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Abstract

Regularization path algorithms were proposed as a novel approach to the model selection problem

by exploring the path of possibly all solutions with respect to some regularization hyperparameter in

an efficient way. This approach was later extended to a support vector regression (SVR) model called

ε-SVR. However, the method requires that the error parameter ε be set a priori. This is only possible

if the desired accuracy of the approximation can be specified in advance. In this paper, we analyze the

solution space for ε-SVR and propose a new solution path algorithm, called ε-path algorithm, which

traces the solution path with respect to the hyperparameter ε rather than λ. Although both two solution

path algorithms possess the desirable piecewise linearity property, our ε-path algorithm overcomes some

limitations of the original λ-path algorithm and has more advantages. It is thus more appealing for

practical use.

Index Terms

Solution Path, Support Vector Regression, Model Selection

I. INTRODUCTION

In a typical regression problem, we are given a training set of independent and identically

distributed (i.i.d.) examples in the form of n ordered pairs, {(xi, yi)}ni=1 ⊂ Rd × R, where xi

and yi denote the input and output, respectively, of the ith training example. Linear regression

is the simplest method to solve the regression problem where the regression function is a linear

function of the input. As a nonlinear extension, support vector regression (SVR) is a kernel

method which extends linear regression to nonlinear regression by exploiting the kernel trick

[1], [2]. Essentially, each input xi ∈ Rd is mapped implicitly via a nonlinear feature map φ(·)
to some kernel-induced feature space F where linear regression is performed. Specifically, SVR

learns the following regression function by estimating w ∈ F and w0 ∈ R from the training

data:

f(x) = 〈w, φ(x)〉+ w0, (1)

where 〈·, ·〉 denotes the inner product in F . The problem is solved by minimizing some empirical

risk measure that is regularized appropriately to control the model capacity.

One commonly used SVR model is called ε-SVR. In the ε-SVR model, the ε-insensitive loss

function |y − f(x)|ε = max{0, |y − f(x)| − ε} is used to define an empirical risk functional
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Fig. 1. Linear SVR results for four different combinations of values for λ and ε. (a) proper values of λ and ε are specified;

(b) λ =∞; (c) ε > (ymax − ymin)/2; (d) ε < (ymax − ymin)/2, but all the data points are inside the ε-tube.

which exhibits the same sparseness property as that for support vector classifiers (SVC) using

the hinge loss function via the so-called support vectors (SV). If a data point x lies inside the

insensitive zone called the ε-tube, i.e., |y − f(x)| ≤ ε, then it will not incur any loss. However,

the error parameter ε ≥ 0 has to be specified a priori by the user. The primal optimization

problem for ε-SVR can be stated as follows:

min
w,ξ(∗)

λ

2
‖w‖2 +

n∑
i=1

(ξi + ξ∗i ) (2)

subject to yi − (〈w, φ(xi)〉+ w0) ≤ ε+ ξi (3)

(〈w, φ(xi)〉+ w0)− yi ≤ ε+ ξ∗i (4)

ξ
(∗)
i ≥ 0. (5)

Here and below, i = 1, . . . , n and (∗) denote both the variables with and without asterisks. The

regularization hyperparameter λ > 0 plays a role in capacity control by maintaining a proper

balance between empirical loss and model complexity. Like ε, λ also has to be chosen in advance

by the user. The two hyperparameters λ and ε play different roles in ε-SVR. Figure 1 shows

four different combinations of the hyperparameter values.

In practice, users often use some default values for λ and ε even though they are by no means

optimal choices. A better approach is to specify some candidate hyperparameter values and

then apply cross validation to select the best choices among the candidates. However, extensive

exploration for the optimal hyperparameter values is seldom pursued since this requires training

the model many times under different hyperparameter settings. To overcome the difficulty of

selecting ε, [3] proposed the ν-SVR model which automatically adjusts the width of the tube
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so that at most a fraction ν of the data points lie outside the tube. Although ν-SVR can help

alleviate much of the effort involved in choosing the ε value, it is still very time consuming to

find an appropriate combination of values for λ and ε to fit the data.

More recently, a novel approach has emerged to address the model selection problem by

exploring the entire regularization path1 for solutions without having to re-train the model

multiple times [4]–[8]. Research efforts in this direction have resulted in several regularization

path algorithms. For SVR, [9] devised an algorithm that computes the entire solution path with

respect to λ for some fixed ε value. The algorithm starts from λ =∞, with the initial solution

obtained by solving a linear programming problem. As λ decreases, the algorithm computes the

solution for every value of λ. However, we observe that sometimes the regularization path cannot

be traced successfully during the execution of the algorithm. When there exists only one or even

no point at the boundaries, the tube has to move and rotate until two valid points enter the tube.

There exist many possible combinations for two points to enter the elbows simultaneously. Hence,

the algorithm needs to enumerate all the combinations and then pick a valid one from them.

However, since the search strategy to enumerate all possible combinations is not systematic, this

difficulty will pose a problem to the algorithm. As a consequence, it is not easy to realize the

λ-path algorithm in practice.

In this paper, we also address the solution path problem for ε-SVM. Our main contributions

can be summarized by these two key findings:

• We establish that the dual variables of the dual optimization problem corresponding to (2)

are piecewise linear with respect to the two-dimensional hyperparameter vector (λ, ε);

• We propose an efficient solution path algorithm, called ε-path algorithm, that traces the

solution path with respect to ε for the optimization problem in (2) when λ is fixed.

Our ε-path algorithm possesses competitive advantages over the λ-path algorithm proposed by

[9]. Not only can the ε-path algorithm always proceed without difficulty, but it also has a very

simple initialization step and is efficient in finding a good regression function that can generalize

well. More specifically, the ε-path algorithm initializes the tube width to infinity, implying that

it starts with no support vectors. The algorithm then reduces the tube width so that the number

of support vectors increases gradually as the algorithm proceeds. As a result, a good regression

1For notation simplicity, we refer to the regularization path as λ-path.
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function with the desirable sparseness property can be obtained only after a small number of

iterations in decreasing ε.

The rest of this paper is organized as follows. Section II briefly reviews some existing solution

path algorithms and Section III reviews the ε-SVR formulation and introduces some basic

terminology used later in the paper. In Section IV, we present a new approach for devising

solution path algorithms and investigate the use of this approach for both the λ-path and the

ε-path. Some further discussions are given in Section V and experimental results are presented

in Section VI. Finally, the last section concludes the paper.

II. SOLUTION PATH ALGORITHMS

The basic idea underlying solution path algorithms comes from continuation methods [10],

which compute the current solution based on an already obtained one. Specifically, we can

interpret a solution path algorithm as follows: given a hyperparameter value µ and its corre-

sponding solution f̂µ,
2 a solution path algorithm seeks to update the solution from f̂µ to f̂µ+s

in an efficient way as µ changes to µ + s by a small value s. The updating formula is often

expressed as f̂µ+s = f̂µ + u(µ, s). If the solution changes nonlinearly with s, gradient descent

or the Newton-Raphson method [11] can be used to estimate u(µ, s). On the other hand, if the

solution changes linearly with s, u(µ, s) can be expressed as s ·v(µ) where v(µ) does not depend

on s.

This approach makes it possible to trace the (entire) solution path as a function of the

hyperparameter without having to train the model multiple times. Cross validation may then be

used to estimate the hyperparameter value that gives the lowest generalization error. Since this

approach has much lower computational demand without the need for training the model multiple

times, we can afford to estimate the generalization errors for a much larger set of hyperparameter

values in searching for the optimal choice. Previous works mainly focus on exploring the solution

path with respect to the regularization hyperparameter and hence the resulting solution path

is also called regularization path. [6] proposed an algorithm called the least angle regression

(LARS) algorithm. It can be used to trace the regularization path for linear least square regression

2As the hyperparameter value µ changes, the solution estimator f̂ will change accordingly. Thus the estimator can be considered

as a function of µ. We use f̂µ to indicate the dependence on µ.
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regularized with the L1 norm. An important finding is that the path of the solutions is piecewise

linear and hence it is efficient to explore the entire path by monitoring the breakpoints between

the linear segments only. [7] proposed an algorithm to compute the regularization path for the

standard L2-norm SVC and [5] proposed one for the L1-norm SVC. They are again based on

the property that the paths are piecewise linear with respect to the regularization hyperparameter.

[12] showed that boosting approximately follows the regularization path with an appropriate loss

and an L1 penalty. More generally, [4] showed that any model with an L1 regularization term and

a quadratic, piecewise quadratic, piecewise linear, or linear loss function has a piecewise linear

solution path and hence the entire path can be computed efficiently. For general loss functions and

regularizers, the regularization paths are typically not (piecewise) linear. The predictor-corrector

algorithm [10] is one of the fundamental strategies for implementing numerical continuation

methods and can be used for tracing the solution path. [11] proposed another path-following

algorithm for approximating nonlinear solution paths.

In this paper, we investigate the solution space of ε-SVR based on a novel view. In particular,

we consider two types of optimality conditions, namely, equality conditions and inequality

conditions, which play different roles in exploring the solution space:
• The equalities establish conditions that must be satisfied throughout the entire solution path

and thus determine the direction of movement between breakpoints;
• The inequalities determine which data points are involved in the equality constraints and

thus determine the breakpoints.

Based on this approach, it is straightforward to investigate the path-following algorithm for either

λ or ε. An advantage of this approach is that it is very general and can be applied to explore

the solution paths for other hyperparameters as well.
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III. SVR PROBLEM FORMULATION

Applying the method of Lagrange multipliers to the primal optimization problem for ε-SVR

in (2)–(5), we arrive at the following dual optimization problem:

max
α(∗)

− 1

2λ

n∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi,xj)

−ε
n∑
i=1

(αi + α∗i ) +
n∑
i=1

(αi − α∗i )yi (6)

subject to 0 ≤ α
(∗)
i ≤ 1 (7)

n∑
i=1

(αi − α∗i ) = 0, (8)

where K(xi,xj) = 〈φ(xi), φ(xj)〉 is the kernel function specified by the user and αi and α∗i are

the Lagrange multipliers for constraints (3) and (4), respectively.

We also have

w =
1

λ

n∑
i=1

(αi − α∗i )φ(xi). (9)

By substituting (9) into (1), the regression function can be rewritten as:

f(x) = 〈w, φ(x)〉+ w0

=
1

λ

n∑
i=1

(αi − α∗i )K(xi,x) + w0. (10)

From the Karush-Kuhn-Tucker (KKT) optimality conditions, we can derive the following

relationships:

yi − f(xi) > ε =⇒ αi = 1, α∗i = 0 (11)

yi − f(xi) = ε =⇒ αi ∈ [0, 1], α∗i = 0 (12)

yi − f(xi) ∈ (−ε, ε) =⇒ αi = 0, α∗i = 0 (13)

yi − f(xi) = −ε =⇒ αi = 0, α∗i ∈ [0, 1] (14)

yi − f(xi) < −ε =⇒ αi = 0, α∗i = 1 (15)

As a consequence, f(x) can be expressed as an expansion in terms of only a subset of data

points for which either αi or α∗i is nonzero. These points are referred to as SVs which, like those
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Right of elbows(R)Center(C)
Left of elbows(L)

Right elbow(ER)

y − f (x)

Loss

Left elbow(EL)

Fig. 2. The set of all data points is partitioned into five subsets according to the ε-insensitive loss function.

for SVC, contribute to the sparseness property of f(x) with representational and computational

advantages.3

Following the convention in [9], we partition the set of all data points into the following five

subsets as illustrated in Figure 2:

• R = {i : yi − f(xi) > ε, αi = 1, α∗i = 0} (Right of the elbows)

• ER = {i : yi − f(xi) = ε, αi ∈ [0, 1], α∗i = 0} (Right elbow)

• C = {i : |yi − f(xi)| < ε, αi = 0, α∗i = 0} (Center)

• EL = {i : yi − f(xi) = −ε, αi = 0, α∗i ∈ [0, 1]} (Left elbow)

• L = {i : yi − f(xi) < −ε, αi = 0, α∗i = 1} (Left of the elbows)

As we change the value of λ or ε, the tube will move, rotate, shrink, expand or remain

unchanged. Some events may occur during this process. An event is said to occur when a point

enters or leaves an elbow, causing some point sets to change as a result. We categorize the

different events as follows:

1) A point enters an elbow:

• From C to ER with αi = 0

• From C to EL with α∗i = 0

• From R to ER with αi = 1

3The notion of sparsity here is somewhat different from that commonly used in statistics in the context of variable selection.

As a kernel method, the sparseness property of f(x) refers to a regression function that is represented as a linear combination

of a small number of kernel function terms.
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• From L to EL with α∗i = 1
2) A point leaves an elbow:

• From ER to R with αi = 1

• From ER to C with αi = 0

• From EL to C with α∗i = 0

• From EL to L with α∗i = 1

For those points lying inside or outside the tube, i.e., in R∪C∪L, their α(∗)
i values remain fixed

until an event occurs. Hence, it suffices to focus on the points at the elbows, i.e., in ER ∪ EL.

IV. SVR SOLUTION PATHS

A. Optimality Conditions

The SVR dual optimization problem in (6)–(8) is a quadratic programming (QP) problem.

When the kernel matrix K = (K(xi,xj)) is positive semi-definite, the problem has a unique

optimal solution. For the convenience of subsequent derivation, we define α0 = λw0 and rewrite

the regression function in (10) as

f(x) =
1

λ

[
n∑
i=1

(αi − α∗i )K(xi,x) + α0

]
. (16)

In the dual optimization problem, convex optimization is performed on a feasible set defined by

the constraints (7) and (8). However, when the KKT conditions (11)–(15) play a role in defining

the optimality conditions, (α(∗), α0) is the optimal solution if and only if it satisfies all these

conditions. Thus, (7)–(8) and (11)–(15) comprise the optimality conditions for SVR.

The optimality conditions can be distinguished into the equality conditions (8), (12) and (14)

and the inequality conditions (7), (11), (13) and (15). The equality conditions (12) and (14),

which hold only for the points at the elbows (i.e., in ER ∪ EL), lead to the following linear

system: ∑
i∈ER

αiK(xi,xj)−
∑
i∈EL

α∗iK(xi,xj) + α0

= λ(yj − ε)−
∑
i∈R

αiK(xi,xj) +
∑
i∈L

α∗iK(xi,xj), ∀j ∈ ER, (17)∑
i∈ER

αiK(xi,xk)−
∑
i∈EL

α∗iK(xi,xk) + α0

= λ(yk + ε)−
∑
i∈R

αiK(xi,xk) +
∑
i∈L

α∗iK(xi,xk), ∀k ∈ EL. (18)
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From another equality condition (8), we have∑
i∈ER

αi −
∑
i∈EL

α∗i = −
∑
i∈R

αi +
∑
i∈L

α∗i . (19)

Suppose ER contains p1 indices and EL contains p2 indices. The value p1 +p2 indicates the total

number of points at the elbows. The size of the linear system defined by (17)–(19) is thus equal

to p = p1 + p2 + 1. The system of p linear equations can be represented in matrix form as

Ka


α0

αER

−α∗EL

 = λyE + λε1a −Kb


0

αR

−α∗L

 . (20)

where the undefined notations are introduced in the Appendix.

Suppose we have an SVR solution for certain hyperparameters (λ, ε). According to the

regression function of this solution, data points are partitioned into five subsets as defined above.

As the hyperparameter λ or ε changes its value, the solution will change accordingly in order to

satisfy equation (20). We consider the period between two consecutive events when αR and α∗L

remain unchanged at 0 or 1. During this period, only those points at the elbows (i ∈ ER ∪ EL)

can change their values. From the equality condition (8), we know that if one point at an elbow

changes its value, then at least one other elbow point must also modify its value correspondingly.

An immediate consequence of this is that there should be at least two points at the elbows, i.e.,

p1 + p2 ≥ 2.4 When a new hyperparameter value is specified, the corresponding solution can be

computed as 
α0

αER

−α∗EL

 = λ(Ka)−1(yE + ε1a)− (Ka)−1Kb


0

αR

−α∗L

 . (21)

It is easy to see that


α0

αER

α∗EL

 is linear in either λ or ε. If the inverse of Ka does not exist,

the update of the solution will no longer be unique. For the sake of illustration, we consider

an example where the points {xi} are from a one-dimensional space. When a linear kernel is

4If p1 + p2 < 2, we face a problem in the initialization setup. The algorithms for the λ-path and the ε-path use different

methods to handle this case. We will discuss them in Sections IV-B and IV-C, respectively.
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applied and there exist three points at the elbows, the kernel matrix Ka is not of full rank.

As a result, the solution path algorithm can have multiple updating possibilities with each one

corresponding to choosing any two of the three points to compute a new solution. In this paper,

we exclude this case by considering the positive definite kernels only. When the kernels are

positive semidefinite, the optimal solution may not be unique. We modify Ka by adding a ridge

term to ensure that (Ka)−1 always exists and an approximate path of solutions is obtained.

The p linear equations above have been used to derive the updating formula for a new solution.

However, the derivation is based on the assumption that no event occurs during the period even

though the hyperparameter value has changed. Hence, given a certain hyperparameter value and

the solution obtained for that value, the solutions for new hyperparameter values within a local

neighborhood in which no event occurs can be computed directly via equation (21). On the other

hand, the inequality conditions serve to indicate when the assumption no longer holds. When a

new solution along the path violates the inequality conditions, the point sets have to be updated

to determine the next breakpoint. Here, we consider the algorithm to trace the λ-path from λl

in the decreasing direction. Tracing the λ-path in the increasing direction and tracing the ε-path

are both very similar to this.

We simplify equation (21) to 
α0

αER

−α∗EL

 = λva − vb, (22)

where

va = (va0 , v
a
i (∀i ∈ ER), vaj (∀j ∈ EL))T = (Ka)−1(yE + ε1a) (23)

vb = (vb0, v
b
i (∀i ∈ ER), vbj(∀j ∈ EL))T = (Ka)−1Kb


0

αR

−α∗L

 (24)

are independent of λ. The algorithm monitors the occurrence of any of these possible events:

• The αi or α∗i value of a point i ∈ E lR ∪E lL reaches 0 or 1. The λi value of the point can be

calculated by λi = (αi + vbi )/v
a
i (∀i ∈ ER) or λi = (−α∗i + vbi )/v

a
i (∀i ∈ EL).

• A point i ∈ Rl ∪ Cl ∪Ll hits an elbow, i.e., |yi − f(xi)| = ε. The λi value of the point can

be calculated directly by plugging (22) into (16).
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Since the solution is linear in either λ or ε, the λi values for the possible events above can be

computed exactly. Through monitoring these possible breakpoint values, we can find the next

breakpoint, λl+1 = arg maxi{λi < λl}, at which the next event occurs. The algorithm then

updates the point sets before decreasing the hyperparameter value further. This updating step is

essential, or else the solutions computed for the hyperparameter values beyond the breakpoint

without updating the point sets will lead to violation of the inequality conditions. We thus have

an algorithm for tracing the SVR solutions along the λ-path or the ε-path. However, since the

λ-path and ε-path have different properties, we will discuss them separately in the next two

subsections.

B. λ-Path

The λ-path algorithm discussed above is essentially the same as the regularization path

algorithm proposed by [9]. However, the algorithm derived based on our approach for computing

the next breakpoint via (22) is simpler and easier to understand. The λ-path algorithm explores

the correspondence between every λ value and the corresponding solution (α(∗)(λ), w0(λ)) while

ε is fixed. The path may start from the solution of an ε-SVR model for any initial value of λ,

since the values of α(∗)
i fully determine the sets R, ER, C, EL and L. However, this requires

solving a QP problem which is computationally demanding if it is solved directly. The problem

becomes simpler if we set λ = ∞ initially. Doing so will make the first term of the objective

function (6) vanish, leaving only the last two terms. Thus the QP problem degenerates to a

linear programming problem which is easier to solve. Similarly, the first term of (10) vanishes

so that the regression function becomes f(x) = w0, which corresponds to the case shown in

Figure 1(b). The initial values of α(∗)
i , denoted as α(∗)0

i , are either 0 or 1 if all the values of

yi are distinct. The ε-tube is bounded by the sets R, C and L. The tube can move around by

changing λ and w0, while no point is allowed to pass through any elbow. Hence the following

constraints are satisfied:

yj − 1

λ

∑
i

(α0
i − α∗0i )K(xi,xj)− w0 > ε for j ∈ R (25)∣∣∣yj − 1

λ

∑
i

(α0
i − α∗0i )K(xi,xj)− w0

∣∣∣ < ε for j ∈ C (26)

yj − 1

λ

∑
i

(α0
i − α∗0i )K(xi,xj)− w0 < −ε for j ∈ L (27)
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invalid

valid

Fig. 3. The tube rotates in a clockwise direction as λ decreases. The one on the left is the initial case. Shown on the right are

three possible rotation results where two points enter the elbows together. Only the last one is a valid case.

In order to explore the solution path with respect to λ, there should be at least two points at the

elbows, i.e., p1+p2 ≥ 2. [9] proposed a strategy for finding a feasible (λ,w0) combination so that

two points enter the elbows simultaneously. It first moves the tube until a point enters one elbow

through changing w0. Then it decreases λ until another point also enters an elbow. However,

we find that this strategy is very difficult to implement in practice. The reason is that, given

the sets R, C and L, there exist many possible combinations for two points to enter the elbows

simultaneously. However, most of these combinations are invalid because the λ-path algorithm

cannot proceed further with the corresponding point sets. Figure 3 depicts some possible valid

and invalid cases. For the upper invalid case, we assume that a blue cross point i ∈ R enters one

elbow with αi = 1 and a red circle point j ∈ C enters another elbow simultaneously with α∗j = 0.

In order to continue the λ-path, these two points should pass through the elbows during which

αi should decrease to 0 but α∗j should increase to 1. However, doing so will lead to violation

of the constraints in (7), showing that the two points cannot stay at the elbows to continue the

λ-path. Thus, the algorithm has to make the tube move and rotate without changing the point

sets R, C and L until another two points enter the elbows. Since the movement of the tube to

search for two valid points is not systematic, it is difficult to implement a program to explore

all possible combinations for two points to enter the elbows simultaneously. It is also difficult

to estimate the number of iterations required to find two such valid points. In fact, whenever

the elbows contain fewer than two points while the λ-path is being traced, the algorithm has to

perform such a random search, making this approach unappealing in practice.
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C. ε-Path

In this section, we illustrate some interesting properties of our proposed ε-path algorithm. If

we set ε =∞, it is trivial to solve the optimization problem in (6)–(8). The solution is simply

α
(∗)
i = 0 for all i, meaning that all the points are inside the tube (i.e., in C) and, from (10),

f(x) = w0. This corresponds to the case shown in Figure 1(c). Since |yi − f(xi)| < ε for all

i, we set ε > (ymax − ymin)/2 and w0 = (ymax + ymin)/2 initially. Compared with the λ-path

algorithm which has to solve a linear programming problem, the initialization problem for the

ε-path algorithm is much easier to solve.

We assume that λ is pre-specified by the user and it remains fixed during the execution of the

ε-path algorithm. Along the ε-path, we always have |ER| > 0 and |EL| > 0 and we apply (21)

to update the solution. If there is an elbow containing no points, we reduce ε until each elbow

contains at least one point. Let i+ = arg maxi∈C
(
yi− f(xi)

)
and i− = arg mini∈C

(
yi− f(xi)

)
.

Then E lR = {i+}, E lL = {i−} and εl = (yi+ − yi−)/2. This procedure is very efficient, only

involves shrinking the tube to reduce its width without rotating it. It is deterministic to find

two points at the elbows simultaneously and is thus much easier to implement than the random

search in the λ-path algorithm when p1 + p2 < 2.

The process along the ε-path can be understood geometrically in the linear space. If d = 1

and each elbow contains one point, then decreasing ε will rotate the tube with the two points at

the two elbows as the centers of rotation. Figure 1(d) shows one such example. The resulting

rotation causes the width of the tube to decrease while the two elbow points remain at the

elbows. Considering further the above example, the ε-path algorithm cannot proceed if a new

point enters an elbow, i.e., |E lR| + |E lL| > 2, |E lR| ≥ 1 and |E lL| ≥ 1. In the d = 1 linear space,

the width of the tube will be fixed by these elbow points and hence the tube can neither rotate

nor shrink. As a result, ε cannot decrease. This problem always occurs in the linear space. If

the dimensionality of the linear space is d, the rank of KE is at most d no matter how many

points are involved. Thus, the inverse of Ka does not exist when the elbows contain more than d

points. This problem can also be overcome by using a positive definite kernel or adding a ridge

term. For example, if the Gaussian kernel is used, we can always execute the ε-path algorithm

no matter how many points are at the elbows.
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D. Complexity Analysis

The optimization problems for both ε-SVR and ν-SVR can be formulated as QP problems,

with O(n3) time complexity and O(n2) space complexity. Many attempts have been made to

reduce the computational complexity of SVM algorithms. For example, one popular approach is

to obtain low-rank approximation of the kernel matrix by using the Nyström method [13], greedy

approximation [14], or other methods. Another approach is to use chunking and decomposition

methods [1], [15]–[18] which perform optimization on only a small subset of all the training data

at a time. The sequential minimal optimization (SMO) algorithm [17], [19] has been considered

as the state-of-the-art SVM implementation, with training time complexity empirically observed

to be between O(n) and O(n2.3). In practice, users often prespecify a small set of candidate

hyperparameter values and then perform cross validation to estimate the generalization error of

the model trained for each choice of the hyperparameter value. The choice that gives the lowest

generalization error is considered the best choice. A disadvantage of this approach is that the

search for the “optimal” choice is limited to be within a relatively small set of choices that have

to be prespecified in advance by the user. This approach is computationally prohibitive if we

want to perform an extensive search for a good hyperparameter value.

To analyze the computational complexity of the solution path algorithm, we rewrite the

regression function f(x) as

f(x) =
1

λ
(aE(x) + bRL(x) + α0) , (28)

where

aE(x) =
∑
i∈ER

αiK(xi,x)−
∑
i∈EL

α∗iK(xi,x) (29)

bRL(x) =
∑
i∈R

αiK(xi,x)−
∑
i∈L

α∗iK(xi,x). (30)

While the solution path is being explored, all the f(xi) values are repeatedly used for estimating

the next breakpoint. Since αR and α∗L remain unchanged between two consecutive events, it will

lead to significant computational saving if we cache the values of bRL(xi) ∀i. Let |R|+ |L| = q.

Computing bRL(xi) ∀i during the preprocessing step has O(nq) time complexity and O(n)

space complexity. When the next event occurs, the point sets are changed and the algorithm

updates bRL(xi) ∀i with O(n) complexity. To calculate va and vb in the updating formula
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(22), some matrix operations are performed with O(p3) time complexity. Since there is only

one point difference in the elbows between two consecutive events, the Sherman-Morrison-

Woodbury formula for block matrix inversion can be applied and hence the computational cost

can be reduced to O(p2). To find the first inequality condition violated by the path, it requires

scanning through all inequality conditions to estimate the next breakpoint. Since bRL(x) has

been computed in advance, it requires O(np) time complexity to find the first point that will

hit or leave the elbows. Therefore, the overall computational cost between two breakpoints is

O(p2 + np+ n). The total number of breakpoints along the solution path depends on the range

of the hyperparameter values we want to explore. Starting from ε =∞, most points move from

inside the tube to outside as the width of the tube decreases. When nonlinear kernel functions

are used, some points may re-enter the tube after leaving it and pass through the elbows multiple

times as ε decreases. Empirically, we found that the number of breakpoints is a small multiple of

n even when exploring a wide range of hyperparameter values such as λ ∈ (0,∞) or ε ∈ (0,∞).

However, it is usually not necessary to explore the entire ε-path in SVR. When ε is initialized to

infinity in the beginning, all points are inside the tube and hence there is no SV. As ε decreases,

the points pass through the elbows from inside the tube to outside and the number of SVs

increases. This has a similar effect as increasing ν from 0 to 1 in ν-SVR, but the number of

SVs can be controlled exactly in our method. To obtain a desirable regression function with the

sparseness property, we only need to run the algorithm for a small number of steps. Therefore, a

regression function with the desired modeling ability can be obtained very efficiently. Note that

the λ-path for SVC is explored in a reverse direction as compared with the ε-path for SVR. In

the SVC formulation, the SVs are those points inside the margin. To simplify the initialization

step for the λ-path algorithm, λ is initialized to be very large so that most points are inside

the margin. At this moment, most of the points are SVs. As λ decreases, both the width of the

margin and the number of SVs decreases. Since a classifier that generalizes well typically has

a sparse representation involving a small number of SVs, almost the entire solution path has to

be explored until λ becomes very small so that most points are excluded from the margin. Thus

the total number of moves is O(n). Based on empirical findings, [7] suggested that this number

is some small multiple of n.

Since the solution path proceeds in a piecewise linear manner, any solution between two

breakpoints can be computed efficiently via interpolation based on the two solutions obtained at
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the breakpoints. As a result, it suffices to store the solutions for the breakpoints only.

V. DISCUSSIONS

From equation (21), we have seen that the update is linear in either λ or ε. When the values

of λ and ε change simultaneously, the corresponding solution can still be obtained directly from

(21). Even if we change the kernel parameter value which will lead to changes in Ka and Kb, this

simple update can still be used for computing the new solution. The updating formula remains

valid between two consecutive events when the point sets do not change. If further tracing the

path of solutions after an event occurred, the solution path will lead to a breakpoint at which an

event occurs. The point sets have to be updated before the solution path is traced beyond this

breakpoint, and a new formula is used to update the solution. However, the update with changes

in (λ, ε) simultaneously or in the kernel parameter is nonlinear, thus the next breakpoint cannot

be calculated in advance like that in the ε-path or the λ-path. One straightforward approach [20]

to estimate the new breakpoint is to change the hyperparameter value by a small increment and

update the new solution. It then checks whether the next event has occurred or not. If the next

event has not occurred, we keep on changing the hyperparameter value further. Otherwise, the

increment of the change is decreased to a smaller value. Following this procedure, the algorithm

can iteratively approximate the next breakpoint and continue to trace a nonlinear solution path. As

we see, it is more difficult to calculate the next breakpoint during the nonlinear path exploration.

If we are given a certain direction (λ, ε) in which the path is traced, it will be more efficient to

use ε-path and λ-path interchangeably.

After exploring the path of solutions, it is necessary to estimate the generalization errors of

these solutions and then pick an optimal one from the solutions. [21] gave a comprehensive

discussion on the estimation of generalization errors and [22] studied the degrees of freedom of

LASSO in the framework of Stein’s unbiased risk estimation (SURE). Based on these works,

[9] proposed an unbiased estimator for the degrees of freedom of the SVR model, i.e.,

d̂f = |ER|+ |EL|. (31)

The number of points at the elbows is a simple unbiased estimator for the degrees of freedom of

f(x). This estimator can be applied to derive AIC [23] and BIC [24] for model selection. How-

ever, since there is an assumption that the response y is generated according to a homoskedastic
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model, an additional variable, i.e., the variance, has to be estimated. The generalized cross

validation (GCV) criterion [25], which is an approximation of the leave-one-out cross validation

criterion, is another criterion for estimating the generalization error without requiring a known

variance:

GCV =

∑n
i=1(yi − f(xi))

2

(1− d̂f/n)2
. (32)

[9] used this criterion to estimate the generalization errors of the SVR solutions. The degree

of freedom provides an intuitive and informative measure of the complexity of a fitted model.

When the elbows contain many points, the complexity of the regression function will become

too high to generalize well. The number of SVs indicates the sparsity of the function, but it

is by no means an indicator of the generalization performance. Our experimental results in the

next section also illustrate this phenomenon.

VI. EXPERIMENTAL RESULTS

The behaviors of the above algorithms can best be illustrated using video. We have prepared

some videos to show several illustrative examples. The videos and the code for the λ-path and ε-

path algorithms are available at http://www.cse.ust.hk/˜wanggang/svrpath.htm.

A. Toy Example: Noisy Sinc-Function

ε = 0.67735 ε = 0.41982 ε = 0.1981

Fig. 4. SVR ε-path results on the sinc-function data at three different breakpoints. In each sub-figure, the sinc function is

shown as a blue dotted curve. The two red dash curves correspond to the ε-tube and the black solid curve in between shows

the regression function. We set γ = 0.5 and λ = 0.1 in the ε-path algorithm.
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We generate a set of 100 data points {(xi, yi)} with xi drawn uniformly from [−3, 3] and

yi = sin(πxi)/(πxi) + ei, where ei is a Gaussian noise term with zero mean and a variance of

0.1. We randomly partition the data set into a training set of 50 points and a validation set of 50

points. The Gaussian RBF kernel K(xi, xj) = exp(‖xi−xj‖2/γ) is used. Since the input points

are from a one-dimensional space, the regression function can be shown as a two-dimensional

plot. Figure 4 plots the SVR results at three breakpoints along the ε-path. We run the ε-path

algorithm with three different γ values, 0.05, 0.5 and 5, while setting λ = 0.1. The algorithm

terminates when ε decreases to 0.03, at which most of the points become SVs. For each ε-path, we

compute the mean squared error (MSE) on the validation set to estimate the generalization error.

Figure 5 plots the training data, the sinc function, and the regression functions that minimize the

MSE along the whole ε-paths for different kernel values. We can see that the optimal regression

function overfits the data when γ = 0.05 but underfits the data when γ = 5. On the other hand,

it fits the data well when γ = 0.5.

−3 −2 −1 0 1 2 3

−0.4

0

0.4

0.8

1.2

 

 
data

sinc

γ = 5

γ = 0.5

γ = 0.05

Fig. 5. Based on three ε-paths with λ = 0.1 and γ = 0.05, 0.5, 5, the optimal solution for each path in terms of the mean

squared error on the validation set is plotted.

Figure 6 plots the number of SVs, the elbow size, and the estimated generalization error as a

function of ε for different values of γ. As the ε-path proceeds, the tube width always decreases

and more points become SVs. The number of SVs increases accordingly regardless of what the

γ value is. When γ = 0.05, the tube and the regression function are very elastic. The elbow
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Fig. 6. Results on (a) the number of SVs, (b) the elbow size, and (c) the generalization error along the SVR ε-path for different

γ values. λ is set to 0.1.

size generally increases as ε decreases. During this process, more and more points move into

the elbows and then settle down there. The regression function is thus sensitive to having many

points at the elbows. It leads to a large degree of freedom, which overfits the data. In other words,

the model has low bias but high variance. When γ = 5, on the other hand, the elbow size remains

small along the ε-path. Since the function is not flexible enough, many points cannot stay at the

elbows simultaneously. It induces a model with high bias but low variance, thus underfitting the

data. Setting γ = 0.5 can fit the data satisfactorily as the bias and variance are balanced well.

Therefore, the elbow size measures the complexity of the regression function. When its value

is either too high or too low, it cannot generalize well. From Figure 6(a), we notice that the

number of SVs always increases. Although it determines the sparsity of the regression function,

it is not a good indicator of the generalization performance. Since the elbow size remains almost

unchanged as ε is less than a certain value when γ = 0.5, the generalization error performs well

along the corresponding ε-path.

Figure 7 shows the effect of different values of λ on the ε-path algorithm. It shows that the

regression function is not very sensitive to λ if it is given a moderate value. When λ = 0.01 and

1, the solution paths show similar generalization error curves as ε decreases. Their generalization

errors decrease dramatically in the beginning and good regression functions can be obtained.

As the ε-path further proceeds, the performance of the regression functions remains stable and
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Fig. 7. Relationships between MSE, ε, and the number of steps in the algorithm for different values of λ. (a) MSE vs. ε, with

the horizontal axis in log scale; (b) ε vs. number of steps; (c) MSE vs. number of steps.

the generalization errors change slightly. However, when λ is quite large (λ = 10), it always

tends to give a flat function leading to large error. It is interesting to notice that when λ is

very small (λ = 0.0001), its beginning part of the generalization error curve is overlapped with

those when λ = 0.01 or 1. The regression function can fit the data well after a few iterations

of the algorithm. Nevertheless, the generalization error increases as the algorithm proceeds, thus

overfitting occurs. Both ε and λ control the model complexity in SVR. This property is different

from that of many statistical models, since only setting the regularization hyperparameter to be

small does not necessarily lead to “poor” generalization ability. The generalization error curve

for the ε-path will first decrease and then increase for very small values of λ. To avoid the

overfitting cases, the value of λ should not be set very small. In this dataset, we observe that

λ taking values from [0.01, 1] is a good choice. Figure 7(b) shows that ε decreases rapidly

during the first few steps of the ε-path algorithm. Afterwards, the rate of decrease in ε slows

down significantly. As ε decreases, more and more points move towards the elbows. There is an

inflexion point after which both ε and the regression function only change slightly. Executing

more steps of the algorithm beyond this point leads to imperceptible changes to the regression

function. We next examine the relationships between the generalization error and the number of

steps in Figure 7(c). Similar to Figure 7(b), the generalization error decreases rapidly during the

first few steps. The generalization error is minimized at around the position where the inflexion
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size #breakpoints ε-Path LIBSVM ratio (LIBSVM/ε-Path)

100 152.2 (8.9) 0.087 (0.004) 12.04 (3.30) 138.4

200 323.6 (12.2) 0.312 (0.111) 67.17 (13.81) 214.7

400 617.8 (56.0) 2.893 (0.237) 347.5 (29.16) 120.1

800 1359.0 (62.9) 23.7 (1.180) 1518.8 (117.17) 64.1

TABLE I

COMPARISONS ON COMPUTATIONAL EXPENSE BETWEEN ε-PATH AND LIBSVM. THE HYPERPARAMETERS γ = 0.5 AND

λ = 0.1. THE NUMBERS IN THE PARENTHESES ARE STANDARD DEVIATION

point occurs. At this time, only a small number of steps have been executed. Further executing

the ε-path algorithm cannot lead to continued improvement in the generalization performance.

Instead, the resulting regression function becomes more redundant and may lead to overfitting.

Moreover, it incurs unnecessarily high computational cost. Consequently, it is not necessary to

explore all solutions along the ε-path. The optimal solution preserving the sparseness property

can be obtained very efficiently.

We also give some preliminary5 comparisons on the computational expense between our

solution path algorithm and LIBSVM [18] to give readers some practical sense. Our algorithm is

implemented in MATLAB. LIBSVM is written in C++ and we use its interface for MATLAB. The

experiments are performed on a ThinkPad T61 notebook with Intel T7300 Core 2 Duo (2.0GHz,

800MHz FSB, 4MB Cache) processor and 2GB memory. We generate the sinc-function data

sets with the size of 100, 200, 400, 800. There are five data sets generated for each size in

order to alleviate random sampling. For each data set, the ε-path algorithm is executed first

until 50% of the points become SVs. Thus, a sequence of breakpoints is computed. LIBSVM is

then executed for all ε values at breakpoints and we record the total elapsed time (in seconds).

From the results shown in Table VI-A, we can see that the solution path algorithm has much

computational advantage over the original model selection approach. The number of breakpoints

5Here the computational comparisons are preliminary since many issues are not addressed. For example, a program written

in C++ always runs much faster than the same one written in MATLAB and hence LIBSVM gains some advantage over our

solution path algorithm. On the contrary, LIBSVM requires loading the data and computing the kernel matrix in each execution

but the solution path algorithm performs such operations only once for the whole path exploration.
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increases almost linearly with the size of the training set. Comparing the number of breakpoints

and the ratio in the table, we notice that the computational cost of exploring the entire solution

path is similar to that of training LIBSVM once when the data size is 100. As the size of training

data increases, the expense of the path exploration becomes higher than computing LIBSVM

once.

B. Friedman’s Benchmark Functions

Friedman’s benchmark functions were introduced in [26] and have become a widely used

benchmark for regression models. There are three nonlinear prediction problems in this bench-

mark. Friedman’s F1 function has 10 independent variables, x = (x1, . . . , x10)
T , that are

uniformly distributed in [0, 1]:

F1 : y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e (33)

where e ∼ N (0, 1). This function depends on only five of the 10 variables. The F2 and F3

functions both have four independent variables, x = (x1, . . . , x4)
T , that are uniformly distributed

in the following ranges: 0 ≤ x1 ≤ 100, 40π ≤ x2 ≤ 560π, 0 ≤ x3 ≤ 1, and 1 ≤ x4 ≤ 11. The

functions are defined as:

F2 : y =
√
x2

1 + [x2x3 − (x2x4)−1]2 + e,

e ∼ N (0, 125) (34)

F3 : y = tan−1(x−1
1 (x2x3)− (x2x4)

−1) + e,

e ∼ N (0, 0.1) (35)

The standard deviations of the noise terms are set in such a way that the signal-to-noise ratio is

3 : 1. Thus the variance of the signal part of the function accounts for 90% of the total variance.

For each function, we generate a set of 400 points with 50% randomly chosen for training and

the rest for validation. For consistent evaluation of the different data sets, we scale each of the

input variables x and the output y linearly to the range [−1, 1]. The RBF kernel is thus defined

as K(xi,xj) = exp(‖xi − xj‖2/(dγ)), where d is the dimensionality of x and γ is set to 10, 1,

0.1 and 0.01 separately.
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Fig. 8. Results on (a)–(c) the elbow size and (d)–(f) the generalization error along the SVR ε-path for different γ values. λ is

set to 0.1.
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Fig. 9. Change in generalization error along the ε-path for different λ values. γ is set to 1 for F1 in (a) and 0.5 for F2 and

F3 in (b) and (c).
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Figure 8 shows the results on the three benchmarks for different kernel parameter values.

The curves for the elbow size can help us to choose an optimal value for γ. If the elbow set

contains most of the data points, it indicates that the regression function is probably too complex

with a high chance of overfitting the data. On the other hand, if it contains too few points, the

regression function is unlikely to fit the data well. The curves for the estimated generalization

error in Figure 8(d)–(f) support this speculation. Therefore, we choose γ = 1 for F1 and γ = 0.5

for F2 and F3.

Based on the kernel parameter values selected, we apply the ε-path algorithm with different

λ values. The results are shown in Figure 9. The generalization error curves exhibit a similar

trend as that of the sinc-function data. When λ is very large, the regression functions underfit

the data. On the contrary, when λ is too small such as 0.0001, overfitting always occurs when ε

also decreases to be small in the ε-path algorithm. The generalization error first decreases and

then increases, giving a U-shape curve. λ takes desirable value from [0.1, 0.001] for F1, [1, 0.01]

for F2 and [0.1, 0.001] for F3. For each dataset, the generalization error curves for these λ

values are almost overlapped most of the time; it generally decreases rapidly in the beginning

and then only changes slightly as the algorithm continues. Although the generalization error

shows no significant further improvement after the initial stage, the number of SVs continues to

increase. Since the elbow size only changes slightly after a few iterations, the generalization of

the regression function becomes stable.

VII. TWO REAL-WORLD DATA SETS

We further apply the ε-path algorithm to two real-world regression data sets, abalone and

housing, from the UCI Machine Learning Repository. The abalone data set has 4177 examples

and each example has eight attributes, while the housing data set has 506 examples and each

example has 13 attributes. In each data set, the value of the output attribute to predict is provided

for each example. We first scale each attribute linearly to the range [0, 1]. Each data set is

randomly partitioned into two subsets with 60% of the data for training and 40% for validation.

As we can see from Figure 10(a)(b)(d)(e), the elbow size and the generalization error again

show similar behaviors as before for different kernel parameter values along the ε-path when λ

is set to 0.1. For the abalone data set, the elbows include very few points when γ = 10 or when

γ = 1. We choose γ = 0.1 as a better choice, since at this value the elbows contain 1% of the

June 11, 2008 DRAFT



26

points and become stable in the algorithm. For the housing data set, we choose γ = 0.5. The

generalization errors for different λ values are plotted in Figure 10(c) and (f). We observe that

ε-paths of solutions are very similar to each other for moderate values of λ from [0.1, 0.001].

Hence, we choose such a value for λ in practice and explore the ε-path until the point after

which the generalization error does not change significantly. This ensures that a good regression

function with the sparseness property can be obtained efficiently.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we analyze the SVR solution paths by considering two types of optimality

conditions, i.e., equality and inequality conditions. From the equality conditions, we obtain the

solution updating formula (21) for both λ and ε. If we do not take the inequality conditions into
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Fig. 10. The ε-path results on the abalone data set ((a)–(c)) and housing data set ((d)–(f)). λ = 0.1 in (a)(b)(d)(e). γ = 0.1

in (c) and γ = 0.5 in (f).
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account, the updating formula (21) is very general and can be used to compute the solution for

any hyperparameter value. Note that it bears resemblance to ridge regression. In ridge regression,

the optimality condition is simply the equation obtained by setting the first derivative to zero,

which gives the optimal solution in a closed form. Since there is only one (equality) optimality

condition for ridge regression, the solutions for different hyperparameter values can be computed

directly without having to trace the solution path. The complexity of updating the solution from

the current one is equivalent to that of computing the next solution directly. This is not the case

for SVR though. Due to the sparseness property of the function, the optimality conditions contain

both equality and inequality conditions. The solution path consists of multiple (linear) segments

where each segment is governed by the equality conditions. Any solution within a segment can

be explored easily by focusing on the equality conditions only. On the other hand, the inequality

conditions correspond to the boundaries between consecutive segments. They serve to localize

the valid ranges of the equality conditions. As the solution path proceeds, it needs to monitor

the inequality conditions to identify the first one that no longer holds. The inequalities determine

which data points are involved in the equality constraints and thus determine the breakpoints.

These relationships are illustrated in Figure 11. The solution path algorithm then sequentially

extends from one segment of the path to the next. This analysis is general and can also be

(α(∗), α0)

λ

ε

Fig. 11. Each curve corresponds to an inequality condition. The region corresponding to the candidate solutions specified by

all the inequality conditions can be explored freely to update the solution. However, when the solution update goes beyond this

region, some procedures are needed in order to continue the path exploration.

June 11, 2008 DRAFT



28

extended to other sparse modeling methods such as SVC [7] and LASSO [27].

Our proposed ε-path algorithm has some advantages over the λ-path algorithm:

• The ε-path algorithm has a very simple initialization, while the λ-path algorithm requires

solving a linear programming problem;

• The λ-path algorithm may need to randomly move the tube looking for valid points during

the execution, while the ε-path algorithm can be explored more easily.

• A sparse regression function can be obtained from the ε-path algorithm after very few

iterations. From the experiments, we notice that the regression function is not very sensitive

to the λ value. Thus, it is very efficient to explore the two-dimensional solution space of

ε-SVR by executing the ε-path algorithm several times with different λ values.

Therefore, in practical applications, we recommend applying the ε-path algorithm for some

predetermined λ values.

This paper discusses two solution path algorithms, either of which is with respect to only

one hyperparameter while the other hyperparameters are fixed. When the dimensionality of

the solution space is one, every solution can be explored as the solution path is traced in the

direction of either increasing or decreasing the hyperparameter value. However, many models

contain multiple hyperparameters. When the dimensionality of the solution space is larger than

one, it becomes difficult to explore all possible solutions using the path-following approach. As

in the SVR problem, the solution path is piecewise linear with respect to either ε or λ. For any

given λ value, every solution along the ε path can be computed as ε changes. This is similar

to the case where λ is free but ε is fixed. Although these two kinds of path algorithms can

be interchangeably used, it is challenging to integrate two one-dimensional path algorithms to

explore the entire two-dimensional solution space (λ, ε). One solution to overcome this difficulty

is to execute the one-dimensional path algorithm several times with different values of another

hyperparameter, like our recommendation for the SVR problem. The problem becomes more

severe if more hyperparameters are involved. The attempt to explore every solution in the high-

dimensional solution space is infeasible. On the other hand, it is not necessary to explore the

whole solution space, since it may involve a great deal of unnecessary computation. We are

often interested in just a small portion of the solution space in which there exist some solutions

that can generalize well. One possible approach to this problem is to take the performance on

the validation data into account. The path of solutions can be traced according to the direction
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of decreasing the prediction error estimated from the validation data. In each iteration, the new

solution from the path-following algorithm will provide better performance than in the last

iteration. Thus, a locally optimal solution in the high-dimensional solution space can be found

efficiently.
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APPENDIX

We define some notations used in the paper:

αER = (αi), ∀i ∈ ER (36)

yER = (yi), ∀i ∈ ER (37)

α∗EL = (α∗i ), ∀i ∈ EL (38)

yEL = (yi), ∀i ∈ EL (39)

αR = (αi), ∀i ∈ R (40)

α∗L = (α∗i ), ∀i ∈ L (41)

KE = [K(xi,xj)]i,j, ∀i, j ∈ ER ∪ EL (42)

KRL = [K(xi,xj)]i,j, ∀i ∈ ER ∪ EL, j ∈ R ∪ L (43)

1R = (1)p1×1 (44)

1L = (1)p2×1 (45)
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and

Ka =

 0 1T

1 KE

 (46)

yE =


0

yER

yEL

 (47)

1a =


0

1R

−1L

 (48)

Kb =

 0 1T

0 KRL

 . (49)
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