16

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]
[126]

[127]

[128]

[129]

[130]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

T.Y. Kwok and D.Y. Yeung, “Use of bias term in projection
pursuit learning improves approximation and convergence prop-
erties,” 1996, To appear in IEEE Transactions on Neural Net-
works.

W. Fang and R.C. Lacher, “Network complexity and learning
efficiency of constructive learning algorithms,” in Proceedings
of the IEEE International Conference on Neural Networks, Or-
lando, Florida, USA, June 1994, vol. 1, pp. 366-369.

E. Littmann and H. Ritter, “Cascade LLLM networks,” in Pro-
ceedings of the International Conference on Artificial Neural
Networks, Brighton, UK, Sept. 1992, vol. 1, pp. 253-257.

E. Littmann and H. Ritter, “Cascade network architectures,”
in Proceedings of the International Joint Conference on Neural
Networks, Baltimore, MD, USA, June 1992, vol. 2, pp. 398-404.
D.S. Phatak and I. Koren, “Connectivity and performance
tradeoffs in the cascade correlation learning architecture,”
IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 930—
935, Nov. 1994.

N. Simon, H. Corporaal, and E. Kerckhoffs, “Variations on the
cascade-correlation learning architecture for fast convergence
in robot control,” in Proceedings of the Fifth International
Conference on Neural Networks and their Applications, Nimes,
France, Nov. 1992, pp. 455-464.

S. Sj¢gaard, “Generalization in cascade-correlation networks,”
in Neural Networks for Signal Processing II. Proceedings of
the IEEKE - SP Workshop, Helsingoer, Denmark, Sept. 1992,
pp. 59-68.

I.G. Smotroff, D.H. Friedman, and D. Connolly, “Self orga-
nizing modular neural networks,” in Proceedings of the Inter-
national Joint Conference on Neural Networks, Seattle, WA,
USA, July 1991.

P.L. Springer and S. Gulati, “Parallelizing the cascade-
correlation algorithm using Time Warp,” Neural Networks,
vol. 8, no. 4, pp. 571-577,1995.

D.Y. Yeung, “A neural network approach to constructive in-
duction,” in Proceedings of the Eighth International Workshop
on Machine Learning, Evanston, Illinois, USA, 1991.

L.K. Hansen and M.W. Pedersen, “Controlled growth of cas-
cade correlation nets,” in Proceedings of the International
Conference on Artificial Neural Networks, Sorrento, Italy, May
1994, vol. 1, pp. 797-800.

O Fujita, “Optimization of the hidden unit function in feedfor-
ward neural networks,” Neuwral Networks, vol. 5, pp. 755764,
1992.

V. Kurkova and B. Beliczynski, “Incremental approximation
by one-hidden-layer neural networks,” in Proceedings of the
International Conference on Artificial Neural Networks, Paris,
France, Oct. 1995, vol. 1, pp. 505-510.

T.Y. Kwok and D.Y. Yeung, “Objective functions for train-
ing new hidden units in constructive neural networks,” 1995,
Submitted.

G.P. Drago and S. Ridella, “Convergence properties of cascade
correlation in function approximation,” Neural Computing €
Applications, vol. 2, pp. 142-147,1994.

G. Deco and J. Ebmeyer, “Coarse coding resource-allocating
network,” Newuwral Computation, vol. 5, no. 1, pp. 105-14, 1993.
B. Fritzke, “Growing cell structures — a self-organizing network
for unsupervised and supervised learning,” Neural Networks,
vol. 7, no. 9, pp. 1441-1460, 1994.

S. Lee and R.M. Kil, “A Gaussian potential function network
with hierarchically self-organizing learning,” Neural Networks,
vol. 4, pp. 207-224,1991.

J. Platt, “A resource-allocating network for function interpo-
lation,” Newral Computation, vol. 3, pp. 213-225, 1991.

R.O. Duda and P.E. Hart, Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

V. Kadirkamanathan and M. Niranjan, “A function estimation
approach to sequential learning with neural networks,” Neural
Computation, vol. 5, no. 6, pp. 954-975, 1993.

S. Roberts and L. Tarassenko, “A probabilistic resource allo-
cating network for novelty detection,” Neural Computation,
vol. 6, no. 2, pp. 270-284, Mar. 1994.

S.J. Farlow, Ed., Self-Organizing Methods in Modeling
GMDH Type Algorithms, vol. 54 of Statistics: Textbooks and
Monographs, Marcel Dekker, Inc., New York, 1984.

T.M. Nabhan and A.Y. Zomaya, “Toward generating neural
network structures for function approximation,” Neural Net-
works, vol. 7, no. 1, pp. 89-99, 1994.

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

C. Darken, M. Donahue, L.. Gurvits, and E. Sontag, “Rate
of approximation results motivated by robust neural network
learning,” Tech. Rep., Siemens Corporate Research, Inc.,
Princeton, New Jersey, Apr. 1994.

K. Hornik, M. Stinchcombe, H. White, and P. Auer, “Degree of
approximation results for feedforward networks approximating
unknown mappings and their derivatives,” Neuwral Computa-
tiom, vol. 6, pp. 1262—-1275, 1994.

L. Xu, A. Krzyzak, and A. Yuille, “On radial basis function
nets and kernel regression: Statistical consistency, convergence
rates, and receptive field size,” Neural Networks, vol. 7, no. 4,
pp. 609-628, 1994.

A.R. Barron and R.L. Barron, “Statistical learning networks:
A unifying view,” in Computing Science and Statistics, Pro-
ceedings of the 20th Symposium Interface, E. Wegman, Ed.,
Washington, DC, 1988, pp. 192-203, American Statistical As-
sociation.

B. Cheng and D.M. Titterington, “Neural networks: A review
from a statistical perspective (with discussion),” Statistical
Sciences, vol. 9, no. 1, pp. 2-54, 1994.

V. Cherkassky, “Neural networks and nonparametric regres-
sion,” in Proceedings of the IEEE-SP Workshop, Helsingoer,
Denmark, Aug. 1992, pp. 511-521.

B.D. Ripley, “Statistical aspects of neural networks,” in Net-
works and Chaos — Statistical and Probabilistic Aspects, O.E.
Barndorff-Nielsen, J.L.. Jensen, and W.S. Kendall, Eds., pp.
40-123. Chapman & Hall, London, 1993.

B.D. Ripley, “Neural networks and related methods for clas-
sification (with discussion),” Journal of the Royal Statistical
Society Series B, vol. 56, 1994.

W.S. Sarle, “Neural networks and statistical models,” in Pro-
ceedings of the Nineteenth Annual SAS Users Group Interna-
tional Conference, Apr. 1994.

D.J.C. MacKay, “Probable networks and plausible predictions
— a review of practical Bayesian methods for supervised neural
networks,” Network: Computation in Neural Systems, vol. 6,
no. 3, pp. 469-505, Aug. 1995.

Tin-Yau Kwok received his B.Sc.(Eng.) de-
gree from the University of Hong Kong and
the Ph.D. degree in computer science from the
Hong Kong University of Science and Technol-
ogy. His current research interests include arti-
ficial neural networks, pattern recognition and
Bayesian statistics.

Dit-Yan Yeung received his B.Sc.(Eng.) de-
gree in electrical engineering and M.Phil. de-
gree in computer science from the University
of Hong Kong, and the Ph.D. degree in com-
puter science from the University of Southern
California. He is currently an assistant profes-
sor in the Hong Kong University of Science and
Technology. His current research interests in-
clude neural computation, statistical learning
theory, and handwriting recognition.

KWOK AND YEUNG: CONSTRUCTIVE ALGORITHMS FOR STRUCTURE LEARNING 15

63]

(64]

(65]

[66]

(67]

(68]

(69]

[71]

(72]

(73]

(74]
(73]
(76]

(77]

(78]

(8]

81]

(82]

(83]

(84]

L.K. Jones, “A simple lemma on greedy approximation in
Hilbert space and convergence rates for projection pursuit re-
gression and neural network training,” The Annals of Statistics,
vol. 20, no. 1, pp. 608-613, 1992.

F.L. Chung and T. Lee, “Network-growth approach to design of
feedforward neural networks,” TEE Proceedings. Control The-
ory and Applications, vol. 142, no. 5, pp. 486-492, Sept. 1995.
P. Courrieu, “A convergent generator of neural networks,” Neu-
ral Networks, vol. 6, no. 6, pp. 835-844, 1993.

J. Luo, “A bias architecture with rank-expanding algorithm for
neural networks supervised learning problem,” in Proceedings
of the World Congress on Newral Networks, San Diego, CA,
June 1994, vol. 3, pp. 742-747.

G. Weiss, “Neural networks and evoluntionary computation.
Part 1: Hybrid approaches in artificial intelligence,” in Pro-
ceedings of the First IEEE Conference on Evoluntionary Com-
putation, Orlando, FL, USA, June 1994, vol. 1, pp. 268-272.
X. Yao, “A review of evolutionary artificial neural networks,”
International Journal of Intelligent Systems, vol. 8, pp. 539—
567, 1993.

G.F. Miller, P.M. Todd, and S.U. Hegde, “Designing neu-
ral networks using genetic algorithms,” in Proceedings of the
Third International Conference on Genetic Algorithms, 1989,
pp. 379-384.

C.C. Teng and B.W. Wah, “An automated design system for
finding the minimal configuration of a feed-forward neural net-
work,” in Proceedings of the IEEE International Conference
on Neural Networks, Orlando, Florida, USA,| June 1994, vol. 3,
pp. 1295-1300.

R. Battiti, “First- and second-order methods for learning: Be-
tween steepest descent and newton’s method,” Neural Compu-
tation, vol. 4, pp. 141-166, 1992.

T.T. Jervis and W.J. Fitzgerald, “Optimization schemes for
neural networks,” CUED/F-INFENG/TR 144, Cambridge
University Engineering Department, 1993.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flan-
nery, Numerical Recipes in C, Cambridge University Press,
New York, 2nd edition, 1992.

L. Xu, S. Klasa, and A. Yuille, “Recent advances on techniques
of static feedforward networks with supervisedlearning,” Inter-
national Journal of Neural Systems, vol. 3, no. 3, pp. 253-290,
1992.

G.S.G. Beveridge and R.S. Schechter,
and Practice, McGraw-Hill, 1970.
SAS Institute Inc., SAS/STAT User’s Guide, release 6.03 edi-
tion, 1988.

M.R. Azimi-Sadjadi, S. Sheedvash, and F.O. Trujillo, “Re-
cursive dynamic node creation in multilayer neural networks,”
IEEE Transactions on Neural Networks, vol. 4, no. 2, pp. 242—
256, Mar. 1993.

P.S. Lewis and J.N. Hwang, “Recursive least-squares learning
algorithms for neural networks,” in Proceedings of SPIE. Ad-
vanced Signal-Processing Algorithms, Architectures, and Im-
plementations, 1990, vol. 1348, pp. 28-39.

S.E. Fahlman, “Faster learning variations on back-propagation:
An empirical study,” in Proceedings of the 1988 Connection-
1st Models Summer School, D.S. Touretzky, G.E. Hinton, and
T.J. Sejnowski, Eds., Los Altos, CA, 1988, pp. 3851, Morgan
Kaufmann.

R. Setiono and L..C.K. Hui, “Use of a quasi-Newton method in
a feedforward neural network construction algorithm,” IEEE
Transactions on Neural Networks, vol. 6, no. 1, pp. 273-277,
1995.

J.H. Friedman and W. Stuetzle, “Projection pursuit regres-
sion,” Journal of the American Statistical Association, vol. 76,
no. 376, pp. 817-823, 1981.

S. Sjpgaard, A Conceptual Approach to Generalization tn Dy-
namic Neural Networks, Ph.D. thesis, Computer Science De-
partment, Aarhus University, DK-8000 Aarhus C, Denmark,
1991.

S.E. Fahlman and C. Lebiere, “The cascade-correlationlearning
architecture,” in Advances in Neural Information Processing
Systems 2, D.S. Touretzky, Ed., pp. 524-532. Morgan Kauf-
mann, Los Altos CA, 1990.

T. Ash, “Dynamic node creation in backpropagation networks,”
Connection Science, vol. 1, no. 4, pp. 365-375, 1989.

Theory

Optimization:

(85]

(86]

(88]

(89]

[90]

[91]

[92]

(93]

(94]

[95]

[96]

[97]

(98]

(99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

E.B. Bartlett, “Dynamic node architecture learning: An infor-
mation theoretic approach,” Neural Networks, vol. 7, no. 1, pp.
129-140, 1994.

Y. Hirose, K. Yamashita, and S. Hijiya, “Back-propagation
algorithm which varies the number of hidden units,” Neural
Networks, vol. 4, pp. 61-66, 1991.

K. Khorasani and W. Weng, “Structure adaptation in feed-
forward neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Neural Networks, Orlando, Florida, USA,
June 1994, vol. 3, pp. 1403-1408.

B.T. Zhang, “An incremental learning algorithm that optimizes
network size and sample size in one trial,” in Proceedings of the
IEEE International Conference on Neural Networks, Orlando,
Florida, USA, June 1994, vol. 1, pp. 215-220.

T.E. Flick, L.K. Jones, R.G. Priest, and C. Herman, “Pattern
classification using projection pursuit,” Pattern Recognition,
vol. 23, no. 12, pp. 1367-1376, 1990.

J.H. Friedman, E. Grosse, and W. Stuetzle, “Multidimensional
additive spline approximation,” SIAM Journal of Scientific
and Statistical Computing, vol. 4, no. 2, pp. 291-301, June
1983.

J.N. Hwang, S.R. Lay, M. Maechler, D. Martin, and
J. Schimert, “Regression modeling in back-propagation and
projection pursuit learning,” IEFE Transactions on Neural
Networks, vol. 5, no. 3, pp. 342-353, May 1994.

S. Lay, J. Hwang, and S. You, “Extensionsto projection pursuit
learning networks with parametric smoothers,” in Proceedings
of the IEEE International Conference on Neural Networks, Or-
lando, Florida, USA, June 1994, vol. 3, pp. 1325-1330.

C.B. Roosen and T.J. Hastie, “Automatic smoothing spline
projection pursuit,” Journal of Computational and Graphical
Statistics, vol. 3, no. 3, pp. 235-248, 1994.

A. Saha, C.L.. Wu, and D.S. Tang, “Approximation, dimension
reduction, and nonconvex optimization using linear superposi-
tions of Gaussians,” IEEE Transactions on Computers, vol.
42, no. 10, pp. 12221233, Oct. 1993.

Y. Shin and J. Ghosh, “Ridge polynomial networks,” IEEE
Transactions on Neural Networks, vol. 6, no. 2, May 1995.

W. Verkooijen and H. Daniels, “Connectionist projection pur-
suit regression,” Computational Fconomics, vol. 7, pp. 155—

161, 1994.
J.L. Yuan and T.L. Fine, “Forecasting demand for electric
power,” in Advances in Neural Information Processing Sys-

tems 5, S.J. Hanson, J.D. Cowan, and C.L. Giles, Eds., pp.
739-746. Morgan Kaufmann, San Mateo, CA, 1993.

Y. Zhao and C.G. Atkeson, “Some approximation properties of
projection pursuit learning networks,” in Advances in Neural
Information Processing Systems 4, J.E. Moody, S.J. Hanson,
and R.P. Lippmann, Eds., pp. 936-943. Morgan Kaufmann,
San Mateo, CA, 1992.

Statistical Sciences, Inc., Seattle, Washington, S-Plus User’s
Manual, 3.0 edition, Sept. 1991.

J. Moody and N. Yarvin, “Networks with learned unit response
functions,” in Advances in Neural Information Processing Sys-
tems 4, J.E. Moody, S.J. Hanson, and R.P. Lippmann, Eds., pp.
1048-1055. Morgan Kaufmann, San Mateo, CA, 1992.

J.H. Friedman, “Exploratory projection pursuit,” Journal of
the American Statistical Association, vol. 82, no. 397, pp. 249—
266, Mar. 1987.

Y. Shin and J. Ghosh, “The pi-sigma network: An efficient
higher-order neural network for pattern classification and func-
tion approximation,” in Proceedings of the International Joint
Conference on Neural Networks, Seattle, Washington, July
1991, vol. 1, pp. 13-18.

N. Intrator, “Combining exploratory projection pursuit and
projection pursuit regression with application to neural net-
works,” Neural Computation, vol. 5, no. 3, pp. 443-455, May
1993.

T.Y. Kwok and D.Y. Yeung, “Bayesian regularization in con-
structive neural networks,” in Proceedings of the International
Conference on Artificial Neural Networks, Bochum, Germany,
July 1996, pp. 557-562.

J. Ghosh and Y. Shin, “Efficient higher-order neural networks
for classification and function approximation,” International
Journal of Neural Systems, vol. 3, no. 4, pp. 323-350, 1992.
L.K. Jones, “On a conjecture of Huber concerning the conver-
gence of projection pursuit regression,” The Annals of Statis-
tics, vol. 15, no. 2, pp. 880-882, 1987.

14

(15]

(16]
(17]
(18]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(3]

[36]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

E.B. Baum, “Book review on “Neural network design and the
complexity of learning”,” IEEE Transactions on Neuwral Net-
works, vol. 2, pp. 181-182, 1991.

L.G. Valiant, “A theory of the learnable,” Communications of
the ACM, vol. 27, no. 11, pp. 1134-1142, 1984.

E.B. Baum, “A proposal for more powerful learning algo-
rithms,” Neural Computation, vol. 1, no. 2, pp. 201-207, 1989.
R. Reed, “Pruning algorithms — a survey,” IFEFE Transactions
on Neural Networks, vol. 4, no. 5, pp. 740-747, Sept. 1993.
E.D. Karnin, “A simple procedure for pruning back-
propagation trained neural networks,” TEEFE Transactions on
Neural Networks, vol. 1, no. 2, pp. 239-242, June 1990.

M.C. Mozer and P. Smolensky, “Skeletonization: A technique
for trimming the fat from a network via relevance assessment,”
in Advances in Neural Information Processing Systems 1, D.S.
Touretzky, Ed., pp. 107-115. Morgan Kaufmann, San Mateo,
CA, 1989.

B. Hassibi and D.G. Stork, “Second order derivatives for net-
work pruning: Optimal brain surgeon,” in Advances in Neural
Information Processing Systems 5, pp. 164-171. Morgan Kauf-
mann, San Mateo, CA, 1993.

Y. Le Cun, J.S. Denker, and S.A. Solla, “Optimal brain dam-
age,” in Advances in Neural Information Processing Systems
2, D.S. Touretzky, Ed., pp. 598-605. Morgan Kaufmann, San
Mateo, CA, 1990.

J.H. Friedman, “An overview of predictive learning and func-
tion approximation,” in From Statistics to Neural Networks.
Theory and Pattern Recognition Applications, J.H. Friedman
and H. Wechsler, Eds., AST Proceedings, Subseries F'. Springer-
Verlag, 1994.

E. Alpaydin, “GAL: networks that grow when they learn and
shrink when they forget,” TR 91-032, International Computer
Science Institute, May 1991.

G. Deffuant, “Neural units recruitment algorithm for genera-
tion of decision trees,” in Proceedings of the 1990 IEEE In-
ternational Joint Conference on Neural Networks, San Diego,
CA, USA, June 1990, vol. 1, pp. 637-642.

M. Frean, “The upstart algorithm: a method for constructing
and training feedforward neural networks,” Neural Computa-
tiom, vol. 2, pp. 198-209, 1990.

M. Marchand, M. Golea, and P. Rujan, “A convergence the-
orem for sequential learning in two-layer perceptrons,” FEuro-
physics Letters, vol. 11, no. 6, pp. 487-492, 1990.

T. Ash and G. Cottrell, “Topology modifying neural network
algorithms,” in Handbook of Brain Theory and Neural Net-
works, M.A. Arbib, Ed., pp. 990-993. MIT, Cambridge, 1995.
T. Ash and G.W. Cottrell, “A review of learning algorithms
that modify network topologies,” Tech. Rep. CS594-348, Com-
puter Science and Engineering, University of California, San
Diego, 1994.

E. Fiesler, “Comparative bibliography of ontogenic neural net-
works,” in Proceedings of the International Conference on Ar-
tificial Neural Networks, Sorrento, Italy, May 1994, vol. 1, pp.
793-796.

D.E. Nelson and S.K. Rogers, “A taxonomy of neural network
optimality,” in Proceedings of the IEEE National Aerospace
and FElectronics Conference, Dayton, OH, USA, May 1992,
vol. 3, pp. 894-899.

G. Gong, “Cross-validation, the jackknife, and the bootstrap:
FEixcess error estimation in forward logistic regression,” Journal
of the American Statistical Association, vol. 81, no. 393, pp.
108-113, May 1986.

A_.R. Barron, “Approximation and estimation bounds for artifi-
cial neural networks,” Machine Learning, vol. 14, pp. 115-133,
1994.

S. Geman, E. Bienenstock, and R. Doursat, “Neural networks
and the bias/variance dilemma,” Neural Computation, vol. 4,
pp. 1-58, 1992.

R.E. Parker and M. Tummala, “Identification of Volterra sys-
tems with a polynomial neural network,” in Proceedings of the
1992 IEEFE International Conference on Acoustics, Speech and
Signal Processing, San Francisco, CA, USA, Mar. 1992, vol. 4,
pp. 561-564.

J. Moody, “Prediction risk and architecture selection for neural
networks,” in From Statistics to Neural Networks: Theory and
Pattern Recognition Applications, V. Cherkassky, J.H. Fried-
man, and H. Wechsler, Eds., vol. 136 of NATO ASI Series F,
pp. 147-165. Springer-Verlag, 1994.

(37]

(38]

(39]

[40]

[41]
(42]
(43]
[44]

45]

[46]

(47]

48]

(49]

(50]

[51]

(52]

(53]

(54]

53]
[56]

(57]

(58]

(59]

(60]

61]

(62]

M. Stone, “Cross-validatory choice and assessment of statistical
predictions (with discussion),” Journal of the Royal Statistical
Society Series B, vol. 36, pp. 111-147,1974.

B. Efron and R.J. Tibshirani, An Introduction to the Bootsirap,
vol. 57 of Monographs on Statistics and Applied Probability,
Chapman & Hall, New York, 1993.

A.S. Weigend and B. LeBaron, “Evaluating neural network
predictors by bootstrapping,” in Proceedings of International
Conference on Neural Information Processing, Seoul, Korea,
Oct. 1994, vol. 2, pp. 1207-1212.

H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. AC-19, no. 6,
pp. 716-723, Dec. 1974.

G. Schwartz, “Estimating the dimension of a model,”
Annals of Statistics, vol. 6, pp. 461-464, 1978.

H. Akaike, “Statistical predictor identification,” Annals of the
Institute of Statistical Mathematics, vol. 22, pp. 203-217,1970.
P. Craven and G. Wahba, “Smoothing noisy data with spline
functions: Estimating the correct degree of smoothing by the
method of generalized cross-validation,” Numerische Mathe-
matik, vol. 31, pp. 377-403, 1979.

A. Barron, “Predicted squared error: A criterion for auto-
matic model selection,” in Self-Organizing Methods in Model-
ing, S. Farlow, Ed. Marcel Dekker, New York, 1984.

J. Rissanen, “Modelling by shortest data description,” Auto-
matica, vol. 14, pp. 465-471, 1975.

J.E. Moody, “Note on generalization, regularization, and ar-
chitecture selection in nonlinear learning systems,” in Neural
Networks for Signal Processing. Processing of the 1991 IEEE
Workshop, B.H. Juang, S.Y. Kung, and C.A. Kamm, Eds.,
Princeton, NJ, USA, Sept. 1991, pp. 1-10.

B.D. Ripley, “Choosing network complexity,” in Probabilis-
tic Reasoning and Bayesian Belief Networks, A. Gammerman,
Ed., pp. 97-108. Alfred Waller, 1995.

B.D. Ripley, “Statistical ideas for selecting network architec-
tures,” in Neural Networks: Artificial Intelligence and Indus-
trial Applications, B. Kappen and S. Gielen, Eds., pp. 183-190.
Springer, 1995.

M.F. Tenorio and W.T. Lee, “Self-organizing network for op-
timum supervised learning,” TEEFE Transactions on Neural
Networks, vol. 1, no. 1, pp. 100-110, Mar. 1990.

E. Hartman and J.D. Keeler, “Predicting the future: Advan-
tages of semilocal units,” Neural Computation, vol. 3, pp. 566—
578, 1991.

J. Moody and C. Darken, “Learning with localized receptive
fields,” in Proceedings of the 1988 Connectionlist Models Sum-
mer School, 1988, pp. 133-143.

S. Renals, “Radial basis function network for speech pattern
classification,” FElectronics Letters, vol. 25, no. 7, pp. 437—439,
1988.

G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Mathematics of Control, Signials and Systems, vol.
2, pp. 303-314, 1989.

K.I. Funahashi, “On the approximate realization of continous
mappings by neural networks,” Neural Networks, vol. 2, pp.
183-192, 1989.

K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,” Neural Networks, vol. 4, pp. 251-257,1991.
K. Hornik, “Some new results on neural network approxima-
tion,” Neural Networks, vol. 6, pp. 1069-1072, 1993.

E. Hartman, J. Keeler, and J. Kowalski, “Layered neural
networks with Gaussian hidden units as universal approxima-
tions,” Newral Computation, vol. 2, pp. 210-215, 1990.

J. Park and I. Sandberg, “Universal approximation using
radial-basis-function networks,” Neural Computation, vol. 3,
Pp. 246-257, 1991.

J. Park and I.W. Sandberg, “Approximation and radial-basis-
function networks,” Neural Computation, vol. 5, pp. 305-316,
1993.

A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis,
Dover, 1975.

G. Lugosi and K. Zeger, “Nonparametric estimation via em-
pirical risk minimization,” IEEFE Transactions on Information
Theory, vol. 41, no. 3, pp. 677-687, May 1995.

A.R. Barron, “Universal approximation bounds for superposi-
tions of a sigmoidal function,” IEEE Transactions on Infor-
mation Theory, vol. 39, no. 3, pp. 930-945, May 1993.

The

KWOK AND YEUNG: CONSTRUCTIVE ALGORITHMS FOR STRUCTURE LEARNING 13

vergence is also an important theoretical yet crucial prac-
tical issue. Recent results [62], [63], [131], [132], [133] have
shown that, under certain regularity conditions, the ap-
proximation error typically improves as O(%), where n is
the number of hidden units in the network. However, as
mentioned in Section I1-D.3, some of these results are not
applicable to constructive algorithms when a greedy ap-
proach is taken, whereas others are applicable to greedy
algorithms but with the detailed conditions different from
those used in practice. For example, in both [62] and [63],
the iterative sequence of network estimates is formed from a
convex combination of the previous network function f,_;
and the new hidden unit function ¢,

fn :anfn—l‘i‘(l_an)gn’ (7)

where 0 < a, < 1. In algorithms like the cascade-
correlation algorithm (Section IV-C), however, the new f,
is formed from full linear combination of the old and new
hidden unit functions. The weights connecting the old hid-
den units to the output unit are thus not constrained as a
group, as in (7). Besides, in (7), o, must be learned to-
gether with the new hidden unit g, , while in the cascade-
correlation algorithm, the parameters of the new hidden
unit are first learned and then the output layer weights.
Moreover, the objective function to be minimized in [62],
[63] is different from that in the cascade-correlation algo-
rithm. Modifying and applying these useful theoretical re-
sults to the analysis of different constructive algorithms is
thus beneficial. Some initial progress has been reported in
[119], [120], [121].

As mentioned in Section II-C, one must decide when
to stop the constructive algorithm. This is important to
achieve a proper bias-variance trade-off. A good stopping
criterion will be one based on an estimate of the gener-
alization performance of the network. But computing an
accurate estimation efficiently for neural networks is not an
easy problem to solve, and this will still be an important
research topic.

Up to now, a comprehensive performance comparison of
different constructive algorithms is still lacking. Most of
the reported works only compared a particular construc-
tive algorithm with a fixed size network trained with tradi-
tional back-propagation. As different algorithms are suit-
able for different types of target functions, the identifica-
tion of what class of target functions is most suitable for a
particular constructive algorithm will be particularly use-
ful from a practical point of view. Working along the same
line of thought, the combination of several different con-
structive algorithms into a unified algorithm may be use-
ful. This corresponds to a multi-valued state transition
mapping in the terminology of Section II-D. As can be
seen in Sections IV-E and IV-F, there have only been a
few attempts in this direction. Exploiting this kind of flex-
ibility in a computationally efficient manner will thus be
an interesting research direction.

Also, the close link between constructive algorithms and
forward stepwise regression techniques in statistics is worth
mentioning. As discussed before, a number of construc-

tive algorithms have been inspired by statistical techniques
like PPR and GMDH. The problems of model selection
and estimating generalization performance of neural net-
works also occur in a much wider context within statistics,
and have been practised by statisticians for decades. The
close relationship between various statistical methodologies
and neural network models has been discussed widely [23],
[134]-[139], and there is still ongoing research to see how
to borrow strength from each other.

Finally, note that the various approaches to the control
of network complexity, namely, regularization, and con-
structive and pruning algorithms, should not be treated as
independent rivals. There are algorithms combining con-
structive and pruning algorithms [36], [85], [86], [91], [130],
combining pruning and regularization [8], [140], combining
regularization and constructive algorithms [104], and even
combining all three [117]. Some of these have been men-
tioned in previous sections. Thus, these approaches are
complementary to each other and can work in a coopera-
tive manner.

ACKNOWLEDGMENTS

This research has been supported by the Hong Kong
Research Grants Council under grants RGC/HKUST
614/94E and RGC/HKUST 15/91. We would like to thank

the anonymous reviewers for their constructive comments
on an earlier version of this paper.

REFERENCES

[1] Y. Chauvin, “A back-propagation algorithm with optimal use
of hidden units,” in Advances in Neural Information Process-
ing Systems 1, D.S. Touretzky, Ed., pp. 519-526. Morgan Kauf-
mann, San Mateo, CA, 1989.

[2] S.J. Hanson and L.Y. Pratt, “Comparing biases for minimal
network construction with back-propagation,” in Advances in
Neural Information Processing Systems 1, D.S. Touretzky, Ed.,
pp. 177-185. Morgan Kaufmann, San Mateo, CA, 1989.

[3] A.S. Weigend, D.E. Rumelhart, and B.A. Huberman, “Gen-
eralization by weight-elimination with application to forecast-
ing,” in Advances in Neural Information Processing Systems 3,
R. Lippmann, J. Moody, and D. Touretzky, Eds., pp. 875-882.
Morgan Kaufmann, San Mateo, CA, 1991.

[4] G.H. Golub, M. Heath, and G. Wahba, “Generalized cross-
validation as a method for choosing a good ridge parameter,”
Technometrics, vol. 21, no. 2, pp. 215-223, 1979.

[5] W.L. Buntine and A.S. Weigend, “Bayesian back-propagation,”
Complex Systems, vol. 5, pp. 603-643, 1991.

[6] D.J.C. MacKay, “Bayesian interpolation,” Neural Computa-
tiom, vol. 4, no. 3, pp. 415-447, May 1992.

[7] R.M. Neal, Bayesian Learning for Neural Networks, Ph.D.
thesis, Department of Computer Science, University of Toronto,
1995.

[8] H.H.Thodberg, “A review of Bayesian neural networks with an
application to near infrared spectroscopy,” IEEE Transactions
on Neural Networks, vol. 7, no. 1, pp. 56-72, 1996.

[9] P.M. Williams, “Bayesian regularization and pruning using a
Laplace prior,” Neural Computation, vol. 7, pp. 117-143,1995.

[10] D.J.C. MacKay, “A practical Bayesian framework for back-
propagation networks,” Neural Computation, vol. 4, no. 3, pp.
448472, May 1992.

[11] J.S. Judd, Neural Network Design and the Complexity of
Learning, MIT, Cambridge, 1990.

12] A.L. Blum and R.L. Rivest, “Training a 3-node neural network

g
is NP-complete,” Neural Networks, vol. 5, pp. 117-127, 1992.

[13] J.H. Lin and J.S. Vitter, “Complexity results on learning by
neural nets,” Machine Learning, vol. 6, pp. 211-230, 1991.

14] J. Sima, “Loading deep networks is hard,” Neural Computa-

g

tiom, vol. 6, pp. 842-850, 1994.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

particular way, 1s randomly selected from among these can-
didates. An evaluation function ewval, based on the MDL
[45], is computed for s5. Denote the current state by sq. If
eval(sy) < eval(sy), then sy is accepted; otherwise, sy will

1 - {
eva (sl)Teva (52))’ where

be accepted with probability exp(
T is a “temperature” controlled by an annealing sched-
ule. Alternatively, a simple greedy approach that chooses
the candidate with the smallest eval value may be taken.
The use of annealing, in contrast to the greedy approach,
allows partial structures that look less than ideal to be
accepted. But, on the other hand, annealing is less com-
putationally efficient and becomes very time-consuming in
large problems. Another more ad hoc approach is taken in
[35]. Hidden units with training performance better than a
user-determined threshold are all installed to the network.

The resultant architecture is typically not a regular mul-
tiple hidden layer structure, but has many intra-layer con-
nections (Figure 6).

output O

tﬂddenlJnnS{[: (@)

o o

O
input O
O

Fig. 6. GMDH-type architecture.

E.1 Training

As for algorithms in Sections IV-B and IV-C, only the
new hidden unit is trained. But a characteristic of this class
of algorithms is that the new hidden unit is treated as an
interim output unit during training. As a result, there is
only one layer of weights (i.e., those weights feeding into
the hidden unit) to train. In principle, hidden units of
any functional form may be used. However, training of
each candidate hidden unit may be a nonlinear optimiza-
tion problem. In this class of algorithms, further reduction
in the computational requirement is achieved by the use of
polynomial hidden units. Assume that there are m incom-
ing connections to the hidden unit, the transfer functions
may be of the form:

m m m
glxr,...,xm) =a+ Zbiiﬂi + Zczl‘f + E dijz;x,

i=1 i=1 i, j=15#]
where a, b;, ¢;, d;; are the connection weights, and z;, x; are
the corresponding incoming activations. The number m is
usually set small, such as 2. By treating the new hidden
unit as an interim output unit and using the squared error
as the error criterion, training of these connection weights

reduces to a linear problem, and the weight solution may
be obtained by simply computing the pseudo-inverse.

E.2 Approximation and Convergence Properties

Following from the well-known approximation properties
for polynomials, GMDH networks are universal approxima-
tors even when the degree and the number of inputs to each
hidden unit are constrained to be as small as 2. However,
because of the generally ad hoc nature of these types of
algorithms, the convergence property is unknown.

F. Miscellaneous

There are not many constructive algorithms that have
multi-valued state transition mappings while still re-
training the whole network upon hidden unit addition,
probably because of the consequent high computational re-
quirement. [130] is such an example. It is actually a hybrid
algorithm with both constructive and pruning components.
At each state, there are two new possible states'!, either
by adding a new hidden unit to the same layer or by adding
a whole hidden layer between the last hidden layer and the
output layer. The number of hidden units in the new layer
is heuristically set to be |(nout +n1ast) /2], where ngy: is the
number of output units and nj4s¢ is the number of hidden
units in the last hidden layer. Selection between these two
states is done by comparing the rate of change of the train-
ing error. Because of the ad hoc nature, the convergence
property is not known.

V. DiscussioN AND CONCLUSION

In this paper, we have reviewed the different algorithms
used for constructing feedforward neural networks. Al-
though the list of articles surveyed here is not exhaustive,
one can still notice a conglomeration of various network
architectures and training algorithms. The following issues
may deserve particular attention.

As discussed in Section III-B, the use of a greedy ap-
proach necessitates the ability of the algorithm to con-
struct powerful feature detectors without using excessive
parameters. This is achieved in various algorithms by us-
ing complicated hidden units (with the complexity coming
from the use of either cascade connections or complicated
functional forms). Regularization or subsequent pruning
is then used to reduce the effective number of parameters.
Other approaches may also be worth exploring. For exam-
ple, one possibility is to start with simple hidden units, and
when there is no significant reduction in residual error in
a single state transition, the algorithm then increases the
complexity of the hidden unit or trains several hidden units
together in one single step.

Moreover, as can be seen in the discussion in Section 1V,
convergence results are still lacking for a number of con-
structive algorithms,; which definitely deserve more atten-
tion in the future. Going one step further, the rate of con-

11 Actually, there are four states, two of which are produced by
the pruning component. However, in the following, we will focus
our discussion on the constructive component and hence the pruning
component will be ignored.

KWOK AND YEUNG: CONSTRUCTIVE ALGORITHMS FOR STRUCTURE LEARNING 11

between the residual error and the hidden unit activation:

Scascor = Z | Z(Epo - EO)(HP - H)|7
o p

where p ranges over the training patterns, o ranges over
the output units, H, is the activation of the new hidden
unit for pattern p, F,, is the residual error at output o for
pattern p before the new hidden unit is added, and H and
E, are the corresponding values averaged over all patterns.
Some other correlation-based functions, with different time
and space requirements, are proposed in [65], [118], [119],
[120]. The method mentioned in Section TV-B.2 may also
be used. An experimental comparison of the performance
of these alternatives can be found in [120].

An exception is [110]. Here, the new hidden unit is
treated as an interim output unit, as in GMDH to be dis-
cussed in Section IV-E, and the error criterion is directly
used to train the weights.

C.3 Convergence Property

Except for the variant in [111], the universal approxima-
tion capability for this class of architectures is obvious, as
these networks can be reduced to the regular single hidden
layer networks by removing all cascade connections. The
convergence property of the cascade-correlation algorithm,
for networks using the hyperbolic tangent as hidden unit
transfer function and the uniform input environment mea-
sure, is proved in [121]. More general results, extending
to other hidden unit transfer functions, correlation func-
tions in [118], [120] and input environment measures, are
discussed in [120]. However, for the criterion function in
[65], the convergence property is not known.

D. Resource-Allocating Network

Similar to the algorithms in Sections IV-A and IV-B,
algorithms in this class [122]-[125] also add hidden units
to the same layer one at a time. However, the major dif-
ference 1s that memorization of training patterns is used
to reduce the computational requirement of the training
process, which is especially significant for constructive al-
gorithms, as mentioned in Section III. Memorization has
been used in methods like k-nearest neighbors and the
Parzen windows [126]. However, these methods tend to
produce networks that potentially grow linearly in the
training set size, thus demanding large space and long time
in computing network output. Algorithms in this section,
typified by the resource-allocating network® (RAN) devel-
oped by Platt [125], attempt to strike a good balance for the
use of memorization. The central idea is to train the whole
network only for the “easy” training patterns, while us-
ing memorization for the “hard” or “novel” patterns. Note
that because memorization is based on individual patterns,
training in these algorithms always proceeds in a pattern-
by-pattern manner, compared to the other algorithms in
which training may also proceed in a per-epoch manner.

9 A function space approach to analyze RAN is developed in [127].

In RAN, a pattern is considered novel'® when

1. it is farther away from all hidden units by a resolution

parameter 6, and

2. the difference between the desired output of the pat-

tern and the network output is larger than the desired

accuracy.
Thus, if the network performs well on a particular training
pattern, or if that pattern is already close to a stored vector,
then the network adjusts its parameters. Otherwise, if the
pattern is novel, it memorizes the input vector and the
corresponding output vector of this pattern by allocating
a new hidden unit. No training is required in this addition
step.

Note that these algorithms typically use RBF units as
hidden units. An RBF unit responds to a small localized
region of the input space. The explicit storage of an input-
output pair as a new RBF unit means that this pair can be
used immediately to improve system performance in a local
region of the input space near this newly stored pair. On
the other hand, a hidden unit with nonlocal response (such
as a sigmoid unit) needs to undergo parameter update even
for novel patterns, because it has a nonzero output for a
large fraction of the training data.

Another advantage of RAN and its variant [122] is that
they can be used for sequential learning, i.e., training can
commence before all training patterns have arrived.

However, one problem with RAN is that noisy data may
lead to a large number of hidden units. Moreover, the user-
defined resolution parameter § specifies the smallest dis-
tance two RBF units can have and features smaller than
that will get averaged out. This effectively makes it im-
possible to appropriately model functions that vary on a
finer scale. These problems are alleviated in the supervised
growing cell structures [123]. Here, error information is ac-
cumulated in counters associated with each hidden unit. A
new unit is inserted in regions with high local error only
after presentation of a number of training patterns. More-
over, there 1s no hard threshold to control the minimum
spacing between the RBF units.

A major drawback of these algorithms is that their con-
vergence properties are unknown.

E. Group Method of Data Handling

Constructive algorithms in this category [35], [49] are
inspired by the group method of data handling (GMDH)
developed by Ivakhnenko [129]. The major difference from
algorithms described in previous sections is that the state
transition mapping is multi-valued. Each hidden unit takes
a fixed number of incoming connections, but the sources of
these incoming connections are not fixed and may come
from any possible combination of input and existing hid-
den units in the network. Thus, when a new hidden unit is
to be added, there will be a number of candidate networks.
Searching among these candidates can be done in different
ways. For example, in [49], the search is done nondetermin-
istically using simulated annealing. A state ss, correspond-
ing to a network with the new hidden unit connected in a

100ther novelty detection methods may also be defined [128].

10 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

units, this cascade structure may also be combined with
hidden units of more complicated transfer function. For
example, in [109], each hidden unit is a local linear map
that learns a linear approximation of the target function
within its “receptive field”.

output)
CO—e
hidden uni t{ O
O
-,
input O
-,

Fig. 4. The cascade-correlation architecture. In the diagram, empty
circles represent input /hidden /output units while black dots refer
to connections between units.

Although the resultant deep network structure leads to
the creation of very powerful high-order feature detectors,
the number of connections for the nth hidden unit increases
as O(n) and gives rise to two major problems:

1. The generalization performance of the network may
be degraded when n is large, as it is likely that some of
these parameters may be irrelevant to the prediction
of the output.

2. There will be long propagation delays and an ever-
increasing fan-in of the hidden units as more units are
added, making VLSI implementation difficult.

There are several possible methods to alleviate the first
problem, which parallels the problem of controlling hidden
unit complexity discussed in Section IV-B.1. For example,
regularization may be used to reduce the effects of any
spurious connections. Early success is reported in [117].
However, the regularization parameter must be manually
set. A Bayesian method to set this automatically has been
proposed in [104], leading to much-improved generalization
performance. Another method is to prune the spurious
connections. In [114], as each hidden unit is trained, the
saliency of its weights is calculated and the weights that
are determined to be weak are eliminated. This also partly
alleviates the second problem. However, such an approach
is computationally expensive and the saliency can only be
approximated, sometimes with high error.

A natural alternative is to limit the fan-in of the hidden
units and connect the new hidden unit to only a selected
few pre-existing units. For example, in [111], Phatak and
Koren modified the original cascade-correlation architec-
ture by allowing more than one hidden unit in each layer,
and each new hidden unit is connected only to the previous
hidden layer. The fan-in of the hidden units 1s thus con-
trolled by the number of units allowed in each hidden layer.
When this maximum is reached and a new hidden unit is
to be added, the current output layer is first collapsed into

a new hidden layer, with further new hidden units added
to this new layer. As a result, a regular multiple hidden
layer structure is formed (Figure 5). However, the maxi-
mum number of hidden units allowed in each layer may be
crucial for performance. Restricting this to a small number
limits the ability of the hidden units to form complicated
feature detectors, as each hidden unit can only see its previ-
ous hidden layer outputs. With this restriction in mind, its
universal approximation capability, even when the number
of hidden layers is allowed to grow without bound, seems

unclear®.

output O

hidden unit{ C‘) (@)

o o

<>©—¢:

O
input &
O
Fig. 5. Modified cascade-correlation architecture with only partial
connections.

An even more radical approach is to remove all cascade
connections, reducing the resultant network to have only
one single hidden layer [113], [116]. However, as only simple
hidden units are employed in [113], [116], they may have
difficulty in learning complex problems (as mentioned in
Section ITI-B).

C.2 Training

Training for this class of algorithms is similar to that
in Section IV-B.2. Only the new hidden unit is trained
and training proceeds in a layer-by-layer manner. First,
the weights feeding into the new hidden unit are trained
(input training) by optimizing an objective function, while
all the other weights in the network are kept fixed. Usually,
there is a pool of such candidate hidden units, each using a
different initial random seed. The candidate that optimizes
the objective function in input training is installed into the
network. After that, its weights are kept constant and only
the weights connecting the hidden units to the output are
trained (output training). When the output unit is linear,
output training becomes a linear problem and the output
layer weights may be conveniently obtained by computing
the pseudo-inverse exactly.

A number of objective functions have been used in input
training. For example, in the cascade-correlation architec-
ture [83], the new hidden unit maximizes the covariance

81n the extreme case when only one hidden unit is allowed in each
layer, then obviously the universal approximation property does not

hold.

KWOK AND YEUNG: CONSTRUCTIVE ALGORITHMS FOR STRUCTURE LEARNING 9

set by the user. Recently, several methods have been pro-
posed to alleviate this problem. In the pooling projection
pursuit network [92], a number of candidate hidden units
with varying complexity are attempted. The more com-
plex candidate is preferred if the corresponding increase in
complexity brings about the largest normalized decrease in
training error. Alternatively, regularization may be used to
reduce the effects of any spurious parameters in a compli-
cated hidden unit. For example, Intrator [103] mentioned
the use of a projection index penalizing projections a,, that
are close to the Gaussian form. Of course, other commonly
used penalty methods, such as putting a Gaussian prior
on the network weights, may also be used. Besides, by
casting constructive algorithms in a Bayesian framework,
[104] showed that the regularization parameter can be auto-
matically determined. Note that this controlling of hidden
unit complexity 1s also important for nonparametric hidden
units. In that case, usually some form of cross-validation

[37] is used.

B.2 Training

Another characteristic of this kind of algorithm is that
instead of re-training the whole network after a new hidden
unit is added, they only train the new hidden unit. Thus,
for PPR, after adding the nth hidden unit, the only pa-
rameters to be trained are the smoother function ¢, and
the projection vector a, in (4). Computational require-
ment is reduced significantly in this way, as explained in
Section III-B.

Further simplification comes by training in a layer-by-
layer manner. For example, in PPL [91], parameters that
have to be trained after adding the nth hidden unit are
divided into three groups:

1. input-to-hidden weights a,;

2. parameters associated with the hidden unit transfer
function in (6), i.e., ¢,’s and the parameters in the
Hermite functions h,(z)’s;

3. hidden-to-output weights w;’s connecting to all the
outputs.

The weights a,, are first optimized with respect to the error
criterion, while keeping the parameters in the second and
third groups fixed. Afterwards, the parameters associated
with the hidden unit transfer function are updated, also
with the others fixed. Then follows the output weights.
This process is repeated until further decrease in train-
ing error is negligible. Thus, the original nonlinear opti-
mization problem is reduced to a number of optimization
problems of comparatively low dimensionality. In the spe-
cial case of linear output units, only the optimization of
the projection directions remains a nonlinear problem af-
ter such decomposition.

The situation is again a bit different for RPNs. Al-
though there is only one single layer of weights and all the
weights of the new hidden unit (a PSN) can in principle be
trained at the same time, such a training scheme for PSN
can lead to instability problems unless the learning rate
is sufficiently small [105]. In [95], an asynchronous rule is
proposed. Though this training algorithm converges [105],

it is much more complicated and time-consuming.

B.3 Convergence Property

Strong convergence to the target function for the network
sequence produced by these algorithms using nonparamet-
ric hidden units is proved in [106]. Tt states that if each new
gn in (4) at stage n is given by the conditional expectation:

gn(z) = E(f - fn—1|aZX = Z)7
and the projection direction a, 1s chosen as long as

E(gn(a3X))® > p sup E(ga(b"X))*,
bTb=1
where 0 < p < 1 is fixed, then f, in (4) strongly converges
to the desired f with respect to the L? norm.

However, this result is not readily applicable to PPL, as
has been assumed in [91]. With the smoothers in PPL be-
ing parametric, this g, may not always be realizable. In
fact, for any finite order, PPL networks are not univer-
sal approximators and thus the network sequence does not
converge to the target function [107]. Fortunately, one can
modify (5) by including a bias term in each linear projec-
tion of the predictor variables as:

Fa(x) =D wigj(al x +6;),

ji=1

then PPL can regain both the universal approximation and
convergence capabilities [107], based on results in [63]. This
is also applicable to other algorithms using parametric hid-
den units. Experimentally, this modification also improves
the rate of convergence with respect to the number of hid-
den units and gives better generalization performance [107].

For RPN, the convergence property has not been estab-
lished. In fact, because its functional form is so different
from traditional neural networks, typical universal approx-
imation results (say, [53]-[56]) do not apply here. Its uni-
versal approximation capability, so far only with respect to
the uniform norm, is proved in [95].

C. Cascade-Correlation

In contrast to algorithms mentioned previously, algo-
rithms in this section [83], [108]-[116], mostly variants
of the cascade-correlation architecture [83] proposed by
Fahlman and Lebiere, construct networks that have multi-
ple hidden layers. This structural arrangement allows the
development of powerful high-order feature detectors even
with simple hidden units.

C.1 Connectivity Scheme of the New Hidden Unit

The basic network architecture is typified by the cascade-
correlation architecture. When a new hidden unit is to
be created, besides establishing connection with each of
the network’s original inputs and outputs, it also estab-
lishes connection with every existing hidden unit in the
current network. Each new unit therefore adds a new one-
unit “layer” to the network, leading to a cascade architec-
ture (Figure 4). Though typically used with simple hidden

8 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

consructive proceres

snglevalued muli-valued
sdetrangiion mapping sdetrangiion mapping

i TN

franngte traning only {raning {raningthe traiing only
wholenetwork thenew hiadenunit - with memorization wholenetwork — the new hidden unit

DN / \ RAN) (GMDH)

dngjehidenlayer muliple hiddenayers
(PR (cascane-correfaion)

Fig. 3. A taxonomy of constructive algorithms, with the representa-
tive algorithm for each class quoted in brackets.

is large, as discussed in Section ITI-A.

B. Projection Pursuit Regression

Algorithms in this class [81], [89]-[98] are inspired
from the statistical technique projection pursuit regression
(PPR) proposed by Friedman [81]. Typically, its functional
form is the summation of n nonlinear functions (without
loss of generality, assume that there is only one output

unit):
) n
x) =Y gi(al x),
ji=1

where a; is the projection vector, x is the input vector,
superscript 7' denotes vector transpose, and the g;’s are
called smoothers in the statistics literature. Because of the
obvious similarity between PPR and single hidden layer
neural networks by taking the g;’s to be hidden units, we
also include it here (as by [98]) as a constructive neural
network algorithm. Variants of PPR [91], [94], [96] usually
have output weights added to (4), as:

n
— g (al
= E w]g](ajx
ji=1

(4)

()

The state transition mapping is, again, single-valued. As
in DNC, the number of hidden units between successive
states 1s always increased by one, and the new hidden unit
i1s always added to the same hidden layer. But, instead of
using sigmoid hidden units and requiring a complete re-
training of the network, these algorithms use hidden units
of more complicated functional forms and train only the
new hidden unit.

B.1 Hidden Unit Transfer Functions

A characteristic of these algorithms is the use of hidden
units with complicated functional forms. For example, in
PPR, the hidden unit transfer function is nonparametric
and i1s obtained by a variable span smoother called the su-
persmoother [99]. Tts basic building block is a symmetric k-
nearest neighbor linear least squares fitting algorithm. The

optimal value of k, called the span of the supersmoother,
is chosen for each input point using a local cross-validation
procedure. However, the use of supersmoothers suffers
from several disadvantages, as discussed in [91]:

1. the use of large regression tables,

2. unstable approximation in calculating derivatives,

and

3. piecewise interpolation in computing activation val-

ues.

Automatic smoothing spline projection [93] uses smooth-
ing splines [99], which are also non-parametric, as
smoothers. They can give accurate derivative calculation
and smooth interpolation, but still require the use of a
smoother matrix. Moreover, the generalized cross valida-
tion statistic, which is used to select the degree of smooth-
ness, tends to under-smooth. Consequently, heuristics are
required to remedy this problem. On the computational as-
pect, smoothing splines are usually more computationally
intensive.

Instead of having nonparametric hidden units, some al-
gorithms use parametric hidden units, as are more common
in standard neural networks. For example, in projection
pursuit learning (PPL) networks [91], each hidden unit is
represented as a linear combination of the Hermite func-

tions:
R

= Z erhy(2),

r=1

9(2) (6)

where hy(z)’s are orthonormal Hermite functions and Ris a
user-defined parameter called the order. Compared to non-
parametric hidden units in PPR, parametric hidden units
enable smooth interpolation, as well as fast and accurate
computation of the derivatives without the use of large re-
gression tables. Other parametric forms may also be used
in place of the Hermite functions in (6), such as functions
mentioned in [100], the normalized Legendre polynomial
expansion in exploratory projection pursuit [101], basis
function expansion in [89], B-splines in multi-dimensional
additive spline approximation [90], sigmoidal networks in
connectionist projection pursuit regression [96], RBF net-
works in [94], or pi-sigma networks® (PSN) in ridge poly-
nomial networks (RPN) [95].

In all of these algorithms using parametric hidden units,
there is some parameter controlling the complexity of the
hidden unit. For example, in [91], it is the order param-
eter; in [94], [96], it is the number of hidden units in the
fixed-size networks; and in [102], it is the degree. Appropri-
ately setting these parameters is sometimes crucial to net-
work performance [91], and the problems for having under-
and over-complicated hidden units have been discussed in
Section III-B. Except for RPNs”, this parameter must be

6Each PSN is of the form g(x) =
its degree.

"In RPN, hidden units are added with increasing complexity. The
first hidden unit is a PSN of degree one, the second one is of degree
two, and so on. Thus, if the resultant network has more than a few
hidden units, the hidden units added at the very end will have many
parameters associated and thus are likely to cause over-fitting.

Hle (aTx+06;), where k is called

KWOK AND YEUNG: CONSTRUCTIVE ALGORITHMS FOR STRUCTURE LEARNING 7

and are implementable in ways which only require O(k?)
arithmetic operations in each iteration. The price to pay
is that instead of having the quadratic local convergence
of Newton’s method, quasi-Newton methods only exhibit a
local superlinear convergence rate. Recursive least-squares
algorithms have also been applied to neural network train-
ing [77], [78]. They also have a space requirement of O(k?)
and time complexity of O(k?) for each iteration [78]. Con-
jugate gradient methods do not require storage or mainte-
nance of the Hessian, but their local convergence rate is,
roughly speaking, only linear. All things considered, conju-
gate gradient methods appear to be less efficient on small
problems than methods modeled after Newton’s method,
but they are potentially of great value for very large prob-
lems. Similarly, simple gradient descent methods, though
they only require O(k) space and time for each iteration,
are notoriously slow when the network size is large [79].

It has been argued in [80] that these scale-up problems
are less important in constructive algorithms, because they
always start with small networks. This may be true in sim-
ple problems. But in complex problems, though the com-
putational requirement may not be a major concern at the
early stage when the network size is small, the network will
eventually grow to such a size that complete re-training
will have serious scale-up problems. Hence, if more effi-
cient methods like Newton’s method are to be used, it is
always preferable if the optimization (training) can be re-
duced to a relatively small dimension. Normally, there are
two methods available for combating this problem: simpli-
fying the original problem in some way, or decomposing it
into smaller problems [75]. These two methods have been
exploited by constructive algorithms, as we will see in the
next section.

B. Training Only the New Hidden Unit

One way to simplify the optimization problem is to as-
sume that the hidden units already existing in the network
are useful in modeling part of the target function. Hence,
we can keep the weights feeding into these hidden units
fixed, and allow only the weights connected to the new
hidden unit and the output units to vary. The number of
weights to be optimized, and the time and space require-
ments for each iteration, can thus be greatly reduced. This
reduction is especially significant when there are already
many hidden units installed in the network.

Note that this also corresponds to a greedy approach of
building the network. Each new hidden unit is trained to
reduce as much residual error as possible, and is then in-
stalled permanently into the network. In general, such a
greedy approach may not result in an optimal set of weights
for the whole network. Back-fitting [81] may be used for
fine adjustment. This amounts to cyclically adjusting the
weights associated with each previously installed hidden
unit, while keeping the parameters (weights and other pa-
rameters defining the hidden unit functions) of the other
units fixed, until there is no significant change in training
performance.

Recall that a hidden unit with simple functional form

can only form a limited variety of functions in a single hid-
den layer network (Section II-D.2). As a result, if a greedy
approach 1s taken to add hidden units one at a time, such
a hidden unit may not be able to fit the residual error well.
The small reduction in residual error (bias) upon hidden
unit addition may be offset by the consequent increase in
variance due to the newly introduced parameters in the
unit, resulting in only slightly improved or even degraded
generalization performance. For example, it is reported
in [82] that the two-spirals problem cannot be successfully
learned even with a large number of sigmoid hidden units
when they are added one by one in a greedy manner. On
the other hand, for hidden units in a multiple hidden layer
structure or using transfer functions of complicated forms,
each unit is likely to bring about a more significant re-
duction in bias. Although it is also likely that the larger
number of free parameters associated with these hidden
units may result in a much larger increase in variance over-
whelming the bias reduction, there are various means to
counteract the effect of these extra parameters, as we will
see in the discussion of individual algorithms in Section IV.

The computational requirement of the optimization
problem may be further reduced in one of the following
ways. The first 1s to simplify the nonlinear optimization
problem to a linear one, by using polynomial hidden units
and treating the new hidden unit as an interim output unit.
Details will be given in Section IV-E.1. Another approach
is to decompose the set of weights to be trained into disjoint
sets, so that the original complex optimization problem is
decomposed into a collection of subproblems each of lower
dimensionality. In constructive algorithms, this is usually
implemented by training in a layer-by-layer manner: at
any time, only one layer of weights is optimized while all
other weights are kept fixed. This is similar to the univari-
ant search method [75]. This decomposition may also lead
to faster training [83], though theoretical justifications are
still lacking. Examples of algorithms using this approach
will be discussed in Sections IV-B and IV-C.

IV. A TaxoNoMY OF CONSTRUCTIVE ALGORITHMS

Figure 3 gives a taxonomy of the constructive algorithms
surveyed in this paper. Details of individual categories will
be discussed in the following sections, which are named
after their representative algorithms.

A. Dynamic Node Creation

Constructive algorithms in this category [36], [64], [77],
[80], [84]-[88] are variants of the dynamic node creation
(DNC) network proposed by Ash [84]. Here, the state tran-
sition mapping is single-valued. Sigmoid hidden units are
added one at a time, and are always added to the same
hidden layer. The whole network must be re-trained com-
pletely after each hidden unit addition.

These algorithms are simple, and convergence to the tar-
get function follows directly from the universal approxima-
tion property of the underlying architecture. However, the
major difficulty is in the tremendous increase in computa-
tional requirement in complex problems when the network

6 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

mance rather than just the performance on the training set;
a perfect recall of the training set is often possible simply
by having more hidden units. Hence, “convergence”, in the
sense of reducing the training error to zero [64], [65], [66],
is inadequate.

F. Generalizing the Search

So far, each state in the state space corresponds to only
one network and the constructive algorithm keeps only one
network at any instant (even for the case with a multi-
valued A, in which multiple networks may be examined
before making a decision on the actual state transition).
However, some algorithms keep a pool of networks and al-
low for a wider exploration of the state space simultane-
ously. The framework described so far may be generalized
by defining a generalized state space GS from the state
space S defined in Section II-A, with each state in GS
being a set containing the states in S currently explored.
This type of constructive algorithm, however, is not the
main focus of this paper, and so we just illustrate the ideas
by giving a few examples.

One example of constructive algorithms that keep a pool
of networks is the genetic algorithm based evolutionary ap-
proach [67], [68]. By viewing the search for the optimal ar-
chitecture as searching a surface defined by levels of trained
network performance above the space of possible network
architectures, Miller et al. [69] mentioned that such a sur-
face is typically

o infinitely large, as the number of possible hidden units
and connections is unbounded,;

« non-differentiable, since changes in the number of units
or connections must be discrete, and can have a dis-
continuous effect on network performance;

¢ complex and noisy, as it is dependent on initial condi-
tions;

o deceptive, as structurally similar networks can have
very different network performance, and

o multi-modal, as structurally dissimilar networks can
have very similar performance.

The main idea of using the genetic algorithm based evolu-
tionary approach is that it is good at dealing with these
kinds of search spaces. However, such methods are usually
quite demanding both in time and space. Moreover, good
representation of the network structure and good design of
the genetic operators are required.

Another example is the population-based learning system
[70]. Here, the goal is to design a good neural network un-
der a given time constraint, using a given constructive al-
gorithm (the one used was the cascade-correlation learning
algorithm, to be discussed in Section IV-C). A straight-
forward approach might be to construct several networks,
one after another, by repeating the constructive algorithm
until the time has run out. However, in the population-
based learning system, the available time is divided into
a number of time quanta. A population of partially con-
verged networks produced by the constructive algorithm is
maintained. An estimate of each network’s performance, if
the constructive algorithm is allowed to converge, is com-

puted based on factors such as the training error, its rate
of change and the number of epochs trained. The most
promising network is then selected and allowed to grow
by the constructive algorithm for a certain time quantum.
This cycle repeats until the total time allowed 1s expended.
Simulation showed that when the time allowed is long, this
system is superior to the straightforward approach. How-
ever, when the time allowed 1s short, the system spends
more time in maintaining the population and the resultant
network’s performance is inferior.

Note that most of the constructive algorithms to be dis-
cussed in this paper can be incorporated into this gener-
alized framework. For example, in the genetic algorithm
based evolutionary approach, this can be achieved by treat-
ing the constructive algorithm as a new genetic operator,
while in the population-based learning system, one can
simply replace the cascade-correlation learning algorithm
originally specified in the system by any other constructive
algorithm.

IT1I. TRAINING ALGORITHM

Given C' and T, determination of W is comparatively
straightforward as one can simply train the whole network
again. However, in neural networks with fixed architecture,
the network weights are trained only once, while in con-
structive/pruning algorithms, training must be repeated
for every network visited in the state space. Hence, com-
putational efficiency, in terms of both time and space, is an
important issue. There are generally two ways to reduce
the computational requirement, either by training only the
new hidden unit or by combining the training process with
memorization. The first alternative will be discussed in this
section while the second will be postponed to Section IV-D.

Note that we will not compare in detail the various non-
linear optimization algorithms used. Optimization routines
that are applicable to neural networks with fixed archi-
tecture should be equally applicable to constructive algo-
rithms. Interested readers may see reviews in [71]-[74].
Note that there is also a convergence issue in training algo-
rithms, namely, when to stop the training (optimization).
Readers should not confuse this with the convergence issue
of constructive algorithms mentioned in Section II-D. Some
common criteria for convergence in optimization routines
may be found in [75], [76]. This issue will not be discussed
further as it is not specific to constructive algorithms.

A. Training the Whole Network

A simple-minded approach is to train the whole network
completely after each hidden unit addition. The exact
computational requirement depends on the particular non-
linear optimization algorithm used, but most algorithms
do not scale well when the number of weights k is large
(i.e., when the dimensionality of the optimization problem
is high). For example, Newton’s method requires computa-
tion of the Hessian matrix, entailing a space requirement of
O(k?) and a time requirement of O(k3) in each iteration.
Quasi-Newton methods still have a space requirement of
O(k?), but do not require evaluating the Hessian matrix

KWOK AND YEUNG: CONSTRUCTIVE ALGORITHMS FOR STRUCTURE LEARNING 5

000 —

—

—000

Fig. 1. Typical state traversal with a single-valued state transition
mapping. Usually, |V2| = V1| + 1,|V3| = |V2| + 1, and so on.

form of nondeterministic search is used in [49]. Certain
search techniques require the definition of an ewvaluation
function that evaluates the desirability of each individual
candidate. Usually, this is an estimate of the generaliza-
tion performance (Section TI-C). A potential problem is
then the increase in time requirement if multiple networks
must be trained before a decision on the state transition
can be made. A typical state traversal is shown in Fig-
ure 2. Examples of such constructive algorithms will be
discussed in Sections IV-E and TV-F.

RN
ﬁ@ @/@ﬁm

A I R -eee

Fig. 2. Typical state traversal with a multi-valued state transition
mapping. The actual path taken is shown by solid lines, while
the possible paths that are not taken are shown by dashed lines.
Note that |V3| and |V3| may be different, and so may |V5| and
[Vel.

D.2 Defining the New Connectivity Graph

No matter whether A is single-valued or multi-valued,
one must consider the question of how to generate the next
state from the current state; or equivalently, how to define
the new connectivity graph. A simple way is to require all
hidden units to be in the same layer, resulting in a single
hidden layer architecture. The resultant structure is regu-
lar and has constant fan-in for the hidden units, allowing
simple hardware implementation. However, if the hidden
units only have simple functional forms, then each of them
can only form a limited variety of functions. For example,
sigmoid hidden units can only form smeared hyperplanes

in the input space, and radial basis function (RBF) units
can only form local bumps. While sigmoid units and RBF
units give rise to networks with different properties [50],
[51], [52], the limited flexibility of these simple hidden units
may be problematic when they are added one at a time in
a greedy manner (details in Section TIT-B).

On the other hand, there are algorithms that construct
networks with multiple hidden layers. Hidden units in the
upper hidden layers (i.e., those that are closer to the out-
puts) are then capable of forming high-order, more com-
plex functions of the input variables. Another method to
produce high-order functions, while still retaining a single
hidden layer architecture, is to use hidden units of more
complex transfer functions (i.e., they need many parame-
ters for determining the functional forms). These methods,
while capable of producing powerful feature detectors even
when the hidden units are added in a greedy manner, may
have the problem of also fitting part of the noise in the
data.

D.3 Universal Approximation and Convergence

There are two important requirements for the search
strategy. The first is that the family of functions imple-
mented by the resultant network architecture should be
broad enough to contain the target function f or a good
enough approximation of f. This requirement of univer-
sal approximation is also a fundamental concern for neural
networks of fixed architecture and pruning algorithms. It
is affirmative for multi-layer perceptrons (see, for example,
[53]-[56]) and RBF networks [57], [58], [59]. However, this
point is still emphasized here because, as we will see in Sec-
tion IV, there are algorithms that construct architectures
which lack this important property.

The second requirement is that the network sequence
produced by the algorithm should converge to the target
function. A sequence {f,} is said to converge (strongly)
[60] to f if limy,—co ||f — fall = 0. Note that ||f — fu|| is
closely related to the approximation error defined in Sec-
tion II-C but with a subtle difference. In Section II-C, f,
refers to the network function closest to f for a given archi-
tecture, while, here, f,, constructed by the algorithm does
not necessarily correspond to the closest. The most com-
mon reason being that a greedy approach is taken (details
in Section ITI-B). Moreover, note that the convergence of
the estimation error to zero is not a prime concern here,
as is usually the case for sufficiently large training samples
given a certain architecture determined by the constructive
algorithm [61].

Apparently, the universal approximation capability is a
prerequisite for the convergence property. The convergence
issue also concerns pruning algorithms. This issue has only
been studied for some constructive algorithms [62], [63].
Discussion on the convergence properties of individual con-
structive algorithms will be postponed to Section IV.

Also, note that the norm used in the convergence defini-
tion must be based on the whole input space, not just on
the training patterns, as in [64], [65], [66]. This is because
one 1s usually more interested in the generalization perfor-

4 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

Barron [33] showed that (2) is bounded by

o)+ 0(% 10g ¥ 3
(L) + 0% 10g), 3)
where d is the input dimension of the network and C/ is the
first absolute moment of the Fourier magnitude distribu-
tion of f. The first term in (3) comes from the approxima-
tion error while the second term comes from the estimation
error. Thus, as has also been discussed in [34], when the
number of hidden units increases, bias falls but variance
increases. Hence, for good generalization performance, it
is important to have a proper tradeoff by stopping network
growth appropriately.

Thus, one must return to the original question of esti-
mating err(fn n). There are a number of approaches. For
example, the estimate may be based on a separate valida-
tion set [35], cross-validation [36], [37], or bootstrapping
[38], [39]. Alternatively, it may be obtained from a num-
ber of information criteria like Akaike’s information cri-
terion (AIC) [40], Bayesian information criterion (BIC)
[41], final prediction error (FPE) [42], generalized cross-
validation (GCV) [43], predicted square error (PSE) [44],
minimum description length (MDL) [45], and generalized
prediction error (GPE) [46]. By formulating neural net-
work training in a Bayesian framework, evidence may also
be used [5], [10]. However, these methods are not com-
pletely satisfactory, especially because neural networks are
highly nonlinear models and the training process is time-
consuming. Interested readers may see further discussions
in [36], [47], [48].

Other methods to terminate the search are more ad hoc
and are based on the training performance. For example,
the search may be terminated when the training error is be-
low a certain threshold or when the training error does not
decrease by a significant amount after a certain number of
hidden units are added. The advantages of these methods
are simplicity and that the training error is directly observ-
able. However, they require manual setting of a number of
control parameters, and using the training error as esti-
mates of the network’s generalization performance can be
severely biased.

Sequential learning procedures that are also constructive
have a special and simple way to terminate the search,
namely, when all training data have arrived and have been
taken into account by the procedure. Examples of such
procedure will be discussed in Section IV-D.

D. Search Strategy

Now we come to the crux of constructive algorithms. The
search strategy determines how to move from one state to
another in the state space, until the search is terminated.
Equivalently, it determines how the connectivity graph C
evolves during the search. Denote the current state by
s1 = (Vi, E1) and the next state by s; = (Va, F3). In
constructive algorithms, the following properties are always
satisfied:

1. Vi C Vo

2. Fy C Es,

i.e., units and connections existing in the current state must
be preserved in the next state, and there must be some
new connections in the next state. Though in principle it
is possible that the only change is in E (but with V; =
V3) for some successive pair of states, this may lead to
many possible networks with similar performance and so
this scheme is not usually used in practice. Hence, usually
we have Vi C Vi, with |V;| = [Vi] + 1 the most common.
Note that for pruning algorithms, we have, on the contrary,
Vo C Wy and Fy C E.

D.1 State Transition Mapping

A key component of constructive algorithms is the state
transition mapping A : S — S, which maps the current
state to the next state. Note that in typical search prob-
lems, the possible state transitions are determined by the
problem, not by the search strategy. For example, in a
chess playing problem, the possible board configurations
for the next state are determined by the rules of the game;
the search strategy just defines the order in which these
possible states are visited. But here, in the regression prob-
lem of finding a good approximation to the underlying tar-
get function, the problem itself imposes no restriction, at
least in principle, on the possible state transitions. One
may even jump randomly to any state in the state space®.
Hence, to provide a disciplined search, constructive algo-
rithms, guided by properties 1 and 2 above, must restrict
the possible state transitions by defining a suitable A.

A may be either single-valued or multi-valued. First,
consider the simpler case where it is single-valued, i.e.,
there is only one next state to be explored in the subsequent
stage. Examples of this type of constructive algorithm will
be given in Sections IV-A-TV-D. State traversal is reduced
to a simple chain of states (Figure 1). However, a possible
problem 1is the lack of flexibility. It is well-known that no
single class of network architectures is ideal for all problems
[23]. If the target function can be represented sufficiently
closely by a reasonably sized network from that class, gen-
eralization is expected to be good. Otherwise, generaliza-
tion may be poor. Thus, when A is single-valued, as there
is only one possible next state, there will be no way out
even when a mismatch occurs between the problem and
the architecture constructed from the algorithm.

A possible remedy is to have a multi-valued A, i.e., there
are in general several possible next states for a given current
state. Each of them, called a candidate, is structurally dif-
ferent from the others. Different candidates may also have
different numbers of hidden units. Having multiple candi-
dates thus allows for attempting several network architec-
tures at the next stage, and the resultant network archi-
tecture may be more adapted to the problem at hand. De-
spite this added flexibility over the case with single-valued
A, a search technique must be used to define the order
in which these candidates are visited. For example, some

5This corresponds to the traditional ad hoc approach in which neu-
ral networks are designed and tried. If they do not yield an acceptable
solution, they are discarded. Another network is then defined and the
whole process repeated.

KWOK AND YEUNG: CONSTRUCTIVE ALGORITHMS FOR STRUCTURE LEARNING 3

II. VIEWING THE PROBLEM AS A STATE SPACE SEARCH

In this section, we formulate the problem of constructing
a neural network for regression as a search problem. The
essential ingredients in any search problem are the state
space, the initial state, the termination of search (the goal
state), and the search strategy. In the following discussion
on constructive algorithms, special emphasis will be placed
on the search strategy. Such a formulation provides a con-
venient framework for discussing various issues involved in
designing constructive algorithms. Many of these issues are
applicable not only to constructive algorithms but also to
pruning algorithms and neural networks with fixed archi-
tecture. The characteristics of constructive algorithms in
comparison to these will be highlighted.

A. State Space

The underlying target function of a regression problem
can be defined with respect to a function space F, such as
the LP space. F is selected by the user and is related to the
error criterion being minimized. To implement a function
in F using a feedforward neural network, one must specify

1. n, the number of hidden units in the network;

2. C, the (directed) connectivity graph specifying how

the input, output and hidden units are interconnected;

3. T, specifying the functional forms of the n hidden

units; and

4. W, specifying the parameters for the whole network,

including the connection weights and parameters (if

any) associated with T.
Thus, a 4-tuple (n, C, T, W) uniquely specifies a particular
network and in turn a particular f in F. Note that two
different tuples 1 and t5 may implement the same f. This
may be easily seen by a simple permutation of the weights
corresponding to different hidden units, giving rise to the
same set of n,C' and T' but different W’s.

To facilitate future discussions and to make more explicit
the important characteristics of constructive algorithms, a
more compact specification is desirable. First, note that
the four elements in the tuple are not all independent. For
example, given the connectivity graph C' = (V,) where V
and E are the sets of vertices and (directed) edges, respec-
tively, in C, one can deduce that n = |V|—n;, —ngut, where
Nin and nyy: are the numbers of input and output units in
the network, respectively (assuming that the biases to the
hidden and output units are not explicitly represented in
C'). Moreover, given C and T';, W can be found by the use of
a particular training algorithm adopted by the constructive
algorithm. Although W may also depend on other factors
such as the initial seed used in the training algorithm, we
avoid such details and assume that W can be uniquely de-
termined from C and I'. Furthermore, as we will see in
the subsequent development, the role of T' is not central
in constructive algorithms. Thus, we will ignore T' in this
section.

The state space S corresponds to the collection of func-
tions that can possibly be implemented by a class of net-
works. Based on the simplifications mentioned in the pre-
vious paragraph, each state s € S may be represented as

s = C = (V, E). Note that pruning algorithms also per-
form traversals in this state space, though in an entirely
different manner, as we shall see later.

B. Initial State

A characteristic of constructive algorithms is that they
start from small networks. It is obvious that the smallest
possible network has no hidden units. If prior knowledge
of the problem is available, an alternative initial state may
be supplied by the user. This is in contrast to pruning
algorithms that start with the full unpruned network spec-
ified by the user. The issue of the initial state will not be
addressed any further in the sequel as it 1s quite straight-
forward.

C. Termination of Search (Goal State)

The search must somehow be terminated for the con-
structive algorithm to stop. There are several ways to do
this. A disciplined way is to stop the network growth when
its generalization performance begins to deteriorate. Let
fn,~ be the function implemented by a network with n
hidden units and trained using a set of N patterns, and f
be the target function. The generalization performance of
fn,~n can be measured by the distance between f and f, n:

(1)

where || - || is the norm for the function space being consid-
ered. Note that (1) measures the performance of the user’s
particular network realization (i.e., the network with a par-
ticular set of weights trained using a particular training
sample). However, getting a good estimate of (1) is impos-
sible as this amounts to knowing f [32]. A less formidable
task is to approximate (1) by taking expectation over the
many training samples of size N that the user might have
observed, i.e.:

Hf - fn,NHa

err(fu,n) = E(If = fa.n))- (2)

Note that even with this relaxation, err(f, n) in (2) still
cannot be directly calculated unless exact knowledge of f is
available. Hence, an important issue in this aspect for con-
structive/pruning algorithms is to obtain a good estimate
of err(fa,n).

A question one might ask at this point is: “With the use
of constructive algorithms, will the generalization perfor-
mance keep on improving as more hidden units are added?”
The answer is no, because of a bias-variance tradeoff. The
error in (2) comes from two sources, the approzimation
error (bias) and the estimation error (variance) [33]. Ap-
proximation error, ||f — fn||?, refers to the distance be-
tween the target function, f, and the closest neural net-
work function, f,, of a given architecture. Estimation er-
ror, E||f — fn n||?, refers to the expected distance between
this ideal (i.e. closest) network function and the estimated
network function f,, . For networks with a single layer of
sigmoid hidden units and functions with a bounded first
absolute moment of the Fourier magnitude distribution,

2 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

typically have control over the network we are loading. A
problem difficult for one network might be easier for an-
other network, as has been demonstrated in [12]. Thus, we
can choose a network that makes our problem easy. Hence,
in [11], one of the possibilities suggested to get around the
intractability of this loading problem is to alter the network
architecture as learning proceeds. Using Valiant’s learning
framework [16], Baum [17] presented an existence proof
showing that if the learning algorithm is allowed to add
hidden units and weights to the network, it can solve in
polynomial time any learning problem that can be solved
in polynomial time by any other algorithm. In other words,
with this added flexibility of the learning algorithm, neu-
ral networks become universal learners, capable of learning
any learnable class of problems.

B. Advantages of the Constructive Approach

Recently, various researchers have investigated different
approaches that alter the network architecture as learning
proceeds. One involves using a larger than needed network
and training it until an acceptable solution is found. After
this, some hidden units or weights are removed if they are
no longer actively used. Methods using this approach are
called pruning algorithms [18]. The other approach, which
corresponds to constructive algorithms, attempts to search
for a good network in the other direction. These methods
start with a small network and then add additional hidden
units and weights until a satisfactory solution is found. A
more formal description of constructive algorithms will be
given in Section II. Note that these approaches only aim
at finding a “reasonably” sized network for a given prob-
lem. On the other hand, attempting to find the “minimal”
architecture is usually NP-hard [13].

Besides the existence proof mentioned in the previous
section showing that neural networks can become universal
learners if they are allowed to add hidden units and weights,
the constructive approach also has a number of advantages
over the pruning approach. Firstly, for constructive algo-
rithms, 1t is straightforward to specify an initial network
(Section TI-B), whereas for pruning algorithms, one does
not know in practice how big the initial network should be.
Secondly, constructive algorithms always search for small
network solutions first. They are thus more computation-
ally economical than pruning algorithms, in which the ma-
jority of the training time is spent on networks larger than
necessary. Thirdly, as many networks with different sizes
may be capable of implementing acceptable solutions, con-
structive algorithms are likely to find smaller network solu-
tions than pruning algorithms. Smaller networks are more
efficient in forward computation and can be described by
a simpler set of rules. Functions of individual hidden units
may also be more easily visualized. Moreover, by searching
for small networks, the amount of training data required
for good generalization may be reduced. Fourthly, prun-
ing algorithms usually measure the change in error when a
hidden unit or weight in the network is removed. However,

such changes can only be approximated? for computational
efficiency, and hence may introduce large errors, especially
when many are to be pruned.

Of course, there are also hurdles that constructive algo-
rithms need to overcome. For example, one has to deter-
mine when to stop the addition of hidden units. Moreover,
many constructive algorithms employ a greedy approach
to network construction, which may be suboptimal in most
cases. There may also be problems in achieving good gen-
eralization when care is not taken in handling hidden units
with many parameters associated. Details of these prob-
lems and similar issues will be discussed in Section II. Note
that many of these issues still need to be addressed even if
one switches to pruning algorithms. For example, there is
still a need to determine when to stop pruning, and analo-
gously, there are problems arising from the fact that many
pruning algorithms also employ a greedy approach.

C. Overview of the Paper

In this survey paper, we will mainly concentrate on re-
gression problems®*. In a regression problem, one is given
a d-dimensional random vector X and a random variable
Y. A regression surface f describes a general relationship
between X and Y. A constructive algorithm attempts to
find a network that is an exact representation or, as is more
often the case, a good enough approximation of f. Classi-
fication problems can be considered as a special case. For
example, for a classification problem with K classes, one
could in principle construct a neural network with K out-
put units, whose activation values are usually constrained
to [0,1]. The kth output unit (1 < £ < K) corresponds to
class C and it learns the posterior probability of class C
given the input . A number of other constructive methods
that can only be applied to classification problems (such as
[24]-[27]) will not be discussed here. Interested readers may
consult the short surveys in [28]-[31].

This paper will review both purely constructive algo-
rithms and algorithms having constructive components for
the design of feedforward neural networks. The rest of this
paper is organized as follows. In Section II, we formulate
the problem as a state space search. In Section III, training
algorithms for the determination of network weights will be
discussed. After presenting these general issues, a taxon-
omy of the constructive algorithms, together with detailed
discussions of the representative algorithms, will be pre-
sented in Section IV. The last section will be a discussion
with some concluding remarks.

3 Typically, approximation involves using up to the first [19], [20] or
second [21], [22] term in the Taylor series expansion for the change in
error. Further approximation is possible by computing these values
as weighted averages during the course of learning or by assuming
that the Hessian matrix of the error function is diagonal [22].

4For simplicity, we assume that there is only one target function
to be approximated. When there is more than one target function,
each corresponding to one output unit in a neural network, one could
approach this by simply treating the approximation of each target
function as a different (unrelated) regression problem. Other meth-
ods that utilize the relationship among these target functions are
discussed in [23].

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 1

Constructive Algorithms for Structure Learning

in Feedforward Neural Networks for Regression Problems

Tin-Yau Kwok and Dit-Yan Yeung, Member, IKEFE

Abstract— In this survey paper, we review the construc-
tive algorithms for structure learning in feedforward neural
networks for regression problems. The basic idea is to start
with a small network, then add hidden units and weights
incrementally until a satisfactory solution is found. By for-
mulating the whole problem as a state space search, we first
describe the general issues in constructive algorithms, with
special emphasis on the search strategy. A taxonomy, based
on the differences in the state transition mapping, the train-
ing algorithm and the network architecture, is then pre-
sented.

Keywords— Constructive algorithm, structure learning,
state space search, dynamic node creation, projection pur-
suit regression, cascade-correlation, resource-allocating net-
work, group method of data handling.

I. INTRODUCTION
A. Problems with Fized Size Networks

N recent years, many neural network models have been

proposed for pattern classification, function approxima-
tion and regression problems. Among them, the class of
multi-layer feedforward networks is perhaps the most pop-
ular. Methods using standard back-propagation perform
gradient descent only in the weight space of a network with
fixed topology. In general, this approach is useful only
when the network architecture is chosen correctly. Too
small a network cannot learn the problem well, but too
large a size will lead to over-fitting and poor generalization
performance. This can be easily understood by analogy to
the problem of curve fitting using polynomials. Consider
a data set generated from a smooth underlying function
with additive noise on the outputs. A polynomial with too
few coefficients will be unable to capture the underlying
function from which the data was generated, while a poly-
nomial with too many coefficients will fit the noise in the
data and again result in a poor representation of the un-
derlying function. For an optimal number of coefficients,
the fitted polynomial will give the best representation of
the function and also the best predictions for new data.
A similar situation arises in the application of neural net-
works, where it 1s again necessary to match the complexity
of the model to the problem being solved. Algorithms that
can find an appropriate network architecture automatically
are thus highly desirable.

Regularization [1], [2], [3] is sometimes used to alleviate
this problem. It encourages smoother network mappings by
adding a penalty term to the error term being minimized.
However, it cannot alter the network topology, which must
be specified in advance by the user. Although in princi-

The authors are with the Department of Computer Science, Hong
Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong. Email: {jamesk,dyyeung}@cs.ust.hk.

ple the use of regularization should allow the network to
be overly large, in practice using an overly large network
makes optimization of the regularized error function with
respect to its network weights more computationally in-
tensive and difficult. Moreover, there is a delicate balance,
controlled by a regularization parameter, between the error
term and the penalty term. Early attempts either set this
regularization parameter manually [1], [2] or by ad hoc pro-
cedures [3]. A more disciplined and long respected method
is cross-validation [4]. However, this approach is usually
very slow for nonlinear models like neural networks, be-
cause a large number of nonlinear optimization problems
must be repeated. Recently, several researchers [5]-[8] have
incorporated Bayesian methods into neural network learn-
ing. Regularization can then be accomplished by using ap-
propriate priors that favor small network weights (such as
the normal [6] or Laplace [9] distribution), and the regular-
ization parameter can be automatically set. This approach
is promising, though the relationship between generaliza-
tion performance and the Bayesian evidence deserves fur-
ther research. Moreover, some Bayesian inference mecha-
nisms [5], [6], [8] must often assume asymptotic normality
of the posterior distributions, which may break down when
the number of weights in the network is large compared to
the training set size'. This scenario is more likely to occur
in overly large networks, further escalating the problem of
determining an appropriate initial network for use in reg-
ularization.

Another motivation for this type of algorithm is related
to the time complexity of learning. Judd [11] and others
(such as [12], [13], [14]) showed that the loading problem is
in general NP-complete?. The loading problem is phrased
as follows [11]:

A network architecture and a training set.
Determination of the network weights
such that every input in the training set
is mapped to its desired output, or a mes-
sage that this is not possible.

Input:
Output:

The NP-completeness results thus imply that no training
algorithm for use in arbitrary architectures can guarantee
to load any given training set in polynomial time. How-
ever, this problem may not be that severe in practice. As
mentioned in [15], in applications of neural networks, we

1 As an example, MacKay [10] reported that the Gaussian approxi-
mation in the evidence framework seemed to break down significantly
for N/k < 3+ 1, where N is the number of training patterns and &
is the number of weights in the network.

2Strictly speaking, these results apply only to classification prob-
lems. Extension to regression problems is still an open research issue.

