Use of Bias Term in
Projection Pursuit Learning
Improves Approximation and

Convergence Properties
Tin-Yau Kwok and Dit-Yan Yeung, Member, IKEFE

Abstract— In a regression problem, one is given a d-
dimensional random vector X, the components of which are
called predictor variables, and a random variable, Y, called
response. A regression surface describes a general relation-
ship between variables X and Y. One nonparametric regres-
sion technique that has been successfully applied to high-
dimensional data is projection pursuit regression (PPR). In
this method, the regression surface is approximated by a
sum of empirically determined univariate functions of linear
combinations of the predictors. Projection pursuit learning
(PPL) proposed by Hwang et al. formulates PPR using a
two-layer feedforward neural network. One of the main dif-
ferences between PPR and PPL is that the smoothers in
PPR are nonparametric, whereas those in PPL are based
on Hermite functions of some predefined highest order R.
While the convergence property of PPR is already known,
that for PPL has not been thoroughly studied. In this
paper, we demonstrate that PPL networks in the original
form proposed by Hwang et al. do not have the universal
approximation property for any finite R, and thus cannot
converge to the desired function even with an arbitrarily
large number of hidden units. But, by including a bias term
in each linear projection of the predictor variables, PPL
networks can regain these capabilities, independent of the
exact choice of R. Experimentally, it is shown in this pa-
per that this modification increases the rate of convergence
with respect to the number of hidden units, improves the
generalization performance, and makes it less sensitive to
the setting of R. Finally, we apply PPL to chaotic time se-
ries prediction, and obtain superior results compared with
the cascade-correlation architecture.

Keywords— Projection pursuit, regression, smoother, uni-
versal approximation, convergence.

I. INTRODUCTION

N recent years, many neural network models have been

proposed for pattern classification, function approxima-
tion and regression problems. Among them, the class of
multi-layer feedforward networks is perhaps the most popu-
lar. Standard back-propagation performs gradient descent
only in the weight space of a network with fixed topol-
ogy; this approach is analogous to parametric regression
techniques in statistics. In general, these parametric pro-
cedures are useful only when the network architecture (i.e.
model) is chosen correctly. Too small a network cannot
learn the problem well, but a size too large will lead to
over-generalization and thus poor performance. Hence, re-
cent studies have sought to optimize network size for a

The authors are with the Department of Computer Science, Hong
Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong. Email: {jamesk,dyyeung}@cs.ust.hk.

particular class of networks which have the same architec-
ture. There are two general approaches to this optimization
problem. One involves using a larger than needed network
and training it until an acceptable solution is found. Af-
ter this, hidden units or weights are removed if they are
no longer actively used. Methods using this approach are
called pruning procedures [1], [2], [3], [4], [5]. The other ap-
proach, which corresponds to constructive procedures [6],
[7], [8], [9], [10], [11], starts with a small network and then
grows additional hidden units and weights until a satisfac-
tory solution is found.

The pruning approach has several shortcomings. Firstly,
in practice, one does not know how big a network to start
with. Secondly, since the majority of the training time is
spent with a network that is larger than necessary, this
method is computationally wasteful. Thirdly, many net-
works with different sizes may be capable of implementing
acceptable solutions. Since the pruning approach starts
with a large network, it may not be able to find the small-
est acceptable solution. Fourthly, these pruning procedures
usually measure the change in error when the hidden unit
or weight in the network is removed. However, these can
only be approximated' for computational efficiency, and
hence may introduce large errors, especially when many are
to be pruned. Regularization [12], [13], [14] solves some of
these problems, but it requires a delicate balance between
the error term and the penalty term. It also increases the
training time, and the penalty term tends to create addi-
tional local minima in which one will frequently get stuck
while searching for a “good” solution to the minimization
problem [13]. Hence, constructive algorithms seem to be
more promising than pruning algorithms.

Besides learning the weights and network size, one may
also modify the transfer functions in the hidden units. Tra-
ditionally, the transfer functions are fixed in form, with the
sigmoid function being the most commonly used one. How-
ever, other transfer functions, such as the hyper-hill (also
called 7-D bar in [15]) function, may sometimes outper-
form traditional multi-layer perceptrons and radial basis
function networks [16]. Thus, by making the transfer func-

I Typically, approximation involves using only the first [2], [4] or
second [1], [3] term in the Taylor series expansion for the change in
error. Further approximation is possible by computing these values
as weighted averages during the course of learning or by assuming
that the Hessian of the error surface is diagonal [3].

tions flexible, in the sense that their functional forms may
be modified by a set of parameters, they can adapt them-
selves to different forms under different situations. Moody
[17], for example, considered the use of polynomials, ra-
tional functions and flexible Fourier series as the transfer
function, and showed experimentally better generalization
performance as compared to the sigmoid function.

Projection pursuit learning (PPL)? [9], [19], [20], [21],
[22] is a constructive algorithm that adapts the network
size, weights and also hidden unit transfer functions. PPL
networks are considerably more parsimonious and accu-
rate than multi-layer perceptrons trained by error back-
propagation on a number of regression problems [9]. For
classification problems, PPL networks are also able to pro-
duce smoother classification boundaries than the cascade-
correlation architecture, and are thus expected to general-
ize better [21].

However, the selection of the order parameter in PPL is
very critical [21], and a wrong selection may lead to poor
training and testing performance. This will be shown later
to be partly attributable to a lack of universal approxima-
tion for PPL networks with fixed order. In this work, we
suggest changes to correct this and also demonstrate the
resulting improvement in practice.

The rest of this paper is organized as follows. In Sec-
tion II, the relationship between PPL and a closely related
projection pursuit method, called projection pursuit regres-
sion (PPR) [23], is described. Section ITT demonstrates the
lack of universal approximation in PPL networks, using an
example in the univariate setting for illustration. The sug-
gested remedies are described in Section IV. Simulation re-
sults are then presented in Section V. The last section gives
concluding remarks and discussion on further research.

II. PPL anp PPR

PPL is inspired from a statistical technique called PPR.
In a regression problem, one is given a d-dimensional ran-
dom vector X, the components of which are called predictor
variables, and a random variable, Y, called response. A re-
gression surface f describes a general relationship between
variables X and Y. Without loss of generality, we assume
E(f) = 0.3 In PPR, the regression surface is approximated
by a sum of n empirically determined univariate functions
g; of linear combinations of the predictors, i.e.

fn,PPR(X) = Zgj(ajTX): (1)

where x is the input vector, a; is the projection vector
with ||a;|| = 1, and aij denotes the inner product of a;
and x. The g;’s are called smoothers in the statistics litera-
ture. This procedure derives its name from the fact that it
projects high-dimensional data onto one-dimensional pro-
jections, with the pursuit of good projection directions

2This term was also coined by [18], but the functional form of the
PPL network studied there is identical to that of PPR. In this paper,
we refer PPL to the formulation by Hwang et al. [9].

3 F(-) denotes the expectation operator.

done by optimization. While other nonparametric regres-
sion techniques like kernel, nearest-neighbor, and spline
smoothing suffer from the so-called “curse of dimension-
ality” problem [24], which arises from the fact that data
in high-dimensional space are surprisingly sparse, PPR is
less affected because all parameter estimation (smoothing)
is performed in the univariate projection. As a result, PPR
may be applied to high-dimensional data. Moreover, PPR
has also been applied to classification problems [25], [26].

PPL is obtained by formulating PPR using a two-layer
feedforward neural network. Without loss of generality, we
consider networks with only one output unit. The output
fn(x) for a network with n hidden units is given by

Fal) = 3 g (aT). e

where ; is the output-layer weight connecting the jth hid-
den unit to the output unit, g; is the transfer function for
the jth hidden unit standardized? to have zero mean and
unit variance (i.e. E(g;) = O,E(gf) = 1), and the com-
ponents of a; are the hidden-layer weights connecting all
the input units to the jth hidden unit with ||a;|| = 1. The
similarity between (1) and (2) should be apparent.

A. Nonparametric vs Parametric Smoothers

One of the main differences between PPR and PPL is
in the form of the smoothers. In PPR, the smoothers are
nonparametric and are usually based on locally linear fits
[27], [23]. However, as noted in [9], this leads to the use of
large regression tables, unstable approximation in calculat-
ing derivatives, and piecewise interpolation in computing
the activation values. Roosen and Hastie [26], [28] used
smoothing splines as the smoothers, which give accurate
derivative calculation and smooth interpolation. However,
this still requires the use of a smoother matrix. Moreover,
the generalized cross validation statistic, which is used to
select the degree of smoothness, tends to under-smooth
[29]. Consequently, heuristics are required to remedy this
problem. Besides, smoothing splines are usually more com-
putationally intensive.

On the other hand, the smoothers in PPL are parametric.
They are represented as linear combinations of Hermite
functions [30] of the form

9(z) =Y erhe(2), 3)

where z = a”x and R, called the order, is a constant set by

the user. The Hermite functions h,(z)’s are orthonormal

and defined by
he(z) = (P~ 22/ 42= = DI2H (2)¢(2), (4)

4Note that this standardization does not affect the approximation
capability of PPL. Each g; is zero-meaned to ensure that f, will also
have zero mean, the same as that assumed for E(f).

where H,(z)’s are the Hermite polynomials constructed in
a recursive manner as:

HQ(Z = 1,
Hi(z) = 2z,
H,(z) 2zHr_1(z) = (r = 1)Hr_a(2)), 7=2,3,4,...

Q

nd ¢(z) is the weighting function

(5)
used to normalize the h,(z)’s according to:
/ HE(Z)¢2(z) dz = r! 7.‘.—1/2 or—1

A plot of some of the h.(z)’s is in Figure 1.

0.8

0.6 |-

0.2

hr(z)
o

-0.2

-0.4 -

0.6 | e R

-0.8 L L L L

Fig. 1. A plot of some Hermite functions.

As compared to the nonparametric smoothers in [23],
the use of Hermite functions enables smooth interpolation,
instead of piecewise interpolation. Moreover, because of
the special property of Hermite functions, the derivative of
g(z) has a simple form:

9'(z) =Y e [(20)hy o (2) = zhy (2)],

r=1

which enables fast and accurate computation of the deriva-
tives without the use of large regression tables. Moreover,
the optimal coefficients for 3;’s and ¢;’s may be computed
by linear algebra, so the only part that must be done by
nonlinear optimization techniques is the a;’s. This thus sig-
nificantly reduces the computational requirement. Exper-
imental results in [9] also showed that PPL has improved
performance over PPR in a number of regression problems.

Other parametric forms may be used in place of the
Hermite functions, such as those mentioned in [17], the
normalized Legendre polynomial expansion in exploratory
projection pursuit [31], basis function expansion in [25], B-
splines in multi-dimensional additive spline approximation
[32], radial basis function networks [33] and many others.
However, the pros and cons among these varieties will not
be addressed in this paper.

One may notice that another difference between the func-
tional forms in (1) and (2) is the presence of the §;’s. For
PPR, the 3;’s are not necessary as they may be viewed
as being already absorbed into the nonparametric g;’s.
Whereas for PPL, because the g;’s are parametric and
standardized to have unit variance, the 3;’s are required
for appropriate scaling.

B. Sensitivity of Highest Order of Hermite Functions

A major problem with PPL is that the order R, which
has to be chosen a prior:, is sometimes critical for success-
ful approximation. A wrong selection may lead to poor
results in training and testing. This is usually explained
as a manifestation of the bias-variance dilemma [34]. By
using a large R, one is supposedly able to decrease the ap-
proximation error®, while taking the risk of increasing the
estimation error®. In the following section, we will demon-
strate that besides the above reason, another important
reason is that the approximation error cannot be made as
small as desired with a fixed R. In other words, PPL net-
works with a fixed R do not have the property of universal
approximation.

III. UNIVERSAL APPROXIMATION AND STRONG
CONVERGENCE

Suppose we want to learn a function f by a constructive
procedure”. The first question we need to consider concerns
the universal approximation capability of the network: Is
the family of functions implemented by the network broad
enough to contain f or a good enough approximation of
f? The next question concerns convergence: Does the se-
quence of network solutions {f,} generated from the pro-
cedure (strongly) converges® to f as n — co? Apparently,
the universal approximation capability of a network struc-
ture i1s a prerequisite for the convergence of its learning
procedure. Attempts to solving the problem without con-
sidering these questions could be very time-consuming if
not fruitless.

A. Known Result on Convergence of PPR

The strong convergence of PPR has been proved in [37],
which states that if each new g, in (1) at stage n is given
by the conditional expectation [38]:

gn(z):E(f—fn_lla;l;X:Z), (6)

and the projection direction a, i1s chosen as long as

E(gn(a, X))? > p_sup E(ga(b"X))?,
brb=1

5The approzimation error refers to the distance between the target
function and the closest neural network function implementable by a
given architecture [35].

8The estimation error refers to the distance between the closest
neural network function implementable by a given architecture and
the estimated network function [35].

"This function f is the regression surface in our case.

8The sequence { fn } strongly converges to f if limp oo || f—fnl|| = 0.
This is also called convergence in the mean [36].

where 0 < p < 1 is fixed, then f, in (1) strongly con-
verges to the desired f. However, this result is not readily
applicable to PPL, as has been assumed in [9]. With the
smoothers in PPL being parametric, this g, may not al-
ways be realizable. It is this very concern that has led us
to the research work reported here.

B. Inadequacy of PPL

To provide motivation for the modification to be men-
tioned in the next section, we consider the simple case when
d = 1. Put z = az. Notice that the polynomials H,(z) are
even or odd functions according to whether the index r
is even or odd [30]. Moreover, ¢(z) in (5) is also even.
Hence, har(z) is even while har41(2) is odd. Besides, as |a|
is restricted to be 1, there can be at most two projection
directions for the hidden units, corresponding to z = +=z.
Assume that there are ny hidden units with z = x, and n,
with z = —z, where ny + ns = n. From (2), the network
output f, is given by:

> ajgi(x)+ Y Bigi(—x)
ji=1 ji=1

= Zl: Z ajcj'rh,«(l‘) + i Zﬂjdjrhr(_m)

j=1lr=1 j=1r=1

R R
= Zprhr(m)+Zthr(_m)a
r=1 r=1

where p, = Zj;l QjCir, qr = Z?il B;jdjr. Now we decom-
pose each summation term into two parts, one over those
h,’s that are even and the other over those that are odd.

Then,

fa(z) =

[R/2] [(R-1)/2]
fn(m) = Z sthzs(iﬂ)—l- Z p25+1h25+1(:n)
s=1 s=1
LR/2] L(R-1)/2]
+ Z Q2shzs(m) - Z f12s+1h25+1(m)
s=1 s=1
R
= Z7rhr(x),
r=1
where
_ | pr+¢ riseven
= pr— qr 718 odd.

Since the family of Hermite functions is complete® in
L?(—00,+00) only when R is infinite [30], the universal
approximation property of PPL networks does not hold for
any finite R. As a consequence, in general, the sequence
{fn} produced by the PPL procedure may not converge to

9Let {vi}ie1 be a family of elements of a Hilbert space E such that
[|vil| # O for all 7 in the indexing set I. For each finite subfamily, we
can take the space spanned by this subfamily, i.e. linear combinations
c1v;; + -+ + cnv;, with coefficients ¢;. Let us denote the union of
all such spaces by F. We say that the family {v;} is complete in
E if F' is dense in E. Moreover, note that this denseness property
is required even for universal approximation, not to mention exact
representation.

the desired function f. This fact will also be experimen-
tally demonstrated in Section V-A.

IV. ADpDITION OF Bias TERM

To remedy the problem suggested above, one has to de-
termine the value of R so that it is “sufficiently” large
for the problem at hand. One possibility could be to set
R to be very large. However, a large R implies a large
number of parameters, which may degrade generalization.
Moreover, the number of computational steps, both dur-
ing training and testing, is increased. Besides, a large R
also increases the number of “flat spots” [39], which are
locations where the derivative of the hidden unit transfer
function approaches zero. This increases the chance that
the hidden units will get stuck, making the optimization
problem more difficult.

A more disciplined approach is to perform PPL at sev-
eral fixed values of R, and compare the resultant networks
using criteria such as AIC [40]. Note that because both R
and the number n of hidden units affect the generalization
performance, one has to make comparisons across different
combinations of R and n, making it very computationally
expensive.

In the following, we suggest that one can keep R fixed,
while still capable of achieving universal approximation
simply by including a bias term into each linear combi-
nation of the predictors in (2), i.e.

fa(x) = Bigi(al x +0;).
ji=1
A. Unwversal Approzimation

The universal approximation capability of the modified
PPL networks follows readily from results in [41]. The
set of functions implementable by a modified PPL network
with n hidden units is:

Si() = {fa : R = R | fa(0) = 32 Fjwlal x+6;)}
B @

Consider
Sa(¥) = {J Si ().
n=1
For ¢(z) = ze=2 12,) is obviously bounded and non-

polynomial. Hence, by Theorem 2 of [41] (see Appendix),
Sa(®) is dense in LP(u) for all compactly supported finite
measures g on B¢ and 1 < p < co. As the functional form
of g in (3) subsumes'® that of ¢, hence with z = aTx + 6,
neural networks with one layer of hidden units of the form
(3) are universal approximators. In other words, the modi-
fied PPL networks are capable of universal approximation.
In comparison with PPR [23], although the bias is not used,
this 1s not a problem as the smoothers are nonparametric.

10This follows as for R > 1, g(z) contains hj (z), which is a multiple
of Y(z) = 22212,

If we further drop the restriction of [|aj|] = 1 in (2),
then by Theorem 1 of [42] (see Appendix), Sq(%) is dense
in LP(u) for all finite (but not necessarily compactly sup-
ported) measures p on R?. Since the data distribution is
usually confined to a closed and bounded region in prac-
tice, the requirement of compact support is usually sat-
isfied, and thus only adding the bias term is sufficient in
theory. However, as demonstrated in Section V, this relax-
ing of the restriction on ||a;|| can sometimes enable faster
convergence to the desired function.

Tt is also obvious that the order R in (3) does not affect
the universal approximation property, as R = 1 already
ensures that g in (3) subsumes ¢. In fact, if one changes
the starting index of the summation in (3) from 1 to 0, as

R

g(z) = Z Crhr(z)a

r=0

then R = 0 is also admissible as ho(z) contains ¢(z), a mul-
-2*/2 which is bounded and non-polynomial. Ac-
—2%/2

tiple of e
tually, one may even choose any function containing e
to be used as g in (3), replacing the linear combination of
Hermite functions without compromising the universal ap-
proximation property. But, of course, one has to also con-
sider other qualities when selecting parametric smoothers,
such as the ability to perform fast and accurate computa-
tion of derivatives as mentioned earlier.

B. Strong Convergence

PPL constructs the network by adding hidden units one
at a time. So when a new hidden unit is added,
n—1 B B B
Fa(®) = B3 (A% + 0;) + Bagn(alx + 0,),

ji=1

where [;’j , §j,éj,§js are the updated values of 3;, g;,a; and
f;s respectively. Details on how to do the update are de-
scribed in [9]. PPL can be implemented with or without
backfitting [23], [9], which consists of cyclically adjusting
the parameters associated with each previously installed
hidden unit by minimizing the residual error until there is
no significant change. Obviously, if backfitting is employed,
all the weights are freely modifiable and thus strong conver-
gence of the PPL procedure follows readily from the univer-
sal approximation capability of the modified PPL network.
If backfitting is not performed, i.e. §; = g;,a; = a; and
9~j =6; for j=1,2,...,n—1, it then follows from [43] (see
Appendix) and the universal approximation capability of
the modified PPL networks that the sequence {f,} still
strongly converges to f in L? provided that at each itera-
tion when a new hidden unit is added, the 3;’s, g5, a, and
6, are chosen so as to minimize the expression ||f — fu|2.

V. SIMULATION EXPERIMENTS

This section serves several purposes. Firstly, it provides
simulation support for the argument on the inadequacy
of the original PPL algorithm mentioned in Section III-B.

Secondly, a comparison on the training and testing perfor-
mance is made between the modified PPL algorithm and
the original one on a number of learning problems men-
tioned in [9], [21]. The convergence rates with respect to
the number of hidden units are also compared. Finally,
PPL is applied to chaotic time series prediction and com-
pared with the cascade-correlation architecture [44].

The implementation is based on the C code of the orig-
inal PPL algorithm provided by Jeng-Neng Hwang and
Shyh-Rong Lay''. Default parameter values as supplied
in the program are used in the simulations for both the
original and modified algorithms. Moreover, in [9], a back-
ward pruning procedure is used which grows the network to
a size m* larger than the specified size m (with m* = m+2
in [9]), and then prunes away the excess m* — m hidden
units. The pruning criterion is based on the magnitude of
the hidden-to-output weight @;. Preliminary experiments
indicate that this criterion does not always yield better
results. Hence, to focus on the issue of approximation ca-
pability, we do not use this backward pruning procedure in
the following simulation experiments (i.e. we set m* = m).
Besides, unless otherwise specified, the modified PPL net-
work refers to the case with the bias term added and of the
projection vector still restricted to unit norm.

A. Ezperimental Demonstration of Inadequacy of Original
PPL

As a simple demonstration, we consider approximating a
target function which is the Hermite function hg(z) given

in (4):

223 — 3z —x*
@) = o) = 2= exp(55),
using PPL with R = 2.2 A training set of 1000

points is randomly generated from the uniform distribu-
tion U[—5, 5], and a testing set of 2000 points is generated
with regularly spaced intervals on [—5,5]. The commonly
used mean squared error (MSE) is used for comparison,

1 N

MSE = =3 (f(x:) = fal:))?,

i=1

where N is the number of data points.

The training and testing curves for the original and mod-
ified PPL algorithms are shown in Figure 2. A plot of the
network outputs is shown in Figure 3. The original PPL
algorithm does not show any improvement in learning the
function, even after 9 hidden units have been added. On
the other hand, the bias in the modified algorithm allows
the Hermite functions to shift for more accurate approxi-
mation.

1 Matrix inversion in the original implementation is computed us-
ing LU decomposition. We found that it was sometimes numerically
unstable, and thus we replaced it with singular value decomposition
[45] in some problems.

120bviously, using R > 3 would enable g in (3) to include h3(z),
and hence exact representation is trivial.

0.12 ' ‘
original(training) ~—
modified(training) -e---
original(testing) —+—
modified(testing) -+--

5
#hidden

Fig. 2. Training and testing curves for f(z) = hs(z) using R = 2,
demonstrating the inadequacy of the original PPL algorithm.

0.8 .
desired ——
original -----

modified ------

0.6 —

0.4

0.2

-0.6

08 L L L L L L L L L
-5 -4 -3 -2 -1 [1 2 3 a 5

Fig. 3. Learning f(z) = ha(z) using R = 2 and 9 hidden units.

B. Two-Dimensional Regression Problems
B.1 Data Sets

The regression functions used here are described in detail
in [9]. They are:
¢ Simple interaction function:
FO (1, 29) = 10.391((z1 — 0.4) (x5 — 0.6) 4 0.36).
+ Radial function:
FO (21, 29) = 24.234(r*(0.75 — 12)),
r? = (21— 0.5)? + (z2 — 0.5)%
o Harmonic function:
FO (@1, 22) = 42.659((2 + #1)/20 + Re(z%)),
z =z +ize — 0.5(1 + 1),

or equivalently, with 21 = 7 — 0.5, 23 = 5 — 0.5,

FO (1, 29) = 42.659(0.141(0.054+#1 1022 24521)).

¢ Additive function:
fO (21, 29) = 1.3356(1.5(1— 1)
+e? 1 = sin(37(x1 — 0.6)?)
+e3(2=0.5) sin(4w(zq — 0.9)2)).

o Complicated interaction function:

FO(x1,22) = 1.9(1.35 4 ¢ sin(13(z1 — 0.6)?)

e~ 2 8in(Tzg)).

Plots of these functions are shown in Figures 4 to 8.

oORrNWAUON

“‘:::
y SSSRSKS 26%%
- EERSKSEEE

0.2
‘**&s‘\\\\\\\\““%%l 004
‘§§§w}§\\\\““‘ "o""'

N

" 7

N

ORNWANON®

Fig. 6. £®3): harmonic

We employ the same basic setup as in [9]. Two sets of
training data, one noiseless and the other noisy, are gener-
ated. The noiseless training set has 225 points, and is gen-
erated from the uniform distribution U/[0,1]%2. The same
set of abscissa values (x’s) is used for experiments with all

8
== XXX X572
R
OSSR S ZE X
SRS

5>

SSSITIRNNTRSSS

oORrNWAUON

Fig. 8. f(5): complicated interaction

five functions. The test set, of size 10000, is generated from
a regularly spaced grid on [0, 1]?, and is also the same for
all five functions. The noisy training set is generated by
adding independent and identically distributed (iid) Gaus-
sian noise, with mean zero and variance 0.0625, to the
noiseless training set. Its size is thus also 225. Whereas
results in [9] are based on only one specific set of training
data, we want to get information on the variability due to
the location of the x’s. Hence, in the simulations below,
we perform 10 independent trials each generating a differ-
ent set of training data. The mean signal-to-noise ratios
(SNR) for the five functions are shown in Table I.

B.2 Simulation Results

As in [9], the fraction of variance unezplained (FVU) is
defined as,

Soie 1 (f(xi) = fa(x:))?
io1 (f(xi) — [)?

where f = % Zf\;l f(xi). The mean FVUs, averaged over
the 10 independent trials, are used for comparison. Note
that the FVU is proportional to the MSE. Testing perfor-
mances for networks with 3 and 5 hidden units and with
different values of R are shown in Tables IT to V. Num-
bers that are marked with asterisks indicate that the cor-
responding improvements are significant at a 95% level of
significance using the sign test [46]. As can be seen, the

FVU =

bl

improvement is particularly significant when the order is
low. Although this example seems to suggest that defi-
ciency in the original algorithm may be lessened by always
using a high order, one should be reminded that the testing
performance does not necessarily improve with increase in
order, as will be demonstrated in Section V-C, and hence
improvements in the low order case are still crucial.

C. Siz-Dimensional Regression Problem
C.1 Data Set

This regression problem has been used in [32], [26]. The
underlying function is described by:
10sin(7zq2s) + 20(z3 — 0.5)2
+10x4 + dxs5.

f(iL‘l,{L‘Q,I‘g,Iz},CL‘S,I@) —

Note that zg 1s a spurious predictor that does not influence
the response. As for the two-dimensional regression prob-
lems, two sets of training data are generated. The noiseless
training set with 200 uniformly distributed random points
is generated in the hypercube [0, 1]%. The noisy training set
is generated by adding iid Gaussian noise, with zero mean
and unit variance. The test set, of size 46656, is generated
from a regularly spaced grid on [0, 1]%. To allow for vari-
ability in the location of the x’s, 10 independent trials are
performed. The mean signal-to-noise ratio is about 25.

C.2 Simulation Results

The mean FVU averaged over the 10 independent tri-
als is used for comparison. A comparison of the results
using different R’s and different numbers of hidden units
is shown in Figures 9 and 10. When the order is one,
the original algorithm shows no sign of learning progress
as the number of hidden units increases, similar to that
demonstrated in Section V-A. For the generalization im-
provements of the modified algorithm, almost all are sta-
tistically significant'3. Moreover, it is also clear that the
testing performance does not always improve with increase
in order.

D. Classification Problem
D.1 Data Sets

The benchmark chosen is the two-spirals problem as used
n [7], [21]. We employ two types of setup. The first one
follows the traditional approach. The training set is fixed,
of 192 points, and is arranged in two interlocking spirals
that go around the origin three times. The two classes
are coded as values +0.5. The test set also contains 192
patterns, shifted by an angle from the training patterns. A
plot of the patterns is shown in Figure 11.

However, the testing data set in this setup is only a
slightly shifted version of the training data. To be more
extensive in measuring the network’s generalization per-
formance and to allow for variability in the location of the

13 Except for the following combinations of order and number of hid-
den units when the training set is noiseless: (3,2),(7,1),(7,4),(7,5).

TABLE 1

MEAN SIGNAL-TO-NOISE RATIOS FOR THE FIVE REGRESSION PROBLEMS.

f(l) f(2) f(3) f(4) f(5)
SNR || 3.626 | 3.977 | 3.393 | 4.073 | 4.269
TABLE II

COMPARISON ON NOISELESS TRAINING SET WITH 3 HIDDEN UNITS.

R=1 R=3 R=5 R=17 R=9
original | modified || original | modified || original | modified || original | modified || original | modified
f(l) 0.65417 | 0.05055* 0.00195 | 0.00233 0.00000 | 0.00004 0.00000 | 0.00000 0.00000 | 0.00001
f(2) 0.99183 | 0.27716* 0.10152 | 0.03392* 0.00550 | 0.00637 0.01150 | 0.01135 0.02745 | 0.02510
f(g) 0.97918 | 0.82651 0.59805 | 0.61139 0.15238 | 0.17308 0.10549 | 0.11228 0.14835 | 0.15864
f(4) 0.93952 | 0.47493* 0.24850 | 0.17280* 0.04131 | 0.02364* 0.01347 | 0.00749 0.00115 | 0.00152
f(5) 0.82592 | 0.66627* 0.50800 | 0.42394* 0.27281 | 0.24184 0.11424 | 0.10107 0.08458 | 0.08315
TABLE III
COMPARISON ON NOISY TRAINING SET WITH 3 HIDDEN UNITS.
R=1 R=3 R=5 R=17 R=9
original | modified || original | modified || original | modified || original | modified || original | modified
f(l) 0.63726 | 0.07562* 0.03561 | 0.03883 0.03654 | 0.03696 0.04101 | 0.04067 0.04122 | 0.04101
f(2) 0.97069 | 0.27300* 0.13885 | 0.08701* 0.04680 | 0.04754 0.05859 | 0.05871 0.07106 | 0.07148
f(g’. 1.00837 | 0.80440 0.65864 | 0.67468 0.16657 | 0.19174 0.13457 | 0.13830 0.18245 | 0.18424
f(4) 0.95203 | 0.49389* 0.28312 | 0.21822* 0.08107 | 0.06452* 0.05499 | 0.04416* 0.04439 | 0.04502
f(5) 0.84480 | 0.75687* 0.55675 | 0.48191* 0.33197 | 0.25711* 0.14705 | 0.13243 0.11179 | 0.11178
TABLE 1V
COMPARISON ON NOISELESS TRAINING SET WITH 5 HIDDEN UNITS.
R=1 R=3 R=5 R=17 R=9
original | modified || original | modified || original | modified || original | modified || original [modified
f(l) 0.49502 | 0.02465* 0.00197 | 0.00102* 0.00000 | 0.00001 0.00000 | 0.00000 0.00000 | 0.00000
f(2) 0.96984 | 0.13620* 0.09407 | 0.02401* 0.00036 | 0.00040 0.00000 | 0.00002 0.00015 | 0.00022
f(g) 0.98082 | 0.62470* 0.59559 | 0.55922 0.00251 | 0.02221 0.00065 | 0.00184 0.00183 | 0.00211
f(4) 0.92752 | 0.39471* 0.24886 | 0.09196* 0.04213 | 0.02259* 0.01355 | 0.00168* 0.00147 | 0.00143
f(5) 0.83061 | 0.46506* 0.50710 | 0.34375* 0.22427 | 0.16775* 0.05696 | 0.04606 0.03818 | 0.04013
TABLE V
COMPARISON ON NOISY TRAINING SET WITH 5 HIDDEN UNITS.
R=1 R=3 R=5 R=17 R=9
original | modified || original | modified || original | modified || original | modified || original | modified
f(l) 0.54972 | 0.04690* 0.03873 | 0.03905 0.04290 | 0.04330 0.04650 | 0.04688 0.05518 | 0.05499
f(2) 0.87544 | 0.18030* 0.13374 | 0.05374* 0.04078 | 0.04138 0.04282 | 0.04315 0.05678 | 0.05620
f(g’) 1.01164 | 0.57955 0.65614 | 0.58803 0.05109 | 0.06945 0.05302 | 0.05495 0.08625 | 0.07190
f(4) 0.94106 | 0.43577* 0.28359 | 0.12293* 0.08549 | 0.06661* 0.05924 | 0.04483* 0.05553 | 0.05483
f(5) 0.85867 | 0.58814* 0.55372 | 0.53803 0.27314 | 0.22304* 0.09919 | 0.08967 0.11611 | 0.12547

original
original

original
modified
modified
e modified
01} S modified

mean training FVU

3
#hid

(a) Training performance

original

___ original

01

mean testing FVU

3
#hid

(b) Testing performance

Fig. 9. Comparison for the 6-dimensional regression problem, noise-
less set.

x’s, we introduce a second setup. First, the class mem-
berships of all the points in the input domain [—6.5,6.5]2
are computed (Figure 12), using nearest neighbor classifi-
cation with the training data points in the first setup as
templates. A training set, of size 500, is then generated
uniformly from the input domain, while the test set, of size
17161, is generated from a regularly spaced grid in the do-
main. 10 independent trials, each using a different training
set, are performed. This setup is much more difficult than
the first.

D.2 Simulation Results

The number of misclassifications for the first setup is
shown in Table VI. The modified algorithm clearly out-
performs the original one in both training and testing per-
formances.

For the second setup, a plot of the percentage misclassi-
fication for different numbers of hidden units and different
R’s 1s shown in Figure 13. Again, the modified PPL is
able to give smaller classification errors for all the tested
combinations.

original(R=1) +—
original(R=3) —+—
original(R=5) &—
original(R=7) »—
modified(R=1) -o
modiied(R=3) +
modified(R=5) -8
modified(R=7) -»
2
>
z
2
S o1f
:
c
5
g
E
‘ ‘ ‘
1 2 3 4 5
#hid
(a) Training performance
original(R=1) +—
- o original(R=3) ~—
.............. original(R=7) >—
...... o--modified(R=1) -o
modiied(R=3) -
modified(R=5) -8
modified(R=7) -%
2
>
z
S
=
B
g
§ o1f
£
‘ ‘ ‘
1 2 4 5

3
#hid

(b) Testing performance

Fig. 10. Comparison for the 6-dimensional regression problem, noisy

set.
Al Fa) T T T
6 traiping(class 1) ©

X training(class 2) +

* sting(®lass 1) o

RS sting(class 2) x

a @ ® g ® fal

>

Fig. 11. Two-spirals problem with the fixed set of design points.

TABLE VI

NUMBER OF MISCLASSIFICATIONS FOR THE FIXED DESIGN SETUP IN THE TWO-SPIRALS PROBLEM (tr REFERS TO THE TRAINING PERFORMANCE,

WHILE te THE TESTING PERFORMANCE).

original | modified || original | modified || original | modified

(R=5) (R=5) (R=9) (R=9) (R=13) | (R=13)
F#thid || tr | te | tr | te tr | te | tr | te tr | te | tr | te
1 78 | 82 | T8 | 82 || 62 | 64 | 64| 65 || 70| 64 |60 | 61
2 T8 | 78 | 78| 78 || 62| 60 | 56 | 56 || 58 | 54 | 47 | 50
3 76 | 76 | 76 | 76 || 58 | 60 | 55 | 54 || 48 | 46 | 33 | 38
4 70 | 66 | 60 | 67 || 50 | b4 | 42 | 43 || 38 | 36 | 27 | 25
5 72 | 72 |48 | 56 || 38 | 50 |33 | 34 || 32| 36|17 | 15
6 70 | 74 | 40 | 41 || 46 | 52 | 26 | 26 || 22| 30 | 13 | 16
7 68 | 70 | 31 | 35 || 30 | 44 | 23 | 27 8§ | 30| 7 9
8 66 | 64 | 22| 23 || 34| 46 | 14 | 17 4 130 1 6
9 68 | 64 | 19 | 20 | 32|50 | 11| 15 0 16| 0 3
10 68 | 68 | 17 | 20 || 38 | 44 | 2 5 0] 8|0 3
11 68 | 66 | 15| 16 || 36 | 44| O 1 0] 610 3

Fig. 12. Class memberships for all points in the input domain for
the two-spirals problem.

E. Chaotic Time Sertes Prediction Problem
E.1 Data Set

The Mackey-Glass series [44], [47], [48] is used as the
benchmark. It is derived by integrating the equation:

i) = az[t — 7]

= m — bz[t].

When a = 0.2,b = 0.1, and 7 = 17, the integration pro-
duces a chaotic time series [47]. Following the commonly
used scheme, each training example contains the points
z[t — 18], z[t — 12], z[t — 6] and z[t] as input, and some fu-
ture point z[t + P] as output (for prediction), where P is
usually taken to be 6 for short-term prediction. By feeding
this predicted value back into the input and iterating the

T
original(R=5) —~—
modified(R=5) ——
original(R= o
modified(R=9) —+-- |
original(R=13) -o---
modified(R=13) -+---

modified(R=17) -+

% misclassification

L L L L L -
2 4 6 8 10 12 14 16 18 20
#hid

Fig. 13. Comparison for the two-spirals problem under the second
setup.

solution, long-term prediction at P = 84 can also be ob-
tained. The numbers of training and testing examples are
both 500. 20 independent trials are performed.

E.2 Simulation Results

As in [44], [47], we define an error index as the RMS
error divided by the standard deviation of the series. Its
mean value over the 20 independent trials is used for com-
parison. We also perform simulation on the modified PPL
algorithm without normalization of the weight vector a;.
A comparison of the results for short-term prediction and
long-term prediction is shown in Figure 14. The modified
algorithm is more accurate, especially when the restriction
on the norm of a; is removed. A plot of the predicted
outputs is shown in Figure 15.

Table VII shows the mean error indices for PPL algo-
rithms with 50 hidden units and R = 13, and also the
results for the cascade-correlation architecture reported in
[44]. Clearly, both PPL algorithms surpass the cascade-
correlation architecture in both short-term and long-term
predictions.

COMPARISON WITH THE CASCADE-CORRELATION ARCHITECTURE FOR THE MACKEY-GLASS TIME SERIES.

TABLE VII

P cascade- original PPL modified PPL modified PPL
correlation (w/ normalization) | (w/o normalization)
6 0.06 0.027 0.027 0.024
84 0.32 0.102 0.104 0.089
0.05 T 1.4 T
original(R=5) —— desired ——
w/ normalization (R=5) —— actual -——--
wlo normalization(R=5) -=— 13 T
original(R=9) -o---
0.045 w/ normalization (R=9) -+--
w/o normalization(R=9) -&-- 12 b 1
original(R=13) -o---
w/ normalization (R=13) -+---
w/o normalization(R=13) -@--- 1.1 4
0.04
=} 1r T
T
2 3 09 [-
g 0.035 [
% 0.8
£
0.03 07 1
0.6 4
0.025 0.5 |- 7
04 1
0.02 L L L L
10 20 50 60 0.3 L L L L L L L L L
#hidden 0 50 100 150 200 250 300 350 400 450 500
(ay P=6 (a) P = 6 (short-term prediction)
0.22 T 1.4 T
original(R=5) —— desired ——
w/ normalization (R=5) —~+— sl attual ----- |
02 | R=9) -o— | '
\ w/ normalization (R=9) -+-
w/o normalization(R=9) -&-- 12 b .
original(R=13) -o---
\ w/ normalization (R=13) -+--- | J
0.18 w/o normalization(R=13) -@--- - 11 b ! i
=) 1H ;" 4
T L
2 0.9 |4 i
% 0.8 i 7
g 4
0.7 | 4 ! -
0.6 ! B
0.5 - 1
04 | 1
03 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
#hidden 0 50 100 150 200 250 300 350 400 450 500
(b) P=84 (b) P = 84 (long-term prediction)
Fig. 14. Error indices in predicting the Mackey-Glass time series. Fig. 15. Prediction of the Mackey-Glass time series at ¢ = P with

VI. CoNcLUsION AND FUTURE DIRECTIONS

In this paper, we studied the fundamental issues of uni-
versal approximation and convergence properties of the
PPL algorithm. We demonstrated that PPL networks do
not have these properties for any finite order R. This helps
to explain why the highest order R of the Hermite func-
tions used in the PPL smoothers has a critical effect on
the network’s generalization performance. Moreover, note
that while both R and the global bandwidth parameter
in nonparametric smoothers are responsible for controlling
the bias-variance tradeoff, they are not totally equivalent,
as suggested in [9]. Consider, for example, radial basis

R = 9 using modified PPL without normalization.

function networks in which the bandwidth corresponds to
the “width” of each kernel (or hidden unit). As shown in
[49], one can have just a global bandwidth (i.e., with the
same width for all kernels) while still ensuring universal
approximation, under certain regularity conditions on the
functional form of the kernels. More relevant to our study
here, this approximation capability is independent of the
value of bandwidth chosen. This is however not the case for
R in the absence of a bias term, because then the universal
approximation property does not hold for any fixed finite
R and thus the approximation error (i.e. bias) cannot be
made as small as desired by trading variance.

By including a bias term in each linear projection of
the predictor variables, PPL networks can regain both the
universal approximation and convergence capabilities. Be-
sides, this is not affected by the exact choice of R.

We showed experimentally that the above modification
improves the rate of convergence with respect to the num-
ber of hidden units. Lower testing error was also observed.
Moreover, the performance of the modified PPL network is
less sensitive to the setting of R. Finally, we applied PPL
to a chaotic time series prediction problem, and obtained
superior results compared with the cascade-correlation ar-
chitecture.

As we mentioned earlier, the pruning criterion in [9] does
not always give improved results. This is not surprising as
the magnitude of the hidden-to-output weight is known to
be a poor estimate of the effectiveness of the hidden unit
in the approximation [3]. In our future work, we will con-
sider other alternatives such as those suggested for various
pruning algorithms. Moreover, the use of Hermite func-
tions as parametric smoothers is just one of many possi-
bilities, though it definitely has many desirable properties
as mentioned in Section II-A. Besides, though in princi-
ple projection pursuit methods have advantages over other
methods in handling high-dimensional data, most of these
methods have only been empirically studied on relatively
low-dimensional problems. A comparative study of PPL
and other neural network methods on high-dimensional,
real-world problems will thus be useful. We will also com-
pare the effective number of parameters in PPL networks
and conventional back-propagation networks.

VII. APPENDIX
For A C ®? and © C R, let N'(3; A, ©) be the set of all

functions on R of the form

X — Zﬂﬂ/}(ajTX-i' 6;),

ji=1

where a; € A,0; € ©. For 1 < p < 0o, we have:

Theorem 1: (Theorem 1 of [42]) If ¢ is bounded and non-
constant, then N(3; R4, R) is dense in LP(p) for all finite
measures p on R,

Theorem 2: (Theorem 2 of [41]) Let ¢ be essentially
bounded and non-polynomial on some nondegenerate!'*
compact interval © and let A contain a neighborhood of
the origin. Then for all compactly supported finite mea-
sures p on R4, N(¢); A, ©) contains a subset that is dense
in LP ().

In the following, define e, = ||fn — fl|, and r, =
infoca<i gep, [|[(1—a)fn+ad—f||, where P, is a sequence
of subsets in the Hilbert space H.

Definition: f, is called asymptotically relazed with re-
spect to f if limsup(ep41 — rn) < 0.

Theorem 3: (Lemma of [43]) Suppose f is in the closure
of |, convex hull (), 5, Pm). Then f, is asymptoti-
cally relaxed with respect to f if and only if f, — f.

14 An interval in R is nondegenerate if it has positive length.

ACKNOWLEDGMENTS

This research is partially supported by the Hong Kong
Telecom Institute of Information Technology under grant
HKTIIT 92/93.002 awarded to the second author. The first
author is supported by the Sir Edward Youde Memorial
Fellowship. The authors would also like to thank Jeng-
Neng Hwang and Shyh-Rong Lay for providing the C code
of their PPL algorithm.

REFERENCES

[1] B.Hassibi and D.G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon”, in Advances in Neural Infor-
mation Processing Systems 5, pp. 164-171. Morgan Kaufmann,
San Mateo, CA, 1993.

[2] E.D.Karnin, “A simple procedure for pruning back-propagation
trained neural networks”, IEEE Transactions on Neural Net-
works, vol. 1, no. 2, pp. 239-242, June 1990.

[3] Y. Le Cun, J.S. Denker, and S.A. Solla, “Optimal brain dam-
age”, in Advances in Neural Information Processing Systems
2, D.S. Touretzky, Ed., pp. 598-605. Morgan Kaufmann, San
Mateo, CA, 1990.

[4] M.C. Mozer and P. Smolensky, “Skeletonization: A technique
for trimming the fat from a network via relevance assessment”,
in Advances in Neural Information Processing Systems 1, D.S.
Touretzky, Ed., pp. 107-115. Morgan Kaufmann, San Mateo,
CA, 1989.

[5] R. Reed, “Pruning algorithms - a survey”, IEEE Transactions
on Neural Networks, vol. 4, no. 5, pp. 740-747, Sept. 1993.

[6] T. Ash, “Dynamic node creation in backpropagation networks”,
Connection Science, vol. 1, no. 4, pp. 365-375, 1989.

[7] S.E. Fahlman and C. Lebiere, “The cascade-correlation learn-
ing architecture”, in Advances in Neural Information Process-
ing Systems 2, D.S. Touretzky, Ed., pp. 524-532. Morgan Kauf-
mann, Los Altos CA, 1990.

[8] Y. Hirose, K. Yamashita, and S. Hijiya, “Back-propagation al-
gorithm which varies the number of hidden units”, Neural Net-
works, vol. 4, pp. 61-66, 1991.

[9] J.N.Hwang, S.R. Lay, M. Maechler, D. Martin, and J. Schimert,

“Regression modeling in back-propagation and projection pur-

suit learning”, TEEE Transactions on Neural Networks, vol. 5,

no. 3, pp. 342-353, May 1994.

S. Sj¢gaard, A Conceptual Approach to Generalization in Dy-

namic Neural Networks, PhD thesis, Computer Science Depart-

ment, Aarhus University, DK-8000 Aarhus C, Denmark, 1991.

D.Y. Yeung, “Constructive neural networks as estimators of

Bayesian discriminant functions”, Pattern Recognition, vol. 26,

no. 1, pp. 189-204, 1993.

Y. Chauvin, “A back-propagation algorithm with optimal use

of hidden units”, in Advances in Neural Information Process-

ing Systems 1, D.S. Touretzky, Ed., pp. 519-526. Morgan Kauf-

mann, San Mateo, CA, 1989.

S.J. Hanson and L.Y. Pratt, “Comparing biases for minimal

network construction with back-propagation”, in Advances in

Neural Information Processing Systems 1, D.S. Touretzky, Ed.,

pp. 177-185. Morgan Kaufmann, San Mateo, CA, 1989.

A.S. Weigend, D.E. Rumelhart, and B.A. Huberman, “General-

ization by weight-elimination with application to forecasting”, in

Advances in Neural Information Processing Systems 3, R. Lipp-

mann, J. Moody, and D. Touretzky, Eds., pp. 875-882. Morgan

Kaufmann, San Mateo, CA, 1991.

E. Hartman and J.D. Keeler, “Predicting the future: Advantages

of semilocal units”, Neural Computation, vol. 3, pp. 566-578,

1991.

G.W. Flake, Nonmonotonic Activation Functions in Multilayer

Perceptrons, PhD thesis, Institute for Advance Computer Stud-

ies, Department of Computer Science, University of Maryland,

College Park, MD, 1993.

J. Moody and N. Yarvin, “Networks with learned unit response

functions”, in Advances in Neural Information Processing Sys-

tems 4, J.E. Moody, S.J. Hanson, and R.P. Lippmann, Eds., pp.

1048-1055. Morgan Kaufmann, San Mateo, CA, 1992.

Y. Zhao and C.G. Atkeson, “Projection pursuit learning”, in

Proceedings of the International Joint Conference on Neural

Networks, Seattle, WA, USA, July 1991, vol. 1, pp. 869-874.

(10]

(11]

(12]

(13]

15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

26]

(27]

(28]

(29]

[30]
(31]

(32]

(33]

(34]

3]

[36]

(37]

(38]

(39]

[40]

[41]
(42]

(43]

J.N. Hwang, H. Li, M. Maechler, R.D. Martin, and J. Schimert,
“A comparison of projection pursuit and neural network regres-
sion modeling”, in Advances in Neural Information Processing
Systems 4, J.E. Moody, S.J. Hanson, and R.P. Lippmann, Eds.,
pp- 1159-1166. Morgan Kaufmann, San Mateo, CA, 1992.

J.N. Hwang, H. Li, D. Martin, and J. Schimert, “The learn-
ing parsimony of projection pursuit and back-propagation net-
works”, in Conference Record of the Twenty-Fifth Asilomar
Conference on Signals, Systems and Computers, Pacific Grove,
CA, USA, Nov. 1991, vol. 1, pp. 491-495.

J.N. Hwang, S.S. You, S.R. Lay, and I.C. Jou, “What’s wrong
with a cascaded correlation learning network: A projection pur-
suit learning perspective”, Submitted to IEEE Transactions on
Neural Networks.

M. Maechler, D. Martin, J. Schimert, M. Csoppenszky, and J.N.
Hwang, “Projection pursuit learning networks for regression”, in
Proceedings of the 2nd International IEEE Conference on Tools
for Artificial Intelligence, Herndon, VA, USA, Nov. 1990, pp.
350-358.

J.H. Friedman and W. Stuetzle, “Projection pursuit regression”,
Journal of the American Statistical Association, vol. 76, no. 376,
pp. 817-823, 1981.

R.E. Bellman, Adaptive Control Processes, Princeton University
Press, Princeton, NJ, 1961.

T.E. Flick, L.K. Jones, R.G. Priest, and C. Herman, “Pattern
classificationusing projection pursuit”, Pattern Recognition, vol.
23, no. 12, pp. 1367-1376, 1990.

C.B. Roosen and T.J. Hastie, “Logistic response projection pur-
suit”, Tech. Rep. BL011214-930806-09TM, AT&T Bell Labora-
tories, Aug. 1993.

J.H. Friedman, “A variable span smoother”, Tech. Rep. 5,
Department of Statistics, Stanford University, 1984.

C.B. Roosen and T.J. Hastie, “Automatic smoothing spline
projection pursuit”, Journal of Computational and Graphical
Statistics, vol. 3, no. 3, pp. 235-248, 1994.

T.J. Hastie and R.J. Tibshirani, Generalized Additive Models,
Monographs on Statistics and Applied Probability 43. Chapman
and Hall, 1st edition, 1990.

G. Sansone, Orthogonal Functions, Dover, New York, 1991.
J.H. Friedman, “Exploratory projection pursuit”, Journal of the
American Statistical Association, vol. 82, no. 397, pp. 249266,
Mar. 1987.

J.H. Friedman, E. Grosse, and W. Stuetzle, “Multidimensional
additive spline approximation”, STAM Journal of Scientific and
Statistical Computing, vol. 4, no. 2, pp. 291-301, June 1983.

A. Saha, C.L.. Wu, and D.S. Tang, “Approximation, dimension
reduction, and nonconvex optimization using linear superposi-
tions of Gaussians”, IEEFE Transactions on Computers, vol. 42,
no. 10, pp. 1222-1233, Oct. 1993.

S. Geman, E. Bienenstock, and R. Doursat, “Neural networks
and the bias/variance dilemma”, Neural Computation, vol. 4,
pp. 1-58, 1992.

A.R. Barron, “Approximation and estimation bounds for ar-
tificial neural networks”, in Proceedings of the Fourth Annual
Workshop on Computational Learning Theory, Santa Cruz, CA,
USA, Aug. 1991, pp. 243—249.

F. Riesz and B. Sz.-Nagy, Functional Analysis,
York, 1990.

L.K. Jones, “On a conjecture of Huber concerning the conver-
gence of projection pursuit regression”, The Annals of Statistics,
vol. 15, no. 2, pp. 880-882, 1987.

P.J. Huber, “Projection pursuit (with discussion)”, The Annals
of Statistics, vol. 13, no. 2, pp. 435-525, 1985.

S.E. Fahlman, “Faster learning variations on back-propagation:
An empirical study”, in Proceedings of the 1988 Connection-
1st Models Summer School, D.S. Touretzky, G.E. Hinton, and
T.J. Sejnowski, Eds., Los Altos, CA, 1988, pp. 38—51, Morgan
Kaufmann.

H. Akaike, “A new look at the statistical model identification”,
IEEE Transactions on Automatic Control, vol. AC-19, no. 6,
pp. 716-723, Dec. 1974.

K. Hornik, “Some new results on neural network approxima-
tion”, Neural Networks, vol. 6, pp. 1069-1072, 1993.

K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks”, Neural Networks, vol. 4, pp. 251-257,1991.
L.K. Jones, “A simple lemma on greedy approximation in
Hilbert space and convergence rates for projection pursuit re-

Dover, New

[44]

45]

[46]
(47]

48]

(49]

gression and neural network training”, The Annals of Statistics,
vol. 20, no. 1, pp. 608-613, 1992.

R.S. Crowder, “Predicting the Mackey-Glass timeseries with
cascade-correlation learning”, in Proceedings of the Connection-
15t Models Summer School, 1990, pp. 117-123.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C, Cambridge University Press, New York,
2nd edition, 1992.

V.K. Rohatgi, Statistical Inference, John Wiley & Sons, 1984.
A. Lapedes and F. Farber, “Nonlinear signal processing using
neural networks: Prediction and system modelling”, LA-UR
87-2662, Los Alamos National Laboratory, 1987.

J. Moody and C. Darken, “Learning with localized receptive
fields”, in Proceedings of the 1988 Connectionlist Models Sum-
mer School, 1988, pp. 133-143.

J. Park and I. Sandberg, “Universal approximation using radial-
basis-function networks”, Neural Computation, vol. 3, pp. 246—
257, 1991.

Tin-Yau Kwok received the B.Sc.(Eng.) de-
gree from the University of Hong Kong. He
is currently a Ph.D. student in computer sci-
ence in the Hong Kong University of Science
and Technology. His research interests include
artificial neural networks, pattern recognition
and time series prediction.

Dit-Yan Yeung received his B.Sc.(Eng.) de-
gree in electrical engineering and M.Phil. de-
gree in computer science from the University
of Hong Kong, and the Ph.D. degree in com-
puter science from the University of Southern
California. He is currently an assistant profes-
sor in the Hong Kong University of Science and
Technology. His current research interests in-
clude neural computation, statistical learning
theory, and handwriting recognition.

