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Abstract— While distance function learning for supervised B. Distance Function Learning for Other Learning Problems

learning tasks has a long history, extending it to learning tasks : PP . .
with weaker supervisory information has only been studied It is natural to ask if distance function learning can also

recently. In particular, some methods have been proposed for P€ applied to more difficult learning tasks. More specificall
semi-supervised metric learning based on pairwise similarity or we want to consider unsupervised learning application$ suc
dissimilarity information. In this paper, we propose a kemel as clustering, dimensionality reduction, density estiomat
approach for semi-supervised metric learning and present in 5nq novelty detection. Unfortunately, under the unsugexvi

detail two special cases of this kernel approach. The metric - : : : .
learning problem is thus formulated as an optimization problem learning setting, the distance function learning probleres

for kernel learning. An attractive property of the optimization  ill-posed with no well-defined optimization criteria. Fox-e
problem is that it is convex and hence has no local optima. ample, using the same clustering algorithm (eigmeans)
While a closgd-form solultion ex'ists for the first special case, the with different distance measures generally leads to differ
Zig%”{g;?;ee(;z ;r?]';lesdo‘fjig% 22)::1?1l};?g;(zaq?;]céi;l(i)aet:%z]e%r&??gglﬁsto clustering results, but, without class label informaticmere
based on both synthetic and real-world data show that this new is no ground truth against which 'dlfferent clustering resul .
kernel approach is promising for nonlinear metric learning. can be compared to make a choice. As another example in
the context of dimensionality reduction using methods such
as principal component analysis (PCA) [23], a special form
of distance learning which simply reweighs the features may
end up turning a relevant dimension into irrelevant and vice

I. INTRODUCTION versa. Again, there does not exist any optimality criteffion

Distance functions or dissimilarity measures are central ¢S to formulate a well-defined optimization problem.

many models and algorithms in machine learning patternA more sensible territory to explore is the class of semi-
recognition and computer vision [14], [16], [28], [32]. Sem supervised learning problems [35]. Typically, in addititm

! o hq usually large quantity of unlabeled data, limited addl
common examples are nearest neighbor classifiers, radia

basis function networks and support vector machines fﬁ?owledge 's also available to provide supervisory infdioTa

. . ) at can be utilized for distance function learning. Theesup
classification (or supervised learning) tasks and kkreeans ; . . :

X ) . . sory information may be in the form of labeled data, which are
algorithm for clustering (or unsupervised learning) taskse

performance of these methods often depends critically %'Ca"y limited in quantity. Strictly speaking, such jiiems

the choice of an appropriate distance function. Instead s also be regarded as supervised learning tasks with only

predefining a distance function based on prior knowled“émted labeled data. For such problems, the classification

o . aceuracy can usually be improved with the aid of additional
about the application at hand, a more appealing approach is . .
; . . . ) unlabeled data. Some methods that adopt this approachieclu
learn an appropriate distance function, possibly startiog 3], [39], [48]
some initial choice, based on supervisory informationlatsée ! ’ ' : L .
L An arguably more challenging setting is when the supervi-
about the application. ) S . ) =
sory information is given in a weaker form in terms of pairavis
similarity or dissimilarity information. Very often, theajrwise
A. Distance Function Learning for Supervised Learning  information simply states whether two examples belong o th
For supervised learning applications such as classifimatits)amdescdizs ?';ir?/\I/];fseerecr:)tncslzjr?t??grstsaeﬁmﬁfsil. gsi]ée[?c]nlgrstte
and regression tasks, one can easily formulate the distaHg%( pairy per 19
. . , .—._ .. tasks by modifying the standatdmeans clustering algorithm
function learning problem as a well-defined optimization . o S L2 2
tQ take into account pairwise similarity and dissimilariBx-

problem based on the supervisory information available {n ) .
. . ensions have also been made to model-based clustering base
the training data. This approach has been pursued by m

an ) S . :
researchers. Early work taking this approach includesouari 0r¥the expectation-maximization (EM) algorithm for Gaassi

metric learning methods for nearest neighbor classifiegs, eren)le;::zﬁ Teosril;’ d[?r?]'gh[ess?e].ﬁei\évggserlsr;?ngliaeqﬁg d‘:?::\'lznbsen
[18], [19], [38]. More recent work includes [12], [13], [15] plicitly '

[17]= [20]’ [21], [26]! [30]- 1in principle, it is possible to incorporate pairwise infottioa that quan-

tifies the degree of similarity or dissimilarity as well to pmd® more
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proposed for learning global Mahalanobis metrics and eelateigenvectorg. Note that (1) may also be expressed as

distance functions from pairwise information [2], [4], [22 »

[33], [36], [45]. Xing et al. [45] proposed using pairwise KZZ&KT @)

constraints in a novel way to learn a global Mahalanobis imetr o ’

before performing clustering with the constraints. Indted

using an iterative algorithm as in [45], Bar-Hillel et al.][2 whereK, = a,a? (r = 1,...,p) are rank-one matrices. Us-

devised a more efficient, non-iterative algorithm callddvant ing these base kernel matrices, we can define a parameterized

component analysis (RCA) for learning a global Mahalanobiamily Kz a of kernel matrices as

metric. We proposed a simple extension to RCA that allows v »

both similarity and dissimilarity constraints to be incorated _ 2 T _ 2 T

[47]. Schultz and Joachims [33] made use of a different Ko.a = Zﬁr (A )(Aar)” = ZﬁTAKTA - @

type of pairwise information which compares the pairwise

constraints between two pairs of examples. More specificalwhere 3 = (31,...,03,)T denotesp coefficients andA is

each relational constraint states that example A is clos®tn x n matrix. It is easy to show that all matrices in the

to B than A is to C. Another distance function learningamily are symmetric and positive semi-definite and hence

method is called DistBoost [22], which is based on boostirte corresponding kernel functions are Mercer kernels or

by incorporating pairwise constraints to learn a nonmetrieproducing kernels [32]. While the use 6f for defining a

distance function. However, the distance functions ledulme class of spectral variants d€ is commonly found in other

these methods are either nonmetric or globally linear wetri kernel learning work [5], [11], [25], [41], [50], we are not

In our recent work [6], we generalized the globally lineaaware of other work that uses for this purpose.

metrics to a new metric that is linear locally but nonlinear In the next two subsections, we consider kernel-based

globally. However, the criterion function of the optimizat metric learning based on two special cases of the form in

problem has local optima and the topology cannot be predery8). The supervisory information available for metric lear

well during metric learning. ing is expressed as a set of point pai&,= {(x;,x;) |

x; andx; are similag, which represents the pairwise simi-

larity constraints. Note that the initial kernel matiik is con-

o ) ) structed from alln data points regardless of whether they are
Along the same direction pursued in our previous Worfyolved in the supervisory information (pairwise consits),

[6] to devise nonlinear extensions of linear metric IeagnmandK influences the final kernel matriK 5 » leared. Thus,

methods, we propose in this paper a kernel approach {g kernel-based metric learning problem belongs to thé-sem
the learning of distance metrics based on pairwise S'Wla”supervised learning paradigm.

information. This essentially formulates metric learniag a
kernel learning problem [1], [5], [10], [11], [24], [25], 8. (o vectorsb; (i = 1,...,n) whereb; is the ith column of

[34], [40], [41], [42], [46], [49], [50], [51]. the n x n identity matrix. The(i, j)th entry of Kz a can then
In Section Il, we present a general kernel-based approach fa expressed as ’

the metric learning problem and then provide details of e o
timization problems for two special cases. Section Ill pras (Kga)ij = biTK@Abj. (4)
some experiments based on both synthetic and real-world

data to compare our kernel-based metric learning methods

with some other methods. Finally, we give some concludiny Case 1: Learning3 Only

remarks in the last section.

r=1 r=1

C. Organization of the Paper

To facilitate our subsequent derivation, let us define iadic

We first consider a special case which fixego the identity

matrix and learns the coefficient only. Hence we have
II. OUR KERNEL-BASED METRIC LEARNING APPROACH

P
Let x; (¢ = 1,...,n) denoten points in the input space Kpa=Kg= Z@%KW (5)
X. Suppose we use a kernel functibnsuch as RBF kernel ’

r=1
or polynomial kernel, which induces a nonlinear mapping ‘ o
from X to some feature spac. The images of the, points L€t ¥ (xi) (i = 1,...,n) denote then points in the feature
in F are ¢(x;) (i = 1,...,n) and the corresponding kerneiSPace induced bK . Based on the set of pairwise similarity

matrix K = [k(x:, %) = [((xs), $(x;)] — o7 constraintsS, we define the following criterion function:
1) nxn 1) nxn

where® = [¢(x1), ..., ¢(x,)]". = ’

Since the kernel matri¥ is symmetric and positive semi- o= 2 W) =Gl ©
definite, we can perform eigendecompositionkrto express Geixi)€s
it as ) which is the total squared Euclidean distance betweenreatu

K=3 gaal, (1) vectors inK corresponding to point pairs ifi. The criterion
r=1

.. . 2In practice, instead of choosingto be the rank oK, we usually approx-
whereg; > --- > &, > 0 denote thep < n positive elgenvgl- imate K by discarding those eigenvectors whose correspondingnagiees
ues ofK and oy, ..., , are the corresponding normalizecare very small in value.



function can be rewritten as A major advantage of this method is that no eigendecomposi-
tion of K is needed.

e ( Z:) S [(Kp)ii + (Kp)jj — 2(Kp)ij] Based onS, we define the following criterion:
Xi,Xj €
P Js(A) = (i) = (x)[I” = q3(A),
= > B D Ko+ (K — 2K, )] (xi%es (xi%es ’
r=1  (x;,%,)€S (15)
P whereg;;(A) denotes the Euclidean distance betweels;)
= Y B2 > (bij—b;)"K,(b; —b;) and ¢ (x;) in the feature space induced Hf,, with its
r=1  (xi,%x,;)€S dependency oA explicitly shown.
P Unlike the previous case which learns relatively few para-
= Zﬁffr meters in thep-dimensional vectog3, here we need to learn
r=1 all the entries of then x n matrix A wheren is typically
= BTDgp, (7) much larger tharp. To impose stronger capacity control to
restrict the search space, we introduce a regularization te
where constrain the degree of transformation tatan bring about.
fo= Z (b; 7bj)TKT(bi —b;) While minimizing th(_e te_rmJS(A) t_ends to pull .the pc_)ints
(xi €S toggth_e_r, the regularization term _tnes to go a.ga.u.nst uﬁagd
9 by limiting the degree of deformation from the initial pasits
= Z [(b; — bj)Tar] >0 (8)  of the feature vectors. Specifically, the regularizatiommtés
(xi,x;)€8 as follows:
and n
Ds = diag(f1,. .., /). 9) Je(A) = > No(ei)((xi) = (x))]| - cij)*,  (16)

i,j=1
To prevent3 from degenerating to the zero vectoy we

minimize the convex function/s(8) subject to the linear WNereci; = l9(xs) = &)l = /(K)ii + (K) 5 = 2(K)y5

constraint1”3 — c for some constant > 0.3 The linear S N€ initial Euclidean distance betweefix;) and ¢(x;)

constraint eliminates the scale factor in the criterioncfion. before metric learning, and/;; () is a Gaussian function with

_ 2 2
This is a constrained optimization problem with an equalig”(a) = exp(—a”/o”) for some parameter > 0 that

constraint, which can be solved by introducing a Lagran gecifies the spread of the Gaussian window. The squared term

multiplier p to minimize the following Lagrangian: enalizes deviation from the original inter-point distang;
and the Gaussian weight regulates the degree of penalty by

J(B,p) = Js(B) + plc —173). (10) taking into consideration the magnitude @f. This form of
the regularization term is similar to that used in LLMA [6].

We then compute the partial derivatives Metric learning is formulated as an unconstrained optimiza

tion problem by minimizin
g—g — 2DsB -l ay NP Y g
Y _ 1T
op c—1°8. (12) where p > 0 is a regularization parameter that adjusts the
oJ o relative strength of the regularization term.
Settinga— =0 anda— = 0, we can obtain the optimal value Let s;; (4,7 = 1,...,n) be defined such that;; = 1 if
of 3 as s P (xi,%;) € S and 0 otherwise. We can rewrit§ A) as
CD_11 n 2
= ii PN (cij ij(A) — ————=—"—~
17D3'1 (A) g::l( i N (o)) 45 (A) = 2 R
The constant in the constraint is set ty?_, v/¢,.. SinceDs +C
is a diagonal matring1 exists as long as all the diagonal n
entries are nonzero. = > vijlai(A) —pi)? +C, (18)
i,j=1
B. Case 2: LearningA Only where
As another special case, \éve fix the coefficigfitand learn Yij = Sij + pNo(cij), (19)
A only. Specifically, we set? = &, (k=1,...,p). Hence, S PN (cij)cij (20)
1] - 9
Kpa=Ka = AKAT. (14) sij + pNo (cij)

_ and C is a term that does not depend &% Hence, the

*Bousquet and Herrmann [5] ﬁ;gg Lanckriet et al. [25] $e(K;3) = ¢ gptimal value of A that minimizes.J(A) also minimizes

as constraint which is equivalent 8" 3 = c. However, we use a constraint 3 - n 2

that is linear in3 so that the constrained optimization problem will not lead (A) = 2 =1 i3 (43 (A) - pij)”. A_S we can see from
to a value ofo for 3. Equation (21) beIOquj(A) is quadratic inA andg;;(A) =



[®7 AT (b; —b;)]|. Since®” AT (b; —b;) is linear inA and where
the norm function is convex, we can conclude thg{A) is

convex inA. By incorporating Equ_ation (13), we know that f(B) — M%)CU ¢ij(B) >0 29)
J(A) and J(A) are also convex inA. As in [6], we use i - 4i;(B) )
the method ofterative majorizationto find the optimal value 0 ¢i5(B) = 0
of A. This method is guaranteed to find the optimal solution - T
asymptotically since the criterion functioh(A) is convex. FB) = Z fi3(B)(b; — bj)(b; —bj)".  (30)
Note that BI=t
From (23), (24) and (28), we can obtain an upper bound on
BA) = i) — o) Fay ma ) (24) and (29) PP

= (b, —b;)"Ka(b; — b;) ) )

= (b;—b)TA®®"AT(b, —b;), (21) J(A)<J(A,B) = Tr(AKA'E)-2Tr(AKB"F(B))
so ¢;;(A) = |®TAT(b; — bj)|. Similarly, we define + Z yijpfj. (31)
¢i;(B) = ||¢TBT(b — by)]. From the Cauchy-Schwarz ij=1

inequality, we have ) )
Note that the equality holds, i.eJ(A) = J(A,B), when

4i;(A)gi;(B) > (b —b;)"A®®" B (b; —b;) B = A. Inthe method of iterative majorizatioti(A) is called
= (b; —b))TAKB”(b; —b;). (22) themajorized functiorand J(A., B) is called themajorizing
0J(A,B)

function By setting the partial derivatve———= to a zero
matrix of the same dimension a4, we can see that the
. ° -~ 2 optimal value ofA that minimizesJ(A, B) should satisfy
(A) = Z Yij i (A) — 2 Z VijPij i Z YiiP3;

ExpandingJ(A) gives

i,j=1 i,j=1 ij=1 23) EA =F(B)B (32)

The first term on the right-hand side of the above equatlon
can be rewritten as

n A =E'F(B)B (33)
g2 (A) = i b;,)"AKA” (b; — b;
ijz,::ﬂjq”( JX:IW ( 2 where Et is the pseudo-inverse di. Thus we can use an
~ T(AKATE), (24) |ter_at|ve procedu_re based on the foIIowmg update equ&bon
estimate the optimal value &k in a stepwise manner:
where . A® — E+F(ACD)AED), (34)
E= Y 7;(bi—b;)(b; —b;)". (25)
i,j=1 where A®) denotes the estimate at step

The iterative majorization procedure can be summarized as

The second term on the right-hand side of Equation (23) mﬁYe following steps:

be rewritten as the sum of two terms; ;). ;. Vi;Pi;¢i; (A)
and 3 ; jyen, %iiPis¢ii (A), with H., representing the set of 1) t=0; A =T,

all point pairs(i, j) for which ¢;;(B) > 0 and Hy the set of ~ 2) t =1t + 1; compute:

all point pairs(¢, j) for which ¢;;(B) = 0. For (4,j) € H,, . B
by Equation (22), we have AW —ETFAI)ACD,

Vijpijqis (A) > YijPij (b; —b;)"AKB” (b; — b;). (26) 3) If converged, then stop. Otherwise, repeat from step 2.

- i B ~ . . .
4:1(B) _Note that/(A) decreases over time monotonically since
For (i,) € Hy, sincey;; > 0, p;; > 0 andgi;(A) >0, we J(A®) < JA® AC-D) < JAED AC-D) =

have J(AG=D)
VijPijdij (A) > 0. (27)

Combining (26) and (27), the second term on the right-hand [1l. EXPERIMENTS

side of Equation (23) can be expressed as the following i ) i )

inequality: In this section, we describe some experiments we have

performed based on both synthetic and real-world data to

- compare our kernel-based metric learning methods with some

—2 Z VigPij%ij(A) < =2 Z fi;(B b;)" AKB” previous methods. We measure the effectiveness of a metric

6=l hi=1 learning scheme indirectly by how much it can improve the
«(bi —bj) clustering results in semi-supervised clustering taskth wi

= —2Tr(AKBTF(B)), (28) pairwise similarity constraints.



A. Experimental Setup k-means with different random initializations and repor¢ th

We compare the two kernel-based metric learning metho@iéerage Rand index over the 20 runs.
described in Sections Il with some previous methods. The firs The two parameters used in our kernel-based metric learning
method is RCA [2] which performs globally linear transformamethods are easy to set based on their physical meanings.
tion in the input space. The RCA algorithm performs whiters for the Gaussian window parameterused in the reg-
ing transformation on the data set, which assigns lower hitgig Ularization term (Equation (16)), we make it depend on the
to the “irrelevant” directions in the original feature spadhe average squared Euclidean distance between all point pairs
second method, called MPCK-Means, unifies metric learnifiy the feature spacer® = %577 [6(xi) — ¢(x;)[? =
and pairwise constraints [4]As in their experiments, a single 22 [Tr(K) — nK], whereK represents the mean value of the
metric parameterized by a diagonal matrix for all clustars elements inK and§ is set to be the same=(5) for all data
learned duringk-means clustering. Since their method cagets. The regularization paramejein the kernelA method
make use of both similarity and dissimilarity information(Equation (17)) is set tfl, 3] in our experiments.
we perform experiments in two different settings, without
or with dissimilarity constraints. The number of dissimita
constraints used by MPCK-Mead®D is set to be the same B- Experiments on Synthetic Data

as the number of similarity constraints. Another method is \\e first perform some experiments on the XOR data set,
LLMA [6] which is more general in that it is linear locally a5 shown in Figure 1(a). Data points shown with the same
but nonlinear globally. We also use the Euclidean distanggint style and color belong to the same class. Point pairs in
without metric learning for baseline comparison. Sincehbols gre connected by solid lines. Both RCA and LLMA perform
RCA and LLMA make use of pairwise similarity constraintsnetric learning directly in the input space. The transfaime
only, we also use such supervisory mformat_lon only for oyaia set using RCA and LLMA is shown in Figure 1(b) and
methods. In summary, the following seven distance measu(gs§ respectively. For our kernel-based methods, thereois n
for the k-means clustering algorithm are included in OUpeed to embed the points in the feature space first before
comparative study (the short forms inside brackets will ®edu performing clustering. However, for the sake of visualiaat

subsequently): we apply kernel PCA based on the learned kernel matrix
1) k-means without metric learning (Euclidean) to embed the points in a 2-dimensional space, as shown in
2) k-means with RCA for metric learning (RCA) Figure 1(d) and (e). Obviously, RCA, which performs glopall
3) Metric pairwise constrained-means using similarity jinear metric learning, cannot give satisfactory resulheT
constraints (MPCK-Means) performance of LLMA is significantly better, although some

4) Metric pairwise constrained-means using both simi- points from the two classes are quite close to each other. On
larity and dissimilarity constraints (MPCK-Mea¥P)  the other hand, our kernel-based methods can not only group

5) k-means with LLMA for metric learning (LLMA) the data points according to their class but can also preserv
6) k-means with our kernel-based metric learning methafle topology of the points inside clusters.
based on learning We also try the 2-moon data set which is commonly used in
(kernel3) some recent semi-supervised learning research. Howdeer, t
7) k-means with our kernel-based metric learning methglference is that we do not exploit the underlying manifold
based on learnings structure here. Instead, only some limited pairwise siritjla
(kernel-A) constraints are provided. The results in Figure 2 again show

We use RBF kernel for the initial kernel for our kernel-baseghat the kernel-based methods can give promising results.
metric learning methods. As in [2], [6], [45], we use the e further perform some semi-supervised clustering exper-
Rand index [31] as the clustering performance measure. Tiigents on the XOR and 2-moon data sets. We also include the
Rand index reflects the agreement of the clustering restht wijustering results of MPCK-Mean$-and MPCK-MeansSD

the ground truth. Let; be the number of pattern pairs thafor comparison. The results are shown in Figure 3 below. For

are assigned to the same cluster (i.e., matched pairs) n bghch trial, 10 point pairs are randomly selected to f&tm
the resultant partition and the ground truth, amg be the
number of pattern pairs that are assigned to different elsst
(i.e., mismatched pairs) in both the resultant partitiom arC. Experiments on UCI Data
the ground truth. The Rand index is defined as the ratio of
(n-+nq) to the total number of pattern pairs, i.8(n—1) = 2 on,six real-world data sets from the UCI Machine Learning
When there are more than two clusters, however, the standﬁrd . -
. . . ; epository. Table | shows some characteristics of the dd$a s
Rand index will favor assigning patterns to different oduist .
. ) . .The number of data points, the number of featureg, the
We modify the Rand index as in [45] so that matched pairs
. ) . . ; number of clustersn, and the number of randomly selected
and mismatched pairs are assigned weights to give them e?éjal . .
Int pairs|S| are shown for each data set in Table I.
chance of occurrence (0.5). For each data set, we rando R . 4 sh the clusteri its based o
generate 20 differenS sets to provide pairwise similarity \gure 4 Shows the clustenng results based romeans

constraints. In addition, for each set, we perform 20 runs of using different distance measures as numbered in Section I
’ ' ' A. The k-means algorithm with RCA for metric learning

4The Java code for MPCK-Means was obtained from the authof4lof ~can sometimes improve the clustering results without metri

We perform more semi-supervised clustering experiments



Fig. 1. Comparison of different metric learning methods on ti@RXdata set. (a) original data set with two classes; and ttees#d after applying (b) RCA;
(c) LLMA; (d) kernel-3; (e) kernelA.
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Fig. 2. Comparison of different metric learning methods on thedbn data set. (a) original data set with two classes; andléte set after applying
(b) RCA; (c) LLMA; (d) kernel3; (e) kernelA.
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Fig. 3. Semi-supervised clustering results: (a) XOR data @t2-moon data set. The seven clustering algorithms (nurdbiereSection 1lI-A) are:
(1) Euclidean; (2) RCA,; (3) MPCK-MeansS; (4) MPCK-MeansSD; (5) LLMA; (6) kernel-3; and (7) kernelA.

TABLE |

over 10 random runs corresponding to differéhsets. From
Six UCI DATA SETS USED IN THE EXPERIMENTS

the results, we can see that the metric learned by our kernel-
based methods gives the best clustering results.

DATA SET n d m |S] While the kernel8 algorithm is efficient due to its closed-
SOYBEAN 47 35 4 10 form solution, the optimization problem defined for the kan
s\mTEE'N i%g ig g %g A algorithm is solved in an iterative manner. In our experi-
|ONOSPHERE 351 34 2 30 ments, we use the maximum number of iterations (2 for all
BOSTON HOUSING 506 13 3 40 data sets) as the stopping criterion for the iterative niegtion
BREASTCANCER 569 31 2 50 procedure in the kernek algorithm. Fast convergence is

observed in all cases and hence the number of iterationsecan b

set to a very small number. In general, our kernel-basedanetr
learning. However, MPCK-Means, LLMA and our kerneliearning methods are slower than the global metric learning
based methods generally outperform RCA. For more acawethods (RCA and MPCK-Means) but are significantly faster

rate comparison, we perform pairgetest with significance than the nonlinear metric learning method (LLMA).
level 0.05 to statistically evaluate which result is betfene

comparison results are summarized in Table 1. We use
to indicate that the clustering results of the two methods

are not Significantly different for the given confidence Ieve We have proposed two kernel-based metric |earning meth-
and < to indicate that the mean of the Rand index valuesgs and demonstrated their promising performance over some
of the latter method is statistically higher than that of thgxisting linear and nonlinear methods. While the two kernel-
former one. From the pairetitest results, we can concludepased metric learning methods are quite effective, theyatte h
with a 95% confidence level that the kernel-based methoglgme limitations. For the kerngl-method, the limitation is its
generally outperform MPCK-Means and are comparable wifsed for performing eigendecomposition of the kernel matri
or even better than LLMA. Here we use MPCK-Means tK’ which may lead to h|gh Computationa| demand wH€n
represent the better clustering results between algositiend js |arge. For the kerneh method, it is not necessary to do
4 (WlthOUt and with dlSS|m|lar|ty ConstraintS). As we Careseeigencomposition oK. However, |earningA involves more
from Figure 4, the MPCK-Means method with diSSimilarit}barameterS’ which require Stronger bias when the Supeyviso
constraints incorporated cannot always improve the digte information is limited. One possible extension is to coesid

IV. CONCLUDING REMARKS

results. smaller, non-squard matrix which essentially represents the
n points by a smaller set of points. An interesting direction t
D. Experiments on MNIST Digits explore is to devise a general scheme for learning lsbnd

We further perform some experiments on handwritten digify Simultaneously. As another direction, we will incorporate
from the MNIST database.The digits in the database haveliSSimilarity constraints into the methods to further i
been size-normalized and centered2fx<28 gray-level im- the metrrc I_earnlng performance. Moreover, we will explore
ages. Hence the dimensionality of the input space is 784€ application of the proposed methods to other real-world
In our experiments, we randomly choose 1,000 images fgioPlems such as content-based image retrieval [7], [§], [9
each digit from a total of 60,000 digit images in the MNIST
training set. We randomly select 50 similarity constraitats ACKNOWLEDGMENTS
form anS set. Table Il shows the results of different clustering ) )
algorithms for three digit subsets. For each algorithm, ams ~ 1h€ research reported in this paper has been sup-

the mean Rand index (upper) and standard deviation (low8frted by Competitive Earmarked Research Grant (CERG)
HKUST6174/04E from the Research Grants Council of the

Shttp: //yann. | ecun. conf exdb/ mi st/ Hong Kong Special Administrative Region, China.
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Fig. 4. Clustering results for six UCI data sets. The sevasteting algorithms (numbered in Section IlI-A) are: (1) Bdean; (2) RCA; (3) MPCK-Means;
(4) MPCK-MeansSD; (5) LLMA,; (6) kernel-3; and (7) kernelA..

(1]

(2]

K]

(4]

TABLE I
PAIRED ¢-TEST FOR STATISTICAL EVALUATION OF THE CLUSTERING RESULTS

DATA SET PAIRED ¢-TEST

SOYBEAN MPCK-MEANS ~ LLMA ~ KERNEL-3 ~ KERNEL-A
PROTEIN MPCK-MEANS ~ KERNEL-3 < KERNEL-A < LLMA
WINE MPCK-MEANS < LLMA < KERNEL-83 ~ KERNEL-A
IONOSPHERE MPCK-MEANS < LLMA ~ KERNEL-83 ~ KERNEL-A

BOSTON HOUSING
BREAST CANCER

MPCK-MEANS ~ LLMA
MPCK-MEANS ~ LLMA

~ KERNEL-8 < KERNEL-A
~ KERNEL-3 ~ KERNEL-A

TABLE

CLUSTERING RESULTS FORMNIST DATA SETS.

EUCLIDEAN RCA MPCK-MEANS-S MPCK-MEANS-SD  LLMA KERNEL-B KERNEL-A
{0,1} 0.9790 0.9814 0.9752 0.9800 0.9802 0.9896 0.9900
+0.0004 +0.0109 +0.0105 +0.0055 +0.0015 +0.0009 +0.0011
{1,5} 0.8179 0.8410 0.8254 0.8156 0.8013 0.8682 0.8590
+0.0001 +0.0211 +0.0075 +0.0068 +0.1370 +0.0534 +0.0089
{1,9} 0.9531 0.9546 0.9275 0.9317 0.9527 0.9609 0.9657
+0.0000 +0.0319 +0.0137 +0.0087 +0.0012 +0.0203 +0.0068
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