a closed-form solution exists for the first special case, the
second case is solved using an iterative majorization procedure to
estimate the optimal solution asymptotically. Experimental results
based on both synthetic and real-world data show that this new
kernel approach is promising for nonlinear metric learning.

Index Terms— metric learning, kernel learning, semi-
supervised learning, clustering.

I. I NTRODUCTION

Distance functions or dissimilarity measures are central to
many models and algorithms in machine learning, pattern
recognition and computer vision [14], [16], [28], [32]. Some
common examples are nearest neighbor classifiers, radial
basis function networks and support vector machines for
classification (or supervised learning) tasks and thek-means
algorithm for clustering (or unsupervised learning) tasks. The
performance of these methods often depends critically on
the choice of an appropriate distance function. Instead of
predefining a distance function based on prior knowledge
about the application at hand, a more appealing approach is to
learn an appropriate distance function, possibly startingfrom
some initial choice, based on supervisory information available
about the application.

A. Distance Function Learning for Supervised Learning

For supervised learning applications such as classification
and regression tasks, one can easily formulate the distance
function learning problem as a well-defined optimization
problem based on the supervisory information available in
the training data. This approach has been pursued by many
researchers. Early work taking this approach includes various
metric learning methods for nearest neighbor classifiers, e.g.,
[18], [19], [38]. More recent work includes [12], [13], [15],
[17], [20], [21], [26], [30].
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B. Distance Function Learning for Other Learning Problems

It is natural to ask if distance function learning can also
be applied to more difficult learning tasks. More specifically,
we want to consider unsupervised learning applications such
as clustering, dimensionality reduction, density estimation
and novelty detection. Unfortunately, under the unsupervised
learning setting, the distance function learning problemsare
ill-posed with no well-defined optimization criteria. For ex-
ample, using the same clustering algorithm (e.g.,k-means)
with different distance measures generally leads to different
clustering results, but, without class label information,there
is no ground truth against which different clustering results
can be compared to make a choice. As another example in
the context of dimensionality reduction using methods such
as principal component analysis (PCA) [23], a special form
of distance learning which simply reweighs the features may
end up turning a relevant dimension into irrelevant and vice
versa. Again, there does not exist any optimality criterionfor
us to formulate a well-defined optimization problem.

A more sensible territory to explore is the class of semi-
supervised learning problems [35]. Typically, in additionto
the usually large quantity of unlabeled data, limited additional
knowledge is also available to provide supervisory information
that can be utilized for distance function learning. The supervi-
sory information may be in the form of labeled data, which are
typically limited in quantity. Strictly speaking, such problems
may also be regarded as supervised learning tasks with only
limited labeled data. For such problems, the classification
accuracy can usually be improved with the aid of additional
unlabeled data. Some methods that adopt this approach include
[3], [39], [48].

An arguably more challenging setting is when the supervi-
sory information is given in a weaker form in terms of pairwise
similarity or dissimilarity information. Very often, the pairwise
information simply states whether two examples belong to the
same class or different classes.1 Wagstaff et al. [43], [44] first
used such pairwise constraints for semi-supervised clustering
tasks by modifying the standardk-means clustering algorithm
to take into account pairwise similarity and dissimilarity. Ex-
tensions have also been made to model-based clustering based
on the expectation-maximization (EM) algorithm for Gaussian
mixture models [27], [37]. However, no distance function is
explicitly learned in these methods. Some methods have been

1In principle, it is possible to incorporate pairwise information that quan-
tifies the degree of similarity or dissimilarity as well to provide more
informative knowledge for distance function learning. The pairwise side
information can be seen as part of the dissimilarity matrix in multidimensional
scaling (MDS) problems.
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proposed for learning global Mahalanobis metrics and related
distance functions from pairwise information [2], [4], [22],
[33], [36], [45]. Xing et al. [45] proposed using pairwise
constraints in a novel way to learn a global Mahalanobis metric
before performing clustering with the constraints. Instead of
using an iterative algorithm as in [45], Bar-Hillel et al. [2]
devised a more efficient, non-iterative algorithm called relevant
component analysis (RCA) for learning a global Mahalanobis
metric. We proposed a simple extension to RCA that allows
both similarity and dissimilarity constraints to be incorporated
[47]. Schultz and Joachims [33] made use of a different
type of pairwise information which compares the pairwise
constraints between two pairs of examples. More specifically,
each relational constraint states that example A is closer
to B than A is to C. Another distance function learning
method is called DistBoost [22], which is based on boosting
by incorporating pairwise constraints to learn a nonmetric
distance function. However, the distance functions learned by
these methods are either nonmetric or globally linear metrics.
In our recent work [6], we generalized the globally linear
metrics to a new metric that is linear locally but nonlinear
globally. However, the criterion function of the optimization
problem has local optima and the topology cannot be preserved
well during metric learning.

C. Organization of the Paper

Along the same direction pursued in our previous work
[6] to devise nonlinear extensions of linear metric learning
methods, we propose in this paper a kernel approach for
the learning of distance metrics based on pairwise similarity
information. This essentially formulates metric learningas a
kernel learning problem [1], [5], [10], [11], [24], [25], [29],
[34], [40], [41], [42], [46], [49], [50], [51].

In Section II, we present a general kernel-based approach for
the metric learning problem and then provide details of the op-
timization problems for two special cases. Section III presents
some experiments based on both synthetic and real-world
data to compare our kernel-based metric learning methods
with some other methods. Finally, we give some concluding
remarks in the last section.

II. OUR KERNEL-BASED METRIC LEARNING APPROACH

Let xi (i = 1, . . . , n) denoten points in the input space
X . Suppose we use a kernel functionk, such as RBF kernel
or polynomial kernel, which induces a nonlinear mappingφ
from X to some feature spaceF . The images of then points
in F are φ(xi) (i = 1, . . . , n) and the corresponding kernel
matrix K = [k(xi,xj)]n×n

= [〈φ(xi), φ(xj)〉]n×n
= ΦΦ

T

whereΦ = [φ(x1), . . . , φ(xn)]T .
Since the kernel matrixK is symmetric and positive semi-

definite, we can perform eigendecomposition onK to express
it as

K =

p
∑

r=1

ξrαrα
T
r , (1)

whereξ1 ≥ · · · ≥ ξp > 0 denote thep ≤ n positive eigenval-
ues ofK and α1, . . . ,αp are the corresponding normalized

eigenvectors.2 Note that (1) may also be expressed as

K =

p
∑

r=1

ξrKr, (2)

whereKr = αrα
T
r (r = 1, . . . , p) are rank-one matrices. Us-

ing these base kernel matrices, we can define a parameterized
family Kβ,A of kernel matrices as

Kβ,A =

p
∑

r=1

β2
r (Aαr)(Aαr)

T =

p
∑

r=1

β2
rAKrA

T , (3)

where β = (β1, . . . , βp)
T denotesp coefficients andA is

an n × n matrix. It is easy to show that all matrices in the
family are symmetric and positive semi-definite and hence
the corresponding kernel functions are Mercer kernels or
reproducing kernels [32]. While the use ofβ for defining a
class of spectral variants ofK is commonly found in other
kernel learning work [5], [11], [25], [41], [50], we are not
aware of other work that usesA for this purpose.

In the next two subsections, we consider kernel-based
metric learning based on two special cases of the form in
(3). The supervisory information available for metric learn-
ing is expressed as a set of point pairs,S = {(xi,xj) |
xi andxj are similar}, which represents the pairwise simi-
larity constraints. Note that the initial kernel matrixK is con-
structed from alln data points regardless of whether they are
involved in the supervisory information (pairwise constraints),
andK influences the final kernel matrixKβ,A learned. Thus,
the kernel-based metric learning problem belongs to the semi-
supervised learning paradigm.

To facilitate our subsequent derivation, let us define indica-
tor vectorsbi (i = 1, . . . , n) wherebi is the ith column of
then×n identity matrix. The(i, j)th entry ofKβ,A can then
be expressed as

(Kβ,A)ij = b
T
i Kβ,Abj . (4)

A. Case 1: Learningβ Only

We first consider a special case which fixesA to the identity
matrix and learns the coefficientsβ only. Hence we have

Kβ,A = Kβ =

p
∑

r=1

β2
rKr. (5)

Let ψ(xi) (i = 1, . . . , n) denote then points in the feature
space induced byKβ. Based on the set of pairwise similarity
constraintsS, we define the following criterion function:

JS(β) =
∑

(xi,xj)∈S

‖ψ(xi) − ψ(xj)‖2, (6)

which is the total squared Euclidean distance between feature
vectors inKβ corresponding to point pairs inS. The criterion

2In practice, instead of choosingp to be the rank ofK, we usually approx-
imateK by discarding those eigenvectors whose corresponding eigenvalues
are very small in value.
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function can be rewritten as

JS(β) =
∑

(xi,xj)∈S

[(Kβ)ii + (Kβ)jj − 2(Kβ)ij ]

=

p
∑

r=1

β2
r

∑

(xi,xj)∈S

[(Kr)ii + (Kr)jj − 2(Kr)ij ]

=

p
∑

r=1

β2
r

∑

(xi,xj)∈S

(bi − bj)
T
Kr(bi − bj)

=

p
∑

r=1

β2
rfr

= β
T
DSβ, (7)

where

fr =
∑

(xi,xj)∈S

(bi − bj)
T
Kr(bi − bj)

=
∑

(xi,xj)∈S

[

(bi − bj)
T αr

]2 ≥ 0 (8)

and
DS = diag(f1, . . . , fp). (9)

To preventβ from degenerating to the zero vector0, we
minimize the convex functionJS(β) subject to the linear
constraint1T β = c for some constantc > 0.3 The linear
constraint eliminates the scale factor in the criterion function.
This is a constrained optimization problem with an equality
constraint, which can be solved by introducing a Lagrange
multiplier ρ to minimize the following Lagrangian:

J(β, ρ) = JS(β) + ρ(c− 1
T β). (10)

We then compute the partial derivatives

∂J

∂β
= 2DSβ − ρ1 (11)

∂J

∂ρ
= c− 1

T β. (12)

Setting
∂J

∂β
= 0 and

∂J

∂ρ
= 0, we can obtain the optimal value

of β as

β =
cD−1

S
1

1T D
−1
S

1
. (13)

The constantc in the constraint is set to
∑p

r=1

√
ξr. SinceDS

is a diagonal matrix,D−1
S

exists as long as all the diagonal
entries are nonzero.

B. Case 2: LearningA Only

As another special case, we fix the coefficientsβ and learn
A only. Specifically, we setβ2

k = ξk (k = 1, . . . , p). Hence,

Kβ,A = KA = AKA
T . (14)

3Bousquet and Herrmann [5] and Lanckriet et al. [25] setTr(Kβ ) = c

as constraint which is equivalent toβT β = c. However, we use a constraint
that is linear inβ so that the constrained optimization problem will not lead
to a value of0 for β.

A major advantage of this method is that no eigendecomposi-
tion of K is needed.

Based onS, we define the following criterion:

JS(A) =
∑

(xi,xj)∈S

‖ψ(xi) − ψ(xj)‖2 =
∑

(xi,xj)∈S

q2ij(A),

(15)
whereqij(A) denotes the Euclidean distance betweenψ(xi)
and ψ(xj) in the feature space induced byKA, with its
dependency onA explicitly shown.

Unlike the previous case which learns relatively few para-
meters in thep-dimensional vectorβ, here we need to learn
all the entries of then × n matrix A wheren is typically
much larger thanp. To impose stronger capacity control to
restrict the search space, we introduce a regularization term to
constrain the degree of transformation thatA can bring about.
While minimizing the termJS(A) tends to pull the points
together, the regularization term tries to go against this trend
by limiting the degree of deformation from the initial positions
of the feature vectors. Specifically, the regularization term is
as follows:

JC(A) =

n
∑

i,j=1

Nσ(cij)(‖ψ(xi) − ψ(xj)‖ − cij)
2, (16)

wherecij = ‖φ(xi) − φ(xj)‖ =
√

(K)ii + (K)jj − 2(K)ij

is the initial Euclidean distance betweenφ(xi) and φ(xj)
before metric learning, andNσ(·) is a Gaussian function with
Nσ(a) = exp(−a2/σ2) for some parameterσ > 0 that
specifies the spread of the Gaussian window. The squared term
penalizes deviation from the original inter-point distance cij
and the Gaussian weight regulates the degree of penalty by
taking into consideration the magnitude ofcij . This form of
the regularization term is similar to that used in LLMA [6].

Metric learning is formulated as an unconstrained optimiza-
tion problem by minimizing

J(A) = JS(A) + ρJC(A), (17)

where ρ > 0 is a regularization parameter that adjusts the
relative strength of the regularization term.

Let sij (i, j = 1, . . . , n) be defined such thatsij = 1 if
(xi,xj) ∈ S and 0 otherwise. We can rewriteJ(A) as

J(A) =
n

∑

i,j=1

(sij + ρNσ(cij))

(

qij(A) − ρNσ(cij)cij
sij + ρNσ(cij)

)2

+C

=

n
∑

i,j=1

γij(qij(A) − pij)
2 + C, (18)

where

γij = sij + ρNσ(cij), (19)

pij =
ρNσ(cij)cij
sij + ρNσ(cij)

, (20)

and C is a term that does not depend onA. Hence, the
optimal value of A that minimizesJ(A) also minimizes
Ĵ(A) =

∑n

i,j=1 γij(qij(A) − pij)
2. As we can see from

Equation (21) below,q2ij(A) is quadratic inA andqij(A) =
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‖ΦT
A

T (bi−bj)‖. SinceΦ
T
A

T (bi−bj) is linear inA and
the norm function is convex, we can conclude thatqij(A) is
convex inA. By incorporating Equation (18), we know that
J(A) and Ĵ(A) are also convex inA. As in [6], we use
the method ofiterative majorizationto find the optimal value
of A. This method is guaranteed to find the optimal solution
asymptotically since the criterion functionJ(A) is convex.

Note that

q2ij(A) = ‖ψ(xi) − ψ(xj)‖2

= (bi − bj)
T
KA(bi − bj)

= (bi − bj)
T
AΦΦ

T
A

T (bi − bj), (21)

so qij(A) = ‖ΦT
A

T (bi − bj)‖. Similarly, we define
qij(B) = ‖ΦT

B
T (bi − bj)‖. From the Cauchy-Schwarz

inequality, we have

qij(A)qij(B) ≥ (bi − bj)
T
AΦΦ

T
B

T (bi − bj)

= (bi − bj)
T
AKB

T (bi − bj). (22)

ExpandingĴ(A) gives

Ĵ(A) =

n
∑

i,j=1

γijq
2
ij(A) − 2

n
∑

i,j=1

γijpijqij(A) +

n
∑

i,j=1

γijp
2
ij .

(23)
The first term on the right-hand side of the above equation
can be rewritten as

n
∑

i,j=1

γijq
2
ij(A) =

n
∑

i,j=1

γij(bi − bj)
T
AKA

T (bi − bj)

= Tr(AKA
T
E), (24)

where

E =

n
∑

i,j=1

γij(bi − bj)(bi − bj)
T . (25)

The second term on the right-hand side of Equation (23) may
be rewritten as the sum of two terms

∑

(i,j)∈H+
γijpijqij(A)

and
∑

(i,j)∈H0
γijpijqij(A), with H+ representing the set of

all point pairs(i, j) for which qij(B) > 0 andH0 the set of
all point pairs(i, j) for which qij(B) = 0. For (i, j) ∈ H+,
by Equation (22), we have

γijpijqij(A) ≥ γijpij

qij(B)
(bi − bj)

T
AKB

T (bi − bj). (26)

For (i, j) ∈ H0, sinceγij > 0, pij ≥ 0 and qij(A) ≥ 0, we
have

γijpijqij(A) ≥ 0. (27)

Combining (26) and (27), the second term on the right-hand
side of Equation (23) can be expressed as the following
inequality:

−2
n

∑

i,j=1

γijpijqij(A) ≤ −2
n

∑

i,j=1

fij(B)(bi − bj)
T
AKB

T

·(bi − bj)

= −2Tr(AKB
T
F(B)), (28)

where

fij(B) =







ρNσ(cij)cij
qij(B)

qij(B) > 0

0 qij(B) = 0
, (29)

F(B) =

n
∑

i,j=1

fij(B)(bi − bj)(bi − bj)
T . (30)

From (23), (24) and (28), we can obtain an upper bound on
Ĵ(A) as

Ĵ(A) ≤ Ĵ(A,B) = Tr(AKA
T
E) − 2Tr(AKB

T
F(B))

+

n
∑

i,j=1

γijp
2
ij . (31)

Note that the equality holds, i.e.,̂J(A) = Ĵ(A,B), when
B = A. In the method of iterative majorization,̂J(A) is called
the majorized functionand Ĵ(A,B) is called themajorizing

function. By setting the partial derivative
∂Ĵ(A,B)

∂A
to a zero

matrix of the same dimension asA, we can see that the
optimal value ofA that minimizesĴ(A,B) should satisfy

EA = F(B)B (32)

or

A = E
+
F(B)B (33)

whereE
+ is the pseudo-inverse ofE. Thus we can use an

iterative procedure based on the following update equationto
estimate the optimal value ofA in a stepwise manner:

A
(t) = E

+
F(A(t−1))A(t−1), (34)

whereA
(t) denotes the estimate at stept.

The iterative majorization procedure can be summarized as
the following steps:

1) t = 0; A
(0) = I;

2) t = t+ 1; compute:

A
(t) = E

+
F(A(t−1))A(t−1).

3) If converged, then stop. Otherwise, repeat from step 2.

Note that Ĵ(A) decreases over time monotonically since
Ĵ(A(t)) ≤ Ĵ(A(t),A(t−1)) ≤ Ĵ(A(t−1),A(t−1)) =
Ĵ(A(t−1)).

III. E XPERIMENTS

In this section, we describe some experiments we have
performed based on both synthetic and real-world data to
compare our kernel-based metric learning methods with some
previous methods. We measure the effectiveness of a metric
learning scheme indirectly by how much it can improve the
clustering results in semi-supervised clustering tasks with
pairwise similarity constraints.
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A. Experimental Setup

We compare the two kernel-based metric learning methods
described in Sections II with some previous methods. The first
method is RCA [2] which performs globally linear transforma-
tion in the input space. The RCA algorithm performs whiten-
ing transformation on the data set, which assigns lower weights
to the “irrelevant” directions in the original feature space. The
second method, called MPCK-Means, unifies metric learning
and pairwise constraints [4].4 As in their experiments, a single
metric parameterized by a diagonal matrix for all clusters is
learned duringk-means clustering. Since their method can
make use of both similarity and dissimilarity information,
we perform experiments in two different settings, without
or with dissimilarity constraints. The number of dissimilarity
constraints used by MPCK-Means-SD is set to be the same
as the number of similarity constraints. Another method is
LLMA [6] which is more general in that it is linear locally
but nonlinear globally. We also use the Euclidean distance
without metric learning for baseline comparison. Since both
RCA and LLMA make use of pairwise similarity constraints
only, we also use such supervisory information only for our
methods. In summary, the following seven distance measures
for the k-means clustering algorithm are included in our
comparative study (the short forms inside brackets will be used
subsequently):

1) k-means without metric learning (Euclidean)
2) k-means with RCA for metric learning (RCA)
3) Metric pairwise constrainedk-means using similarity

constraints (MPCK-Means-S)
4) Metric pairwise constrainedk-means using both simi-

larity and dissimilarity constraints (MPCK-Means-SD)
5) k-means with LLMA for metric learning (LLMA)
6) k-means with our kernel-based metric learning method

based on learningβ
(kernel-β)

7) k-means with our kernel-based metric learning method
based on learningA
(kernel-A)

We use RBF kernel for the initial kernel for our kernel-based
metric learning methods. As in [2], [6], [45], we use the
Rand index [31] as the clustering performance measure. The
Rand index reflects the agreement of the clustering result with
the ground truth. Letns be the number of pattern pairs that
are assigned to the same cluster (i.e., matched pairs) in both
the resultant partition and the ground truth, andnd be the
number of pattern pairs that are assigned to different clusters
(i.e., mismatched pairs) in both the resultant partition and
the ground truth. The Rand index is defined as the ratio of
(ns+nd) to the total number of pattern pairs, i.e.,n(n−1) = 2.
When there are more than two clusters, however, the standard
Rand index will favor assigning patterns to different clusters.
We modify the Rand index as in [45] so that matched pairs
and mismatched pairs are assigned weights to give them equal
chance of occurrence (0.5). For each data set, we randomly
generate 20 differentS sets to provide pairwise similarity
constraints. In addition, for eachS set, we perform 20 runs of

4The Java code for MPCK-Means was obtained from the authors of[4].

k-means with different random initializations and report the
average Rand index over the 20 runs.

The two parameters used in our kernel-based metric learning
methods are easy to set based on their physical meanings.
As for the Gaussian window parameterσ used in the reg-
ularization term (Equation (16)), we make it depend on the
average squared Euclidean distance between all point pairs
in the feature space:σ2 = θ

n2

∑n

i,j=1 ‖φ(xi) − φ(xj)‖2 =
2θ
n

[Tr(K) − nK], whereK represents the mean value of the
elements inK and θ is set to be the same (= 5) for all data
sets. The regularization parameterρ in the kernel-A method
(Equation (17)) is set to[1, 3] in our experiments.

B. Experiments on Synthetic Data

We first perform some experiments on the XOR data set,
as shown in Figure 1(a). Data points shown with the same
point style and color belong to the same class. Point pairs in
S are connected by solid lines. Both RCA and LLMA perform
metric learning directly in the input space. The transformed
data set using RCA and LLMA is shown in Figure 1(b) and
(c), respectively. For our kernel-based methods, there is no
need to embed the points in the feature space first before
performing clustering. However, for the sake of visualization,
we apply kernel PCA based on the learned kernel matrix
to embed the points in a 2-dimensional space, as shown in
Figure 1(d) and (e). Obviously, RCA, which performs globally
linear metric learning, cannot give satisfactory result. The
performance of LLMA is significantly better, although some
points from the two classes are quite close to each other. On
the other hand, our kernel-based methods can not only group
the data points according to their class but can also preserve
the topology of the points inside clusters.

We also try the 2-moon data set which is commonly used in
some recent semi-supervised learning research. However, the
difference is that we do not exploit the underlying manifold
structure here. Instead, only some limited pairwise similarity
constraints are provided. The results in Figure 2 again show
that the kernel-based methods can give promising results.

We further perform some semi-supervised clustering exper-
iments on the XOR and 2-moon data sets. We also include the
clustering results of MPCK-Means-S and MPCK-Means-SD
for comparison. The results are shown in Figure 3 below. For
each trial, 10 point pairs are randomly selected to formS.

C. Experiments on UCI Data

We perform more semi-supervised clustering experiments
on six real-world data sets from the UCI Machine Learning
Repository. Table I shows some characteristics of the data sets.
The number of data pointsn, the number of featuresd, the
number of clustersm, and the number of randomly selected
point pairs|S| are shown for each data set in Table I.

Figure 4 shows the clustering results based onk-means
using different distance measures as numbered in Section III-
A. The k-means algorithm with RCA for metric learning
can sometimes improve the clustering results without metric
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Fig. 1. Comparison of different metric learning methods on the XOR data set. (a) original data set with two classes; and the data set after applying (b) RCA;
(c) LLMA; (d) kernel-β; (e) kernel-A.
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Fig. 2. Comparison of different metric learning methods on the 2-moon data set. (a) original data set with two classes; and thedata set after applying
(b) RCA; (c) LLMA; (d) kernel-β; (e) kernel-A.
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Fig. 3. Semi-supervised clustering results: (a) XOR data set; (b) 2-moon data set. The seven clustering algorithms (numbered in Section III-A) are:
(1) Euclidean; (2) RCA; (3) MPCK-Means-S; (4) MPCK-Means-SD; (5) LLMA; (6) kernel-β; and (7) kernel-A.

TABLE I

SIX UCI DATA SETS USED IN THE EXPERIMENTS

DATA SET n d m |S|
SOYBEAN 47 35 4 10
PROTEIN 116 20 6 15
WINE 178 13 3 20
IONOSPHERE 351 34 2 30
BOSTON HOUSING 506 13 3 40
BREAST CANCER 569 31 2 50

learning. However, MPCK-Means, LLMA and our kernel-
based methods generally outperform RCA. For more accu-
rate comparison, we perform pairedt-test with significance
level 0.05 to statistically evaluate which result is better. The
comparison results are summarized in Table II. We use∼
to indicate that the clustering results of the two methods
are not significantly different for the given confidence level,
and < to indicate that the mean of the Rand index values
of the latter method is statistically higher than that of the
former one. From the pairedt-test results, we can conclude
with a 95% confidence level that the kernel-based methods
generally outperform MPCK-Means and are comparable with
or even better than LLMA. Here we use MPCK-Means to
represent the better clustering results between algorithms 3 and
4 (without and with dissimilarity constraints). As we can see
from Figure 4, the MPCK-Means method with dissimilarity
constraints incorporated cannot always improve the clustering
results.

D. Experiments on MNIST Digits

We further perform some experiments on handwritten digits
from the MNIST database.5 The digits in the database have
been size-normalized and centered to28×28 gray-level im-
ages. Hence the dimensionality of the input space is 784.
In our experiments, we randomly choose 1,000 images for
each digit from a total of 60,000 digit images in the MNIST
training set. We randomly select 50 similarity constraintsto
form anS set. Table III shows the results of different clustering
algorithms for three digit subsets. For each algorithm, we show
the mean Rand index (upper) and standard deviation (lower)

5http://yann.lecun.com/exdb/mnist/

over 10 random runs corresponding to differentS sets. From
the results, we can see that the metric learned by our kernel-
based methods gives the best clustering results.

While the kernel-β algorithm is efficient due to its closed-
form solution, the optimization problem defined for the kernel-
A algorithm is solved in an iterative manner. In our experi-
ments, we use the maximum number of iterations (2 for all
data sets) as the stopping criterion for the iterative majorization
procedure in the kernel-A algorithm. Fast convergence is
observed in all cases and hence the number of iterations can be
set to a very small number. In general, our kernel-based metric
learning methods are slower than the global metric learning
methods (RCA and MPCK-Means) but are significantly faster
than the nonlinear metric learning method (LLMA).

IV. CONCLUDING REMARKS

We have proposed two kernel-based metric learning meth-
ods and demonstrated their promising performance over some
existing linear and nonlinear methods. While the two kernel-
based metric learning methods are quite effective, they do have
some limitations. For the kernel-β method, the limitation is its
need for performing eigendecomposition of the kernel matrix
K, which may lead to high computational demand whenK

is large. For the kernel-A method, it is not necessary to do
eigencomposition ofK. However, learningA involves more
parameters, which require stronger bias when the supervisory
information is limited. One possible extension is to consider a
smaller, non-squareA matrix which essentially represents the
n points by a smaller set of points. An interesting direction to
explore is to devise a general scheme for learning bothβ and
A simultaneously. As another direction, we will incorporate
dissimilarity constraints into the methods to further improve
the metric learning performance. Moreover, we will explore
the application of the proposed methods to other real-world
problems such as content-based image retrieval [7], [8], [9].
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Fig. 4. Clustering results for six UCI data sets. The seven clustering algorithms (numbered in Section III-A) are: (1) Euclidean; (2) RCA; (3) MPCK-Means-S;
(4) MPCK-Means-SD; (5) LLMA; (6) kernel-β; and (7) kernel-A.

TABLE II

PAIRED t-TEST FOR STATISTICAL EVALUATION OF THE CLUSTERING RESULTS.

DATA SET PAIRED t-TEST

SOYBEAN MPCK-MEANS∼ LLMA ∼ KERNEL-β ∼ KERNEL-A
PROTEIN MPCK-MEANS∼ KERNEL-β < KERNEL-A < LLMA
WINE MPCK-MEANS < LLMA < KERNEL-β ∼ KERNEL-A
IONOSPHERE MPCK-MEANS < LLMA ∼ KERNEL-β ∼ KERNEL-A
BOSTON HOUSING MPCK-MEANS∼ LLMA ∼ KERNEL-β < KERNEL-A
BREAST CANCER MPCK-MEANS∼ LLMA ∼ KERNEL-β ∼ KERNEL-A

TABLE III

CLUSTERING RESULTS FORMNIST DATA SETS.

EUCLIDEAN RCA MPCK-MEANS-S MPCK-MEANS-SD LLMA KERNEL-β KERNEL-A
{0, 1} 0.9790 0.9814 0.9752 0.9800 0.9802 0.9896 0.9900

±0.0004 ±0.0109 ±0.0105 ±0.0055 ±0.0015 ±0.0009 ±0.0011

{1, 5} 0.8179 0.8410 0.8254 0.8156 0.8013 0.8682 0.8590
±0.0001 ±0.0211 ±0.0075 ±0.0068 ±0.1370 ±0.0534 ±0.0089

{1, 9} 0.9531 0.9546 0.9275 0.9317 0.9527 0.9609 0.9657
±0.0000 ±0.0319 ±0.0137 ±0.0087 ±0.0012 ±0.0203 ±0.0068
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City, Québec, Canada, 11–15 August 2002.

[31] W.M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66:846–850, 1971.
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