IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 1

Objective Functions for Training New Hidden

Units in Constructive Neural Networks
Tin-Yau Kwok and Dit-Yan Yeung, Member, IEEE

Abstract— In this paper, we study a number of objective
functions for training new hidden units in constructive al-
gorithms for multilayer feedforward networks. The aim is
to derive a class of objective functions the computation of
which and the corresponding weight updates can be done
in O(N) time, where N is the number of training patterns.
Moreover, even though input weight freezing is applied dur-
ing the process for computational efficiency, the convergence
property of the constructive algorithms using these objec-
tive functions is still preserved. We also propose a few com-
putational tricks that can be used to improve the optimiza-
tion of the objective functions under practical situations.
Their relative performance in a set of two-dimensional re-
gression problems is also discussed.

Keywords— Constructive algorithms, cascade-correlation,
convergence, input weight freezing, quickprop.

I. INTRODUCTION

N recent years, many neural network models have been

proposed for pattern classification, function approxima-
tion and regression problems. Among them, the class of
multi-layer feedforward networks is perhaps the most popu-
lar. Standard back-propagation performs gradient descent
only in the weight space of a network with fixed topology.
In general, it is useful only when the network architecture
(i.e. model) is chosen correctly. Too small a network can-
not learn the problem well, but a size too large will lead to
over-generalization and thus poor performance. This can
be easily understood by analogy to the problem of curve
fitting using polynomials. Consider a data set generated
from a smooth underlying function with additive noise on
the outputs. A polynomial with too few coefficients will
be unable to capture the underlying function from which
the data was generated, while a polynomial with too many
coefficients will fit the noise in the data and again result in
a poor representation of the underlying function. For an
optimal number of coefficients, the fitted polynomial will
give the best representation of the function and also the
best predictions for new data. A similar situation arises in
the application of neural networks, where it is again neces-
sary to match the network complexity to the problem being
solved. Algorithms that can find an appropriate network
architecture automatically are thus highly desirable.

A. Matching the Network Complexity to the Problem

There are three major approaches to tackle this prob-
lem. The first involves using a larger than needed network
and training it until an acceptable solution is found. Af-
ter this, some hidden units or weights are removed if they

The authors are with the Department of Computer Science, Hong
Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong. Email: {jamesk,dyyeung}@cs.ust.hk .

are no longer actively used. Methods using this approach
are called pruning algorithms. The second approach,
which corresponds to constructive algorithms, starts with
a small network and then grows additional hidden units
and weights until a satisfactory solution is found. Review
for pruning algorithms can be found in [1], while that for
constructive algorithms in [2], [3], [4].

The constructive approach has a number of advantages
over the pruning approach. Firstly, for constructive algo-
rithms, it is straightforward to specify an initial network!,
whereas for pruning algorithms, one does not know in prac-
tice how big the initial network should be. Secondly, con-
structive algorithms always search for small network solu-
tions first. They are thus more computationally economi-
cal than pruning algorithms, in which the majority of the
training time is spent on networks larger than necessary.
Thirdly, as many networks with different sizes may be ca-
pable of implementing acceptable solutions, constructive
algorithms are likely to find smaller network solutions than
pruning algorithms. Smaller networks are more efficient in
forward computation and can be described by a simpler set
of rules. Functions of individual hidden units may also be
more eagily visualized. Moreover, by searching for small
networks, the amount of training data required for good
generalization may be reduced. Fourthly, pruning algo-
rithms usually measure the change in error when a hidden
unit or weight in the network is removed. However, such
changes can only be approximated for computational ef-
ficiency, and hence may introduce large errors, especially
when many are to be pruned.

The third approach is regularization [5], [6], [7]. How-
ever, regularization cannot alter the network structure,
which must be specified in advance by the user. Although
in principle the use of regularization should allow the net-
work to be overly large, in practice using an overly large
network makes optimization of the regularized error func-
tion with respect to its network weights more computation-
ally intensive and difficult. Moreover, there is a delicate
balance, controlled by a regularization parameter, between
the error term and the penalty term. Early attempts ei-
ther set this regularization parameter manually [5], [6] or
by ad hoc procedures [7]. A more disciplined and long
respected method is cross-validation [8]. However, this ap-
proach is usually very slow for nonlinear models like neural
networks, because a large number of nonlinear optimization
problems must be repeated. Recently, several researchers
[9], [10], [11], [12] have incorporated Bayesian methods into

I The smallest possible network to start with has no hidden units.
If prior knowledge of the problem is available, an alternative initial
state may be supplied by the user.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 2

neural network learning. Regularization can then be ac-
complished by using appropriate priors that favor small
network weights (such as the normal [10] or Laplace [13]
distribution), and the regularization parameter can be au-
tomatically set. However, Bayesian inference mechanisms
must often assume asymptotic normality of the posterior
distributions, which may break down when the number of
weights in the network is large compared to the training set
size?. This scenario is more likely to occur in overly large
networks, further escalating the problem of determining an
appropriate initial network for use in regularization.

Hence, in this paper, we will focus mainly on constructive
algorithms. Moreover, we will be particularly interested in
regression problems, in which networks with linear output
units are the most common. Note that classification prob-
lems can be considered as a special case of regression prob-
lems. Some constructive methods, such as [15], [16], [17],
[18], that can only be applied to classification problems will
not be discussed here.

B. How to Train New Hidden Units

There are three major problems involved in the design
of constructive algorithms:

1. How to connect: How to connect the new hidden

unit to the existing network?

2. How to train: How to determine the (new and ex-
isting) weights in the network after connections to the
new hidden unit are made?

3. When to stop: When to stop the addition of new
hidden units, or, in other words, what is the optimal
number of hidden units to be installed in the network?

The first issue has direct implications to the resultant
network architecture. It is well-known that no single class
of network architectures is ideal for all problems [19], and
so different connection strategies for the new hidden units
are suitable for different problems. But a comprehensive
comparison of different architectures is still lacking.

The third issue on model selection may be addressed
using different techniques, such as by comparing evidence
in a Bayesian framework [9], [14], or, in a non-Bayesian
framework, by the use of some information criteria [20],
[21], [22], [23], [24], [25] or data resampling methods [26],
[27], [28]. This is still an active research topic. Interested
readers may see the discussions in [26], [29], [30].

In this paper, we will focus on the second issue. In prin-
ciple, it is fairly straightforward as one can simply train
the whole network again (as in [31], [32]). However, while
in neural networks with fixed architecture, the weights are
trained only once, here in constructive algorithms, train-
ing must be repeated every time hidden units are added.
Hence, computational efficiency, in terms of both time and
space, becomes an important issue. Most optimization rou-
tines do not scale up well when the number of weights &
is large. For example, Newton’s method requires computa-

2As an example, MacKay [14] reported that the Gaussian approxi-
mation in the evidence framework seemed to break down significantly
for N/k < 3 £ 1, where N is the number of training patterns and k
is the number of weights in the network.

tion of the Hessian matrix, entailing a space requirement of
O(k?) and a time requirement of O(k®) in each iteration.
Quasi-Newton methods still have a space requirement of
O(k?), but do not require evaluating the Hessian matrix
and are implementable in ways which only require O(k?)
arithmetic operations in each iteration. The price to pay
is that instead of having the quadratic local convergence
of Newton’s method, quasi-Newton methods only exhibit
a local superlinear convergence rate. Conjugate gradient
methods do not require storage or maintenance of the Hes-
sian, but their local convergence rate is roughly linear only.
Simple gradient descent methods, though they only require
O(k) space and time for each iteration, are notoriously slow
when the network size is large [33]. Thus, in short, tech-
niques to improve computational efficiency are essential in
practical constructive algorithms, and these will be dis-
cussed in Section I-B.1.

On the other hand, a frequently overlooked issue con-
cerning constructive algorithms is their convergence prop-
erties. The question of convergence can be stated as fol-
lows: Can the constructive algorithm produce a convergent
sequence of network functions {f,} that, in the limit, ap-
proximates the target function f as closely as desired? In
other words, does the sequence { f,} so generated strongly
converge® to f as n — oo? Apparently, the universal ap-
proximation capability* of a network structure is necessary
for the convergence of its constructive algorithm. However,
we will see in Section IT why this may not be sufficient.

B.1 Improving Computational Complexity

A common technique used in constructive algorithms
(like [39], [40], [41], [42], [43]) to simplify the optimiza-
tion problem and thus improve computational complexity
is to assume that the hidden units already existing in the
network are useful in modeling part of the target func-
tion. Hence, we can keep the weights feeding into these
hidden units fixed (input weight freezing), and allow only
the weights connected to the new hidden unit and the out-
put units to vary. The number of weights to be optimized,
and the time and space requirements for each iteration, can
thus be greatly reduced. This reduction is especially signif-
icant when there are already many hidden units installed
in the network.

Training of the adaptable weights may then be performed
by back-propagation as usual [42], but the computational
requirement may be further reduced by proceeding in a
layer-by-layer manner. First, the weights feeding into the
new hidden unit are trained (input training). They are
then kept constant and the weights connecting the hidden
units to the outputs are trained (output training). In this
way, only one layer of weights needs to be optimized each
time. There is never any need to back-propagate the error

3 A sequence {f,} strongly converges [34] to f if lim, o0 ||f— frl| =
0, where || - || is the norm for the function space being considered.

4A class of networks is capable of universal approzimation if it
is broad enough to contain the target function f or a good enough
approximation of f. See, for example, [35], [36] and [37], [38] for
universal approximation results on multi-layer perceptrons and radial
basis function networks respectively.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 3

signals and hence is much faster.

During input training, the weights feeding into the new
hidden unit are trained to optimize an objective function.
The following objective functions have been used:

1. Projection index [44] that finds “interesting” projec-
tions deviating from the Gaussian form. However, this
is probably more suitable for exploratory data analysis
[45] rather than for regression or classification prob-
lems, as projections of the Gaussian form may also be
useful as feature detectors.

2. The same error criterion, such as the squared error cri-
terion, as used in output training [40]. In this method,
the weights in each layer are updated in turn, by keep-
ing all the other weights unchanged, and the whole
process is cycled many times. However, it will be
shown later in this paper that such a criterion is infe-
rior to the others proposed in Section II.

3. The covariance between the residual error and the new
hidden unit activation, as in the cascade-correlation
architecture [39] and its variants. Without loss of gen-
erality, we assume that there is only one output unit
in the network. New hidden units are added one at a
time in a greedy manner by maximizing:

Scascor = | Z(Ep - E)(HIJ - ﬁ)|7 (]‘)

where p ranges over the training patterns, H), is the
activation of the new hidden unit for pattern p, E, is
the residual error for pattern p before the new hidden
unit is added, and H and E are the corresponding
values averaged over all patterns. Note that if there
are N training patterns, then the time complexities for
computing (1) and its weight update are both of O(N)
only. However, the design of S.,sc0r is rather ad hoc.
As mentioned in [39], early versions of the architecture
used a true correlation measure, but the version of
Secascor i (1) works better in most situations.

4. An objective function based on the use of projection
matrices [46]. This can be formally derived, but both
the computation of this objective function and each
weight update require O(N?) multiplications. The
space requirement is also O(N?2). Ideally, this N, the
number of training patterns, should be large for good
generalization performance, and should also scale up
with problem complexity [47]. Hence, this objective
function may soon become infeasible for larger-scale
problems. Moreover, its complex form makes it vul-
nerable to the problem of local optima, in the optimiza-
tion process.

5. Another very ad hoc objective function proposed in
[48].

B.2 Effect on the Convergence Property

Input weight freezing, though highly beneficial in im-
proving computational efficiency, unfortunately also affects
the convergence property of the constructive algorithm.
Consider, without loss of generality, feedforward networks

with one hidden layer, whose network functions can be de-
scribed by the set

oo

F=

where

Fo = Afnltal®) =) Biv(afz +6)),

Jj=1

aj € %daﬁjaaj € §R},

with a; being the weights connecting the inputs to the jth
hidden unit, 3; the weight connecting this hidden unit to
the output, and ~ the hidden unit transfer function. In a
certain function space (such as the L? space), universal ap-
proximation results state that when -~y satisfies certain mild
conditions (e.g., bounded and non-constant [49]), F will
be dense in that space, i.e., for any given target function f
in the space, there exists a sequence of network functions
{fn} in F such that {f,} strongly converges to f. No-
tice that under this formulation, all parameters (weights)
in any f, in the sequence are freely adjustable. However,
when input weight freezing is used, the new network esti-
mate f,, constructed from f,,_1, cannot change the input
weights of the hidden units associated with f,_1. This
restriction may then impede the approximation capabili-
ties of the sequence {f,}. A major aim of this paper is to
find objective functions such that the convergence property
will be preserved when these functions are used in the con-
structive algorithms. Recently, there are also some results
on the convergence issue. We will postpone the discussion
of them to Section III.

Also, note that the norm used in the convergence defini-
tion should be based on the whole input space, not just on
the training patterns as is done in [48], [50]. This is because
one is usually more interested in the generalization perfor-
mance rather than performance on the training set, and a
perfect recall of the training set is always possible simply
by having more hidden units. Hence, “convergence”, in
the sense of reducing the training error to zero [48], [50], is
inadequate.

C. Organization of this Paper

Motivated by the success of the cascade-correlation ar-
chitecture in a variety of problems [51], [52], [53], [54], [55],
the obscure design of the objective function and the im-
portance of having convergence properties for constructive
algorithms, we discuss in Section II a class of objective
functions for training new hidden units in constructive al-
gorithms, all of which have a time complexity of O(N)
without compromising the convergence property. A com-
parison with related works on the issue of convergence will
be discussed in Section III. Practical problems in optimiz-
ing the objective functions, together with some suggested
remedies, will be discussed in Section IV. Experimental
comparison in using these objective functions for a series of
regression problems will be described in Section V, followed
by some concluding remarks in the last section. Proofs of

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 4

the mathematical results and extension to the case of non-
linear output units are in the Appendix.

II. DESIGN OF THE OBJECTIVE FUNCTIONS

In the following, we assume that the network has only
one linear output unit. The case for nonlinear output units
is dealt with in Appendix B. Extension to multiple output
units is straightforward. Moreover, we will focus on the L?
space, i.e. the space of all square integrable functions. For
u,v € L2, the inner product® (u,v) is defined by

ww=[@mwmww,

where p is the (positive) input environment measure, X
is the whole input space which is a bounded measurable
subset in the d-dimensional Euclidean space . The norm
in L2 space will be denoted as || - ||

A network, having n—1 hidden units directly connected
to the output unit, implements the function f,,_; given by:

faa@) = 3 19,(0)

where g; represents the function implemented by the jth
hidden unit. Note that these g;’s may only be indirectly
connected to the input units through intermediate hidden
units, and thus the network is not restricted to having only
one single hidden layer. Moreover, e,_1 = f — f,—1 is the
residual error function for the current network with n—1
hidden units.

Addition of a new hidden unit proceeds in two steps:

1. Input training: Find 3, and g, such that the resultant
linear combination of g, with the current network, i.e.
fn—1 + Bngn, gives minimum residual error ||ey||-

2. Output training: Keeping g1, 9o, ..., g, fixed, adjust
the values of 31, B2, .. ., Bn S0 as to minimize the resid-
ual error.

Note that, as will be shown later, 3, can be found as a
by-product in step 1, without requiring back-propagation
of error. This 3, can then be used as an initial value in
performing step 2.

Step 1 is performed by maximizing an objective func-
tion over g, from a set I. This I', having finite or infinite
number of elements, contains all hidden unit functions that
can possibly be implemented. It thus depends on the par-
ticular constructive algorithm that specifies how the new
hidden unit is connected to the existing network, how the
net input to the hidden unit is computed, and the trans-
fer function of the new hidden unit, etc. Step 2 is used
to ensure that f—f, remains orthogonal to the subspace

5An inner product [34] in a real linear space R is a real function
defined for every pair of elements u,v € R and is denoted by (u,v),
with the following properties:

1. (u,u) > 0 where (u,u) = 0 if and only if u = 0;

2. {(u,v) = (v, u);

3. (Au,v) = ANu,v), AER;

4 (u,v +w) = (u,v) + (v, w).

spanned by g1,92,-..,9n. This minimization can be per-
formed by using gradient descent or, when the output unit
is linear and squared error criterion is used, by computing
the pseudo-inverse.

A. Derivation for S; and S

We first address the problem in step 1.
Proposition 1: For a fixed g € T (||g|| # 0)¢, the expres-
sion ||f — (fn—1 + B9)|| achieves its minimum iff

<€n_1, g)
I @)

Moreover, with 8 and 8* as defined in (2), ||f — (fn_1 +
w9l <Nf = (fam1 + B*9)ll Vg €T, iff

=5 =

<en71;gn)2 (enfbg)z
llgnll?

llgll®
(Proofs are in Appendix A.)
Thus, proposition 1 suggests that the objective function
to be optimized during input training is:

v

Vg eT.

<€n—1,gn)2
loal? ®)

However, in practice, (3) can only be calculated when the
exact functional form of e, 7 is available, which is obvi-
ously impossible as the true f is unknown. A consistent”
estimate of (3) using information from the training set is
(% 2, EpHyp)®
W
den unit for pattern p and E, is the corresponding residual
error before this new hidden unit is added. Dropping the
factor + which is common for all candidate hidden unit
functions, we obtain the following objective function:

N
(3, EpHyp)*
S = 2
ZP HP

The corresponding update equation for connection
weight w; feeding into this new hidden unit is:

051

6w,~

OH OH.
o l;Hg -;Epa—é —;EpHp-nga—w:

2
(Sam)(zm)
p p
Notice that the time complexities in computing this objec-
tive function and each weight update are of O(N). More-

over, storage requirement is minimal as the E,’s and Hp’s
need not be stored.

, Where H), is the activation of the new hid-

(4)

Awi

8||g|| = 0 implies g(xr) = 0 Vz € X, which should obviously be
excluded.

7Consistency follows as the estimate is a continuous function of the
sample product moments.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 5

The weight 3, connecting the new hidden unit to the
output unit is also determined as a by-product, given by
Bn =, EpHy/ ", Hy as determined in (2). Compared to
[40] in which the same criterion is used for both the input
and output training phases, they have to (randomly) fix
an initial guess for §,, before input training can proceed.
Hence, the hidden unit found is likely to be suboptimal,
and so the input and output training phases have to be
iterated for several times, significantly lengthening the op-
timization process. In our approach, however, the optimal
B for the new hidden unit is automatically determined and
its value is not required during input training. Moreover,
the weight update process in [40] can be regarded as a vari-
ant of the coordinate descent method [56], which is known
to have poor convergence properties. Simulation results
in Section V also confirm that this method used without
iteration is inferior.

The convergence property of the constructive algorithm
using (3) as the objective function during input training,
with input weight freezing in effect, is assured by the fol-
lowing theorem:

Theorem 1: Given span(T) is dense in L% and Vg € T,
0 < ||g|] < bfor some b € R. If g, is selected as to maximize
(en-1,9)2/llgll?, then limy, o0 |f — full = 0.

Requiring the set of hidden unit functions to satisfy the
denseness requirement is not hard, as is supported by var-
ious universal approximation results for feedforward net-
works [36], [38], [49], [57]- Moreover, the boundedness as-
sumption of ||g|| holds for continuous transfer functions on
bounded domains. Hence, Theorem 1 shows that the se-
quence of networks so constructed incrementally strongly
converges to the target function.

If we further restrict the target function f to be an ezact
summation of basis functions from T, i.e. of the form

F=> vig (5)
j=1

for some g; € T, then, similar to [58], we can obtain the
following convergence rate:

Proposition 2: If the target function is an exact summa-
tion of basis functions from I' as in (5) and the network is
constructed as in Theorem 1, then

b lleol|?

2 £11°0

enl|” < 6
|| Tb” n||€0||2 +b§’ ()
where by = mmaxj=1,...m |vjllgj[|. Or, in other words,

leall? = O(L).

Because of the boundedness assumption of ||g||, the de-
nominator in (3) can be dropped without affecting conver-
gence.

Corollary 1: With the conditions in Theorem 1, if g,, is
selected as to maximize (e,,_1,g)?2, then lim, o ||f— full =
0.

And we arrive at the second objective function:

Sy = (Z EPHP)2‘ (7)

Again, the time complexities in computing this objective
function and each weight update are of O(N).

If we restrict the target function to be an exact summa-
tion of basis functions from I', then

Proposition 3: If the target function is of the form in (5),
0<|lgll <b Vg €T, and the network is constructed as in
Corollary 1, then

b%[leoll”
nlleol|” + 3’

where by = b max;—1,...m |vj|-
Note that

llenll* <

®)

bp=m max |vlllg]| <bm max |v;| = Dby,
j=1,....m j=1,....m

which implies

b%lleoll?
nlleoll” + b}

b leoll?
= nlleol® + b3

i.e. the bound for ||e,||? in (6) is smaller than that in (8).
Of course, this does not necessarily mean that the net-
work sequence {f,} constructed using S; as the objective
function will converge faster than that using S», as it also
depends on how tight the bounds in (6) and (8) are. Never-
theless, empirical results in Section V tend to support this
difference in convergence rates.

B. Derivation for Scascor and Ss

The objective function Scgscor used in the cascade-
correlation architecture can also be derived from the above
results. But let us first introduce a few notations.

Let # = L' N L2. For u,v € H, define

(u,v)Z/X(u(w)—ﬂ(w))(v(w)—@(w)) du(x), (9)

1 _ 1
=5 /X @) du(o). 9(0) = = /X v(z) dpu(2).

Obviously, {u,v) is a semi inner product® in H. Here we
use the notation (-,-) for various spaces, which should be
clear from context. The corresponding semi-norm is also
denoted as || - |-

To convert this semi inner product into an inner product,
consider the set J of all constant-valued functions in H.
The quotient space H/J is the set with elements

du)=u+J={ut+w:w e J},
for each u € H. For ¢(u),d(v) € H/J, define
(¢(u), 6(v)) = (u,v), (10)

where (u,v) is as defined in (9). Obviously, (¢(u), p(v)) de-
fines an inner product in H/J. We then have the following
corollary.

8A semi inner product differs from an inner product in that {(u,u)
may be 0 even when u # 0.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 6

Corollary 2: With the conditions in Theorem 1, if g, is
selected as to maximize

($(en—1), $(gn))
l(g)l®

then lim,_, ||¢(f) — ¢(fn)]| = 0.

Hence, as f and f, differ by at most a constant when
n — oo, fn — [if a constant (bias) term is included in the
expansion of f,. The corresponding objective function to
be maximized is:

(X, (E,—E)(H,—H))?
Yp(H—H)?> 7

where H is the average value of the new hidden unit over
all training patterns, and E is the corresponding average
for the residual error. Again, only O(N) time is required
for computing (11) and its weight update.

Using Corollary 1, we can drop the denominator in (11)
and arrive at the fourth objective function:

(Z(EP_E) (HP_FI)>)

P

53 = (11)

which is the square of Scgscor- Again, when the target
function is restricted to be an exact summation of basis
functions from I', the convergence rates for S3 or Scgscor
as objective functions are O(%).

Recall that the objective functions S; and Sy are derived
by assuming that f,_; is fixed at each step when the new
hidden unit g,, is optimized. In deriving S3 and S¢gscor by
using the quotient space, however, we have basically used
the knowledge that the bias to the output unit will be cor-
rected during output training, and hence the mean values
of E, and H, may be ignored during input training. This
is sometimes beneficial, as is illustrated by the simulation
results in Section V.

I1I. RELATED WORK ON THE CONVERGENCE ISSUE

The convergence issue of constructive algorithms has
been discussed in [59], [60], originally in the context of
projection pursuit regression [60], [61]. When the norms of
the elements g in T’ are bounded (i.e. [|g|| < b as we also
assumed in Theorem 1), convergence is shown in [59] when
the target function f is in the closure of the convex hull of
T". However, when the norm is bounded, the convex closure
is no longer equal to the span of I', and thus convergence
to all L? functions is not guaranteed. Whereas in our case,
Theorem 1 holds for all L? functions.

Moreover, in both [59] and [60], the iterative sequence
of network estimates is formed from a convex combination
of the previous network function f, ; and the new basis
function g,,

fn=0anfno1+ (1 —an)gn, (12)
where 0 < a, < 1. Whereas in our approach, the new
fn is formed from full linear combination of the old and

new hidden unit functions. The weights connecting the old
hidden units to the output unit are thus not constrained as
a group, as in (12). Besides, in (12), a, has to be learned
together with the new hidden unit g,, while in our case,
the parameters of the new hidden unit are first learned and
then the output layer weights. Training is thus performed
for only one layer of weights at a time, making optimization
of the objective function simpler. Moreover, the objective
function to be minimized in [59], [60] is different from that
developed in the previous section, and thus results in [59],
[60] cannot be directly applied here.

On the other hand, while results in [59], [60] and those
we studied here are in the context of the L? space (or more
general Hilbert spaces), Darken et al. [62] extended the
bounds on the rate of approximation to broader classes of
spaces, including LP spaces where 1 < p < oo. However,
they are more interested in showing the ezistence of a con-
vergent network sequence, while we are more interested in
the convergence properties of specific methods that are able
to deliver such sequences.

Drago and Ridella [58] also studied the convergence prop-
erties of using S.qsc0r as the objective function for function
approximation, but only for the case when the hidden unit
transfer function is the hyperbolic tangent function and
uniform environment measure. Our work here poses little
restriction on the input environment measure or the hidden
unit transfer function, so long as the hidden unit transfer
function is bounded and the requirements for universal ap-
proximation are met. Moreover, a number of other objec-
tive functions, besides S¢qscor, are derived and discussed.

Recently, Kurkova and Beliczynski [63] also devised the
So criterion in this paper as an objective function. How-
ever, their convergence proof follows from that in [59], and
hence is restricted to target functions that are in the convex
closure of T'.

IV. SoME PrRAcTICAL CONCERNS
A. Practical Problems

Before discussing the simulation results, we first discuss
a few practical problems in optimizing the objective func-
tions.

A.1 Problem with the Objective Function

In the following, we denote any objective function ob-
tained in the previous section simply by S. Its first and
second partial derivatives with respect to the connection
weight w; will be denoted by S, and S, respectively.

As learning proceeds, hidden units are added to the net-
work and the residual errors E,’s decrease with time. Ob-
serve that S, S, and S, are continuous with respect to
E,, and

S=28,, =85, =0,

when all the E,’s are zero. Hence,
S—o0, S, —0, S, —0,

as E, =0 Vp. This may pose a problem when the residual
errors are small but still not acceptable. If gradient-ascent

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 7

algorithms that use only first-order information (such as
standard back-propagation) are used in the optimization,
w; is changed at each step by an amount
Aw; =18, (13)
where 7 is the learning rate. As S, is small, learning ba-
sically comes to a halt. By using optimization algorithms
that use second-order information, we may be able to do a
better job. Hence, in the experiments, the quickprop learn-
ing algorithm [33] is used to implement this optimization.
However, the problem is still not solved completely.

A.2 Problem with the Quickprop Algorithm

The quickprop algorithm is a second-order method. It
assumes that the function, S, to be optimized is locally
quadratic with respect to each weight, and the Hessian
matrix of S in weight space is diagonal. Although these
assumptions are quite “risky”, the technique works well in
practice [33], [64].

Denoting S;,. at time ¢ by S,.[t], the change for weight
w; at time ¢ is given by:

S [t]

Aw;lt] = St t=1] = S.,. [t]

Aw;lt—1], (14)

where Aw;[t—1] is the weight update at time ¢—1.

There are cases when weight update by (14) is not used.
For example, since quickprop changes weights based on
what happened during the previous weight update, (13) is
used to compute the first step. Another situation is when
the current slope with respect to w; is in the same direction
as that of the previous slope, and its magnitude is close to
or even larger than the previous one. In this case, the next
weight update is given by

Aw;[t] = pAw;t-1], p> 1. (15)

Although the aim of this restriction is to improve the
stability of the algorithm, it may be problematic when one
is exploring in a plateau® in the error surface. Consider
the w; direction in the weight space. Taking the gradient
ascent step in (13) at ¢t =0,

wi[l] = w; [0] + 775:01. [0],

with
Aw;[0] = nS,,,[0]. (16)
Now, using Taylor series expansion and (16),
Sl S,000+ Aw,{0]S2, [0
S2:[0] S10: (0]
Sa; [0] + 1S3, [0] S, [0]
— k2 1 k2 1
51,10 1
= 1+nSy (0], (18)

9A plateau is a region where the first and second derivatives of the
function to be optimized with respect to all the parameters are nearly
Zero.

where S,/ [t] denotes S, at time ¢. If w;[0] falls in the
region of a plateau, then

Sy, [0] >0, Sy.[0] ~0.

(18) thus implies

Sull
S, 0007

which satisfies the conditions for (15) to be applied. The
next weight update, using (15) and (16), is then:

Aw;1] = punS,,,[0] = 0.

Movement in the weight space is thus very slow.

This problem, however, is usually not that severe. Al-
though the next weight change is small, and even if the
conditions for (15) to be applied continue to be satisfied, it
can build up gradually given a sufficient number of training
epochs. This can be seen clearly by applying (15) repeat-
edly,

Aw;[t] = p"Aw;[t—n]. (19)
Thus, as p > 1, the difference between S [t] and S, [t—1]
will finally be large enough for the quadratic approximation
to be applied.

However, in constructive neural network algorithms,
training is usually limited by a patience parameter [39],
which means that the function to be optimized has to be
improved by a certain fraction within a certain number
of training epochs. Patience helps to end each learning
phase when progress is excessively slow and thus saves time.
Moreover, it is also experimentally shown to be able to im-
prove generalization by avoiding overfitting of the training
data [65]. However, the value of this patience parame-
ter is usually small. Hence, waiting for the weight slopes
to slowly build up as in (19) is not possible under such
situations. More drastic action is needed to get out of
the plateau in limited time. This situation is particularly
acute in our case, as we have shown in the last section that
when the residual errors are small, both the first and sec-
ond derivatives of the objective function are likely to be
small.

B. Remedies

To alleviate the problems mentioned above, we aim at
increasing the slope of the objective function to be opti-
mized when the residual errors are small, such that the
region to be searched is less likely to be a plateau. On the
other hand, if we are so unfortunate that quickprop really
searches in a plateau, we aim at finding a better method
to get out of it quickly.

To avoid the first problem, Fahlman [33] suggested to

adjust S,, by adding a small offset to the values of gg”
However, this distorts the true surface of S, and, as noted
by Crowder [66], this “confuses the correlation machinery”

and cannot solve the problem.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 8

B.1 Transforming the Objective Function

To increase the slope of S when the residual errors are
small, we transform S by a (possibly nonlinear) functional
t: C — C, where C is the space of all real-valued continuous
functions:

S =(9),
such that ~
Sts 2 S,

when S is small. Moreover, we require the function ¢ : —

R in
) Ep}, {Hyp}) = HSHE}, {Hy})),
to be strictly increasing. This is desirable so that locations
of the local and global optima of S are the same as those
of S.
An obvious choice of t is

t(S)=aS, a>1.

This amounts to scaling up the S dimension, or equiva-

lently increasing the learning rate 7. However, increasing

1 too much may cause oscillation, while increasing only a

little may not be useful in improving the situation.
Another simple choice is

S =) =VS.

Now S!, = 25\%, and hence S!, > S! when S < 0.25.
Thus, the slope is scaled up when S is small. The smaller
S is, the larger is the scaling of the slope (Figure 1). Even
when S is large, which makes S’ . smaller than S| , it is
not a problem because then qulckprop will be mainly using
the quadratic approximation (14).

Of course, there are other choices of ¢, such as

t(S) = S*, k>1,
which basically changes the switch-over point where S'l'uz. >
Sy, - But the basic idea of all these schemes is to dynami-
cally alter the slope of the objective function during learn-
ing. This is similar to the idea of adaptive learning rate in
back-propagation [64], [67]. However, we demonstrate here
that a simple change in the objective function to be opti-
mized can achieve the same goal, without requiring mod-
ification to the learning algorithm or continual updating
of the learning rate which incurs additional computational
burden. Finally, notice that this kind of modification to the
objective functions does not affect the convergence rates of
the constructive algorithm, as given in (6) and (8).

B.2 Modification to the Quickprop Algorithm

For the second problem of enabling a faster escape from
the plateau, a simple solution is to take large steps. From
Section IV-A.2, we saw that the problem arises from always
using the gradient ascent step when conditions to (15) are
satisfied. To alleviate this, we take the quadratic approx-
imation in (14) when the changes in all weight directions
are very small, even under those conditions.

(9 (2 t(s =28
SRS
1y =s
0 1 S(2) :
Fig. 1. Plot of several choices of f.

Following the analysis in Section IV-A.2, by taking the
quadratic ascent step,

Solll = g el
. 15w [0](S4,[0] + 1S, [0]55,[0])
- —775«'4)1- [O]Sgh [0]

5000 (1+ 5p7)-

It is simple to verify that when |S} [0]] < n(u+1)’

w;[0] falls on a plateau, this will be of greater magnitude
than the gradient ascent step.

as when

V. SIMULATION

In this section, we compare the generalization perfor-
mance of several networks constructed using the objective
functions S; in (4), Sz in (7), S5 in (11), their modified
versions (by taking the square root), Scascor in (1), the
objective function Sfy i, used by Fujita in [46], and the
squared error criterion'® S, used in [40]. Comparison is
performed on a set of regression functions originally used
in [40]. Preliminary study on the improvements in gen-
eralization performance by the modifications discussed in
Section IV-B has also been reported in [68], in the context
of chaotic time series prediction.

A. Setup

The networks under comparison all have linear output
units and a single layer of hyperbolic tangent hidden units.
Hidden units are added up to a maximum number of 15.
Input training is performed by using the modified quick-
prop algorithm as described in Section IV-B.2, while output
“training” is performed by computing the pseudo-inverse
exactly.

The regression problems used are the two-dimensional
functions which have been used in [40]. They are:

« Simple interaction function:

FO (21, 25) = 10.391((z1 — 0.4)(z2 — 0.6) + 0.36).
10Notice that unlike the other objective functions, Ssqr is always

measured at the output nodes, and is minimized instead of being

maximized during both the input and output training phases.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

« Radial function:
TP (2, 20) = 24.234(r%(0.75 — 1?)),
r? = (z1 — 0.5)% + (z2 — 0.5)°.
o Harmonic function:
T (@1, x2) = 42.659((2 + £1)/20 + Re(2%)),
z =1 +ix2 — 0.5(1 + 9),
or equivalently, with 3 = 7 — 0.5, %3 = 23 — 0.5,

O (xy,20) = 42.659(0.1+ #(0.05 + &4
—10%232 + 5i3)).

o Additive function:

M (zy,20) = 1.3356(1.5(1— 1)
+e?17 1 sin (37 (21 — 0.6)%)
+e3@2705) gin (47 (25 — 0.9)2)).

o Complicated interaction function:

Oz, 25) = 1.9(1.35+ et sin(13(z; — 0.6)?)
e "2 sin(7zs)).

Plots of these functions are shown in Figures 2 to 6.

Fig. 2. f(U: simple interaction

We employ the same basic setup as in [40]. Two sets of
training data, one noiseless and the other noisy, are gener-
ated. The noiseless training set has 225 points, and is gen-
erated from the uniform distribution U0, 1]?. The same
set of abscissa values (z’s) is used for experiments with
all five functions. The test set, of size 10000, is gener-
ated from a regularly spaced grid on [0, 1]?, and is also the
same for all five functions. The noisy training set is gen-
erated by adding independent and identically distributed
(i.i.d.) Gaussian noise, with mean zero and standard de-
viation 0.25, to the noiseless training set. Its size is thus
also 225. Whereas results in [40] are based on only one
specific set of training data, we want to get information
on the variability due to the location of the z’s. Hence, in
the simulations below, we perform 100 independent trials
each generating a different set of training data. The mean

ORNWANON®

K772y
0017/ 77405%
S8
SSss=————— 277277
e
KS ‘:&\\\\\\\\\\\W
S e e 3¢
e

>

'I'fIO‘

oRrNWAOON

Fig. 6. f(5: complicated interaction

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

TABLE I
MEAN SIGNAL-TO-NOISE RATIOS FOR THE FIVE REGRESSION PROBLEMS.

Fi) @ f® f@ f®
SNR || 3.731 | 3.966 | 3.368 | 3.978 | 4.015
signal-to-noise ratios (SNR) for the five noisy functions are
: TABLE V
shown in Table I. @
As in [40], the fraction of variance unexplained (FVU) Notseress f1.
on the test set is used for comparison. It is defined as:
([s1 [vs1 [52 [Ve2 [s3 [/53 [sc | 55] 85 |
N s E3 * E3 E3
- N \2 ’ 59
Ez’:l (f(xl) - f) /52 E3 E3 E3
s3 * * * * * * *
where f = L SN f(z;). Note that the FVU is propor- /%8 I T il I
tional to the commonly used mean squared error. More- s; =
over, as mentioned in Section I-B, in this paper we focus 8s *
on how to determine the network weights after hidden unit
addition, rather than on the issue of determining the opti-
mal number of hidden units to be installed in the network. TABLE VI
Hence, in the following, we assume that some perfect crite- NotseLmss f3).
rion has been used to handle this issue and we will use for
comparison the lowest t.esting F.VU'among th.e 15 networks I (51 [Vo [52 [/o3 [53 | /o5 [5 [57 [5)
ranging from 1 to 15 hidden units in each trial. 1 * | *
\/H * * * * * *
F3
B. Results % - o
Boxplots for the best attainable testing (generalization) 53 - Bl
FVUs averaged over 100 independent trials are shown in ;{E = =
Figures 8 and 9 in Appendix C. The corresponding means sf * *
and medians are shown in Tables IT and III. A pairwise Ss
comparison of the generalization performance for different
objective functions, on a test by test basis, by using the
sign test [69] at a 95% level of significance, is also reported TABLE VII
in Tables IV to XIII. Each method (A, say) in the row is NOISELEsS f(4).
compared with each method (B, say) in the column. An
asterisk in the corresponding entry indicates that the gen- I [s1 [/51 [s2 [v/s2 [s3 [/53] se | s | ss]l
eralization performance of method A is significantly better 51 . 1
than that of B. Boxplots are also shown in Figures 8 and 9 f
in Appendix C. /52 | _* * * F
53 E3 E3 E3 * E3 E3 E3
E3 * E3 E3 *
TABLE IV ;/5 * * * K
*
NoiseLess f(1). HERE, sc STANDS FOR Scascor, Sf FOR Sfyjitq AND zf :
Ss FOR Sggr.
([s1 [51 [so] 33 [53 [o3 [s [s; [|
51 ¥ * * TABLE VIIT
;/ﬁ * * - * NoiseLEss f(%).
2
/52 *
ss | * | * [*] * : : I [s1 [/51 [52 | /52 [53 | /53 | 5 | 57 | 55)
\/@ E3 E3 E3 * E3 E3 E3 o 5 - = = =
Ss * * * * * i‘/zg * * *
s3 * * * *
\/5 * E3 E3
Se E3 E3 E3 E3 E3
Sr : *
Ss

10

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

TABLE II
COMPARISON OF MEAN TESTING FVUS IN 100 TRIALS ON NOISELESS TRAINING SETS (MEDIANS ARE IN BRACKETS).

|| 51 \/§ 52 | \/5 53 \/573 | Scascor | Sfu;'ita, | Ssq’r ||
f(l) 0.02096 0.01117 0.09528 0.02435 0.00293 0.00258 0.02483 0.00369 0.00693
(0.02049) | (0.01006) | (0.04882) | (0.02242) | (0.00234) | (0.00204) | (0.02335) | (0.00250) | (0.00506)
f(Q) 0.02917 0.02799 0.42609 0.03083 0.01972 0.01818 0.02668 0.04712 0.03829
(0.02925) | (0.02746) | (0.43811) | (0.02994) | (0.01819) | (0.01702) | (0.02626) | (0.03845) | (0.03461)
f(3) 0.26904 0.24738 0.54700 0.27514 0.30569 0.28812 0.26503 0.44422 0.57347
(0.26449) | (0.23830) | (0.51089) | (0.26555) | (0.25403) | (0.25964) | (0.26219) | (0.43758) | (0.59375)
f(4) 0.03555 0.03680 0.63554 0.03055 0.02710 0.02959 0.03054 0.06977 0.18468
(0.02898) | (0.03241) | (0.68748) | (0.02710) | (0.02224) | (0.02633) | (0.02702) | (0.05821) | (0.19432)
f(5) 0.12088 0.11126 0.61000 0.13404 0.15967 0.16739 0.12114 0.24607 0.29447
(0.12022) | (0.11180) | (0.58597) | (0.13158) | (0.11616) | (0.12822) | (0.12078) | (0.23344) | (0.29685)
TABLE IIT
COMPARISON OF MEAN TESTING FVUS ON NOISY TRAINING SETS.
|| S1 \/§ Sa | \/5 S3 \/5_3 | Scascor | Sfu;'ita | SSGT ||
f(l) 0.06980 0.05940 0.16909 0.07067 0.04582 0.04432 0.07092 0.04836 0.04969
(0.07985) | (0.07181) | (0.11176) | (0.07977) | (0.05640) | (0.05421) | (0.07903) | (0.06050) | (0.06160)
f(2) 0.07347 0.06951 0.45520 0.07275 0.06564 0.06426 0.06915 0.08587 0.07997
(0.08150) | (0.07943) | (0.45535) | (0.08169) | (0.07621) | (0.07445) | (0.07876) | (0.08348) | (0.08298)
f(3) 0.31637 0.30770 0.51487 0.31702 0.29254 0.33864 0.30941 0.46683 0.63408
(0.30799) | (0.29644) | (0.50011) | (0.31273) | (0.26530) | (0.27951) | (0.31104) | (0.46308) | (0.64252)
f(4) 0.08546 0.08453 0.66685 0.07980 0.07820 0.08010 0.08302 0.12513 0.20317
(0.08953) | (0.08834) | (0.70169) | (0.08605) | (0.08705) | (0.08704) | (0.08589) | (0.11231) | (0.19736)
f(5) 0.17353 0.16175 0.70805 0.18254 0.20077 0.20082 0.17613 0.29649 0.35143
(0.17164) | (0.16872) | (0.76016) | (0.17416) | (0.17426) | (0.18430) | (0.17336) | (0.31078) | (0.34696)

11

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 12

TABLE IX
Nowsy f1).
([s1 [51 [s9 [/52 [s3 [/53 [se]s;]ss |
s1 *
/51 * * * *
82
/52 *
s3 * * * * * * *
/SS * * * * * * * *
Sc *
57 3 E3 E3 3 E3 3
P ¥ F3 F3 ¥ ¥
TABLE X
Noisy f(2).
[[s1 [51 [s2 | 52 [s3 [o3 [se[sr [|
s *
\/IE E3 E3 F3 E3 F3
52
NG E3 E3
53 E3 E3 E3 ¥ E3 E3 E3
/53 * * * * * * * *
5e F3 F3 F3 F3 F3
S5 *
Ss *

The following observations can be made:

e Poor results are obtained for the harmonic function

f®) using all the objective functions tested. This is,
however, in line with the results by Donoho and John-

TABLE XI
Nosy (3.

(0 [s1 [/51 [s2 [/52 [s3] /53] sc] 55| ss ||

51 E3 E3 E3

G % E3 E3
s9 E3
\/5 * * *
s3 * * * * * * * *
/53 E3 E3 E3
Se E3 E3 E3
5;] %
5s

TABLE XII

Nosy f4).

([s1 [vs1 [s2 [/52 [s3] 58] sc]sp]ss |
51 E3 E3 E3
/51 E3 E3 E3
82
\/5 * * * * * *
53 * * * * *
\/ﬁ * * * *
5a E3 E3 E3
57 E3 E3
Ss *

stone [70]. They studied the least-square approxima-
tion errors of ridge approximation and kernel approx-
imation, which are approximation techniques analo-
gous to feedforward neural networks with a single hid-
den layer of sigmoidal units and a single hidden layer
of radial basis function units, respectively. Focusing
on the two-dimensional input space with respect to the
Gaussian measure, they showed that ridge approxima-
tion is better for radial functions while kernel approxi-
mation is better for harmonic functions. Hence, in this
case, networks of size larger than 15 may be needed for
successive approximation and results for this problem
are not conclusive.

The testing performance of Sy is poor for all the prob-
lems. But it can be significantly improved by using
the modified version 4/S>. Similar improvement also
holds for S; and S3. This shows that transforming the
objective functions as discussed in Section IV-B.1 is
beneficial.

For the noiseless data, 1/S3 has the smallest testing

TABLE XIII
Nosy f(5).

(0 [51 [/51 [s2 [/o2 [s3 [+/53 [sc | 85 | 8 |
51 E3 ¥ ¥
/51 ¥ E3 E3 E3 E3 E3 ¥ ¥
52
\/5 * * *
s3 * * *
\/E * * *
5o E3 E3 E3
57 E3 E3
Ss *

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 13

FVUs for the simple interaction function f(*) and the
radial function f(?), and the second smallest for the
additive function f*). Its superiority over other ob-
jective functions is also confirmed by the pairwise com-
parison (Tables IV, V and VII). However, it is a bit
inferior for the complicated interaction function f(®).
From Figure 8e in Appendix C, one can see a number
of outliers with high testing FVUs for 1/S5. Moreover,
the spreads of the testing FVUs for 1/S3 are also com-
paratively larger than the other objective functions in
most datasets. This probably indicates that superior-
ity of v/S3 is marred by its sensitivity to the particular
set of training data used.

o The testing performance of S; is much better than Sa,
and 1/S; is generally better than /S;. Except for
the complicated interaction function (), /S5 is also
better than Scqscor. Hence, the claim in Section II on
the difference in convergence rate is consistent with
our experimental results.

« The superiority of S3 over S1, and 1/Ss over /5] also
supports the claim in Section II that ignoring the bias
to the output unit during input training is beneficial.

o Stujite has competitive performance only for the sim-
ple interaction function, and is significantly worse than
most other objective functions for all other functions.
This is probably because of the complicated form of
Stujita, making it hard to be optimized. The perfor-
mance of Sy is also poor, as is expected following
the discussion in Section II, suggesting that optimiza-
tion based on Sy, has to be repeated several times for
satisfactory results, as has been done in [40].

o /51 and Scqscor have comparable testing performance.
Moreover, the spreads of the testing FVUs are also
comparable.

o For the noisy data, differences in performance between
different objective functions become smaller. But, still
V81, Sz and /S3 stand out among the others, as is
evident from the pairwise comparison.

VI. CONCLUSION

In this paper, we study a number of objective functions
for training new hidden units in constructive neural net-
work learning algorithms. The aim is to derive a class
of objective functions whose value and the corresponding
weight updates can be computed in O(N) time, where N is
the number of training patterns. Moreover, even though in-
put weight freezing is used in the constructive algorithm for
computational efficiency, we require that the convergence
property be preserved. This class of objective functions
includes:

o S1= (Ep EpHp)2/ Ep Hs;

o 82 = (3, EpH,)?,

e S3= (Zp(EP_E)(HP_H))2/Zp(HP_‘E[)za

* \/S_l = |ZpEpHp|/ ZPHS;

o VS = |Zp EpHy|,

VSs = | 3, (E,—E)(Hy—H)\|/ /3, (H,—H)?, and

o Scascor = |Zp(Ep - E)(Hp - H)l

The results here are not tied to a particular network ar-
chitecture (the cascade-correlation architecture), and are
useful to situations when complete re-training of the whole
network is infeasible after hidden unit addition. More-
over, the constructive algorithm can easily be generalized
to adding a group of hidden units, instead of just one, to
the network simultaneously, by requiring this group to op-
timize these same objective functions.

Besides, we also propose a few computational tricks that
can be used to improve the optimization of these objec-
tive functions. Specifically, we address the problem of slow
convergence in plateaus of the objective function, which
is caused by both the form of the objective function and
the quickprop algorithm. A simple transformation of the
objective function to be optimized, although theoretically
identical to the original one, may lead to significantly im-
proved results in the numerical optimization process. Han-
dling of plateaus in quickprop is also modified, which is
especially important for constructive neural network learn-
ing algorithms using the patience parameter.

In general, the generalization performance of networks
using different objective functions can be influenced by a
number of factors. Firstly, most constructive algorithms
(such as those studied in this paper) use a greedy approach,
by grabbing the largest possible residual error every time a
new hidden unit is added. However, being the nature of any
greedy approach, even if the “best” hidden unit function,
as judged by the “best” objective function, is selected at
each step, this does not necessarily guarantee that the final
network will have the best performance.

Secondly, the objective functions used here are sample
versions of their theoretical counterparts, basing on infor-
mation available from the training set. Their accuracy
compared to the true population version is thus depen-
dent on whether the training set has sufficiently sampled
the whole input space, and whether the noise in the train-
ing data has severely corrupted its true value, etc. In the
latter case when large errors are to be expected, it may be
reasonable to use robust versions of the objective functions
[71]. Also, in some constructive algorithms (such as the
cascade-correlation architecture [39]), the number of input
weights to the new hidden unit keeps on increasing. In this
case, regularization methods that add a penalty term to
the original objective function may be beneficial.

Thirdly, practical optimization algorithms are prone to
the local optimum problem. This plagues all objective
functions being investigated here, but some are more vul-
nerable than the others, probably because of their complex
functional form. Algorithms for finding global optima, such
as simulated annealing, may of course be used, but the de-
mand on computational resources will be much higher.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 14

APPENDIX
A. Proofs

Proposition 1: For a fixed g € T (||g|| # 0), the expres-
sion ||f — (fn—1 + Bg)|| achieves its minimum iff

<6n_1, g)
llgl?

Moreover, with 3} and §* as defined above, ||f — (fn—1 +
Brga)ll < If = (fa-1 + B*9)|| Vg €T, iff

(en—1,9n)* _ (en-1,9)

llgnl? llgl|?
Proof. Consider the case when all elements in I' are of unit

norm,

Ag) =

B=p"=

v

Vg eT.

If = faill® = IF = (fao1 + Bo)II?
<€n,1,g)2 - ((enflag) - ﬂ)Z

For a fixed g, the stated expression is minimized iff

/B = ﬂ* = <€n—1,g),

with
JA N (g) = <en—1 s 9)2'

From the set I', the stated expression is minimized when
Az (g) is maximized over all g € T'. Result follows when
the assumption of unit norm is dropped. O
Theorem 1: Given span(T') is dense in L? and Vg €
,0 < |lgl] < b for some b € R. If g, is selected as to
maximize (e,_1,9)?/||g||%, then lim, o ||f — fx|| = 0.

~

Proof. Let f,, denote the version of f,, before output train-
ing.

If = Faall® = IIf = Jinll2
||f - fn—lll2 - ||f - fn||2
(en-1,9n)%/llgnll?,

which is greater than zero as span(I') is dense (Lemma, 3.3-
7 of [72]). So, {||en||?} is strictly decreasing, and bounded
below by zero, thus it converges. That is, Ve > 0,dN > 0
such that when m >n > N,

llen—1ll* = lleal

vV

(20)

lleall® = llemll* = [lleall® = llem|I*| < e.

As ey, is orthogonal to span{gi,gs,...,gm} (Figure 7),

therefore
llen — emll> = llenll” — lleml® <€,

i.e., {e,} is a Cauchy sequence. Because L? is complete,
Je € L? such that e,, — e. From the fact that g,, maximizes
(20) and 0 < ||g|| < b Vg € T, therefore

lim (en,g)*/llgll* =0 = lim (en,g) =0, Vg€ T.
n—oo n—oo

As strong convergence implies weak convergence, hence
(e,g9) = 0 Vg € T, which implies ||e|| = 0. O

Fig. 7. Illustration for Theorem 1.

Proposition 2: If the target function is an exact summa-
tion of basis functions from I' as in (5), and the network is
constructed as in Theorem 1, then

b lleoll”
nlleo||* + b3’
where by = mmaxj—y,.. m |1)J|||g;‘||
Proof. The proof follows that of [58]. Assume that the
target function f = EJm:l v;g; where g7 € I'. Consider

(f: en—1>
<€n—1 + fn—l; en—l)

llen—1ll%,

llenll* <

J =

as fp—1 is orthogonal to e,_;. But J is also equal to

> vilg},en). (21)

Hence, at least one of the terms in the summation of (21)
must be greater than or equal to |le,_1[|?/m, i.e.

R llencal?
maxXj=1,...,m Vj (gj7en—1) Z
) {97 en—1) llen—1ll?
e ma‘szl,---,mvj”gj” IEH] 2 m
(g} en—1)] llen—1ll>
= mMax;=1,..m —Jov >
e gl mmaxj—1,...m [v;]l1g]
_ llenss?
by

Hence, from (20) in Theorem 1, we have

llen—all*

llen-1l* = lleall* > 2

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 15

b2
£ (22) becomes

Substituting |len||* = 5,

1
Zn Z Zn—1+ 1+ .
Zn—1

By induction, we have
n—1

1
zn2n+z0+z—>n+zo.
j=0 i

Transforming back to |le,||?, we get

lleall? < M
" nlleol|? + %
O
Proposition 3: If the target function is of the form in (5),
0 < |lgll < b Vg €T, and the network is constructed as in
Corollary 1, then

b%[leoll®
nlleol? + b3
where b; = bm maxj—1 ... m |v;]
Proof. The proof is basically the same as that for Proposi-
tion 2, except now we have

lleal* <

max v;{(g%,en_1) > llen—1ll”
P oot A LA
llen—1?
= max Y en—1) >
j:1,...,m|<g]’ n-1)| 2 mmaxj—y,..m|vj|’
and
(6n,1,gn)2 (enflagn)z
llenll* = llenll* > >
" " gl b?
llen—1l*

(bmmaxj—1,....m |vj])?

llen—1ll*
72
bf
0
Lemma 1: H/J is complete.

Proof. Suppose {¢(gn)} is a Cauchy sequence in H/J.
There is a subsequence for which

1¢(gn.) —

which implies ||v; —vi1|| = ||(vi—0;) — (Vip1 —v31)]| < 27°
for some v; € ¢(gn;). Thus {v; — 7;} is a Cauchy sequence
in H. Since H is complete, Jv € H s.t. ||(vi — ;) —v|| = 0,
with o = lim; ,, v; — 0; = 0. Hence, ||v; —v|| = 0. It
follows that ¢(gn,) converges to ¢(v) in H/J. But if a
Cauchy sequence has a convergent subsequence, then the
full sequence converges. Thus H/.J is complete. a
Lemma 2: If span(T’) is dense in H, then span(T'/.J) is
dense in H/J.
Proof. For given ¢(u) € H/J and € > 0, if span(T’) is dense
in #, Jv € span(T) s.t.

() = ¢(9)ll = [lv —ull <,

by choosing u,v s.t. @ =9 = 0. Now, ¢(v) € span(T')/J =
span(T'/J). Hence, span(I'/.J) is dense in H/J. O

¢(gni+1)|| < 272’, 1= 172a37' By (2] < Ni+1,

B. Nonlinear Output Units

In this section, we consider the case when the output
unit transfer function is nonlinear. Nonlinear output units
are commonly used in pattern classification tasks to re-
strict output values to ranges such as [0,1] or [-1,1]. In
the following, we denote the function implemented by the
network as 7(f,,), where 7 is Fréchet differentiable!!. The
corresponding residual error function e,, becomes f—7(f,).

Proposition 4: For a fixed g € T with ||7'(f,_1)g]| # 0,
the expression ||f — 7(fn—1 + B9)|| achieves its minimum iff

(f =7(fn1), 7' (fn-1)9)
7' (fn-1)gll? ’

under first-order approximation using Taylor series expan-
sion. Moreover, with §* as defined in (23),

=5 =

(23)

||f - T(fnfl +ﬂ;gn)” S ||f - T(fnfl +ﬂg)”7 v.g € F;
iff

<€n—la7'l(fn71)gn)2 <en—177-l(fn*1)g)2

17" (fn—1)gnll? I (fn—-1)gll”
Proof. Consider the case when all g € T satisfy the condi-

tion

> Vg eT.

I7'(fa-1)gll = 1. (24)
1f = 7(fa=0)lI” = If = 7(fa-1 + Bg)II?
2f,7(fa-1 + Bg) = 7(fa-1)) = I7(fa-1 + Bg)|I?
Hir (a1l

A(g)

Ignoring higher-order terms in Taylor series expansion,

T(fn-1 + B9) =~ 7(fn-1) + 7'(fn-1)Bg. By linearity of 7'
and (24), therefore,

A(g) (f = 7(fa=1), 7' (fa1)9)?
—((f = 7(fn-1),7' (fa-1)9) = B)*
= <en,1,'r'(fn,1)g>2 - ((enflaﬁrl(fnfl)g> - ﬁ)z

1R

Hence, for a fixed g, the stated expression is minimized
(subject to the approximation in truncating the full Taylor
series) iff
B=p8"={en-1,7(fn-1)9),
with
Amaz(g) = <en—177'l(fn—1)g)2-

From the set T', the stated expression is minimized when
Apmaz(g) is maximized over all g € I'. Result follows by
removing the restriction (24). |

1 Given X and Y are normed spaces. Suppose f : X — Y is defined
on a neighborhood of a € X. We say f(h) = o(h) if || f(h)||/||R]| = O
as h — 0. A continuous linear operator L : X — Y is said to be the
Fréchet derivative [73] of f : X — Y at the point z € X if

f(x+h) = f(z) + Lh + o(h),

as h — 0. We write L = f'(z).

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 16

Next, we compute the Fréchet derivative 7'. Let 1) be the
output unit transfer function. Then 7(f,)x = ¥(fn(z)),
and

= (/. (w) h()) ((90))
= h(@)¢' (fa(@)) + o(h(2)).

Thus, (7'(fr)h)(x) = h(z)yY'(fr(z)), and the correspond-
ing objective function to be maximized for nonlinear output

units is: ,)
(>, EptopHp)
R

where 1/;, is the derivative of the output unit transfer func-
tion for pattern p. In the special case when the output
unit transfer function is linear, 7(f,) = fn, Proposition 4
reduces to Proposition 1, and S; reduces to S;. However,
unlike the case for linear output, convergence proof cannot
be derived because approximation by Taylor series expan-
sion is used.

Sy =

C. Boxplots of the Simulation Results

In this section, we report the boxplots of the general-
ization performance of networks constructed using differ-
ent objective functions. The experimental setting has been
described in Section V-A. In each boxplot, the horizontal
line in the interior of the box is located at the median. The
height of the box is equal to the interquartile distance, or
IQD, which is the difference between the third quartile of
the data and the first quartile. The whiskers (the dotted
lines extending from the top and bottom of the box) ex-
tend to the extreme values or a distance 1.5 x IQD from
the center, whichever is less. Data points which fall outside
the whiskers are indicated by horizontal lines.

ACKNOWLEDGMENTS

This research is partially supported by the Hong Kong
Telecom Institute of Information Technology under grant
HKTIIT 92/93.002 awarded to the second author.

REFERENCES

[1] R.Reed, “Pruning algorithms — a survey,” IEEE Transactions
on Neural Networks, vol. 4, no. 5, pp. 740-747, Sept. 1993.

[2] E. Fiesler, “Comparative bibliography of ontogenic neural net-
works,” in Proceedings of the International Conference on Ar-
tificial Neural Networks, Sorrento, Italy, May 1994, vol. 1, pp.
793-796.

[3] T.Y. Kwok and D.Y. Yeung, “Constructive algorithms for
structure learning in feedforward neural networks for regression
problems,” 1996, To appear in IEEE Transactions on Neural
Networks.

[4] D.E. Nelson and S.K. Rogers, “A taxonomy of neural network
optimality,” in Proceedings of the IEEE National Aerospace
and Electronics Conference, Dayton, OH, USA, May 1992,
vol. 3, pp. 894-899.

[5] Y. Chauvin, “A back-propagation algorithm with optimal use
of hidden units,” in Advances in Neural Information Process-
ing Systems 1, D.S. Touretzky, Ed., pp. 519-526. Morgan Kauf-
mann, San Mateo, CA, 1989.

[6] S.J. Hanson and L.Y. Pratt, “Comparing biases for minimal
network construction with back-propagation,” in Advances in
Neural Information Processing Systems 1, D.S. Touretzky, Ed.,
pp- 177-185. Morgan Kaufmann, San Mateo, CA, 1989.

006

il
]

esing WU

;
\

il

001 002 0%

f
HOA
f
f

il
il

8 HO

00

006

e
{11
(-1

i
I
W
T3

t
f
IO
SIS
[T

(b) F

1
T
=il
{17
i

HHI
HOH

E

0
i Bl e

N
B

E

E

=1l
o —

testing FVU
010
I
\

005

I
+HI
HO-
HO- 1
{0
HO-I0

(d) f@

tesing WU

=1l
]

|
8 -
HD

& HO-IM L]
{1

Il

HHI

E

tH
HE T

(e) £

Fig. 8. Comparison of the logarithm of the testing FVUs on noiseless
data. Here, sl stands for Sy, rsl for v/S7, s2 for Sa, rs2 for \/Sa,
s3 for S3, rs3 for 1/S3, fahlman for Scascor, fujita for Sgyjita, and
sqr for Ssgr.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 17

[7] A.S. Weigend, D.E. Rumelhart, and B.A. Huberman, “Gen-
eralization by weight-elimination with application to forecast-
ing,” in Advances in Neural Information Processing Systems 3,
R. Lippmann, J. Moody, and D. Touretzky, Eds., pp. 875-882.
Morgan Kaufmann, San Mateo, CA, 1991.
- T [8] G.H. Golub, M. Heath, and G. Wahba, “Generalized cross-
T 1 Lo T validation as a method for choosing a good ridge parameter,”
‘ 1 | Technometrics, vol. 21, no. 2, pp. 215-223, 1979.
W.L. Buntine and A.S. Weigend, “Bayesian back-propagation,”
Complex Systems, vol. 5, pp. 603-643, 1991.
[10] D.J.C. MacKay, “Bayesian interpolation,” Neural Computa-

015

010

0
1
;

E—
1
1M

[
E—
(—

)

s . tion, vol. 4, no. 3, pp. 415-447, May 1992.
‘ ' X [11] R.M. Neal, Bayesian Learning for Neural Networks, Ph.D.
thesis, Department of Computer Science, University of Toronto,
(a) fM 1995.

[12] H.H. Thodberg, “A review of Bayesian neural networks with an
application to near infrared spectroscopy,” IEEE Transactions
on Neural Networks, vol. 7, no. 1, pp. 56-72, 1996.
_ [13] P.M. Williams, “Bayesian regularization and pruning using a
T Laplace prior,” Neural Computation, vol. 7, pp. 117-143, 1995.
- T | | [14] D.J.C. MacKay, “A practical Bayesian framework for back-
| propagation networks,” Neural Computation, vol. 4, no. 3, pp.
448-472, May 1992.
T ‘ 1 ‘ ‘ E. Alpaydin, “GAL: networks that grow when they learn and
- = N R shrink when they forget,” TR 91-032, International Computer
e § : E— _ I Science Institute, May 1991.
[16] G. Deffuant, “Neural units recruitment algorithm for genera-
tion of decision trees,” in Proceedings of the 1990 IEEE In-
(b) @ ternational Joint Conference on Neural Networks, San Diego,
CA, USA, June 1990, vol. 1, pp. 637-642.
[17] M. Frean, “The upstart algorithm: a method for constructing
= — and training feedforward neural networks,” Neural Computa-
= tion, vol. 2, pp. 198-209, 1990.
= ‘ I M. Marchand, M. Golea, and P. Rujan, “A convergence the-
T I E orem for sequential learning in two-layer perceptrons,” FEuro-
I physics Letters, vol. 11, no. 6, pp. 487-492, 1990.
‘ [19] J.H. Friedman, “An overview of predictive learning and func-
E r — tion approximation,” in From Statistics to Neural Networks.
L Theory and Pattern Recognition Applications, J.H. Friedman
and H. Wechsler, Eds., ASI Proceedings, Subseries F. Springer-
Verlag, 1994.
[20] H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. AC-19, no. 6,
pp- 716-723, Dec. 1974.
[21] A. Barron, “Predicted squared error: A criterion for auto-
3 - matic model selection,” in Self-Organizing Methods in Model-
| ing, S. Farlow, Ed. Marcel Dekker, New York, 1984.
[22] P. Craven and G. Wahba, “Smoothing noisy data with spline
_ : functions: Estimating the correct degree of smoothing by the
H method of generalized cross-validation,” Numerische Mathe-
matik, vol. 31, pp. 377-403, 1979.
[23] J.E. Moody, “Note on generalization, regularization, and ar-
chitecture selection in nonlinear learning systems,” in Neural

00

015
]

(="
1
[
-
=
-
O
.
5

[
10
=
%,

-]

testing FVU

tesing FVU

]

B

m
1
I
~[TH]
{1+
1
;

s Networks for Signal Processing. Processing of the 1991 IEEE

T o Workshop, B.H. Juang, S.Y. Kung, and C.A. Kamm, Eds.,
Princeton, NJ, USA, Sept. 1991, pp. 1-10.

(d) f® [24] J. Rissanen, “Modelling by shortest data description,” Auto-

matica, vol. 14, pp. 465-471, 1975.
[25] G. Schwartz, “Estimating the dimension of a model,” The
U — Anmnals of Statistics, vol. 6, pp. 461-464, 1978.

_ [26] J. Moody, “Prediction risk and architecture selection for neural
- networks,” in From Statistics to Neural Networks: Theory and
= | Pattern Recognition Applications, V. Cherkassky, J.H. Fried-
= : H man, and H. Wechsler, Eds., vol. 136 of NATO ASI Series F,
| H I pp- 147-165. Springer-Verlag, 1994.
: : == [27] M. Stone, “Cross-validatory choice and assessment of statistical
- L - L4 = predictions (with discussion),” Journal of the Royal Statistical
e Society Series B, vol. 36, pp. 111-147, 1974.
T et [28] A.S. Weigend and B. LeBaron, “Evaluating neural network
predictors by bootstrapping,” in Proceedings of International
(e) Jis2 Conference on Neural Information Processing, Seoul, Korea,
Oct. 1994, vol. 2, pp. 1207-1212.
[29] B.D. Ripley, “Choosing network complexity,” in Probabilis-
Fig. 9. Comparison of the logarithm of the testing FVUs on noisy tic Reasoning and Bayesian Belief Networks, A. Gammerman,
data. Ed., pp. 97-108. Alfred Waller, 1995.
[30] B.D. Ripley, “Statistical ideas for selecting network architec-
tures,” in Neural Networks: Artificial Intelligence and Indus-

THIN

tesing FVU

o

i

;

T
SIN;
SN

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999 18

(31]

(32]

(33]

[40]

[41]

(42]

[43]

(52]

(53]

trial Applications, B. Kappen and S. Gielen, Eds., pp. 183-190.
Springer, 1995.

T. Ash, “Dynamic node creation in backpropagation networks,”
Connection Science, vol. 1, no. 4, pp. 365-375, 1989.

Y. Hirose, K. Yamashita, and S. Hijiya, “Back-propagation
algorithm which varies the number of hidden units,” Neural
Networks, vol. 4, pp. 61-66, 1991.

S.E. Fahlman, “Faster learning variations on back-propagation:
An empirical study,” in Proceedings of the 1988 Connection-
ist Models Summer School, D.S. Touretzky, G.E. Hinton, and
T.J. Sejnowski, Eds., Los Altos, CA, 1988, pp. 38-51, Morgan
Kaufmann.

A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis,
Dover, 1975.

G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Mathematics of Control, Signials and Systems, vol.
2, pp. 303-314, 1989.

K. Hornik, “Some new results on neural network approxima-
tion,” Neural Networks, vol. 6, pp. 1069-1072, 1993.

E. Hartman, J. Keeler, and J. Kowalski, “Layered neural
networks with Gaussian hidden units as universal approxima-
tions,” Neural Computation, vol. 2, pp. 210-215, 1990.

J. Park and I.W. Sandberg, “Approximation and radial-basis-
function networks,” Neural Computation, vol. 5, pp. 305-316,
1993.

S.E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” in Advances in Neural Information Processing
Systems 2, D.S. Touretzky, Ed., pp. 524-532. Morgan Kauf-
mann, Los Altos CA, 1990.

J.N. Hwang, S.R. Lay, M. Maechler, D. Martin, and
J. Schimert, “Regression modeling in back-propagation and
projection pursuit learning,” IEEE Transactions on Neural
Networks, vol. 5, no. 3, pp- 342-353, May 1994.

E. Littmann and H. Ritter, “Cascade LLM networks,” in Pro-
ceedings of the International Conference on Artificial Neural
Networks, Brighton, UK, Sept. 1992, vol. 1, pp. 253-257.

A. Saha, C.L. Wu, and D.S. Tang, “Approximation, dimension
reduction, and nonconvex optimization using linear superposi-
tions of Gaussians,” IEEE Transactions on Computers, vol.
42, no. 10, pp. 1222-1233, Oct. 1993.

Y. Zhao and C.G. Atkeson, “Some approximation properties of
projection pursuit learning networks,” in Advances in Neural
Information Processing Systems 4, J.E. Moody, S.J. Hanson,
and R.P. Lippmann, Eds., pp. 936-943. Morgan Kaufmann,
San Mateo, CA, 1992.

J.L. Yuan and T.L. Fine, “Forecasting demand for electric
power,” in Advances in Neural Information Processing Sys-
tems 5, S.J. Hanson, J.D. Cowan, and C.L. Giles, Eds., pp.
739-746. Morgan Kaufmann, San Mateo, CA, 1993.

J.H. Friedman, “Exploratory projection pursuit,” Journal of
the American Statistical Association, vol. 82, no. 397, pp- 249-
266, Mar. 1987.

O Fujita, “Optimization of the hidden unit function in feedfor-
ward neural networks,” Neural Networks, vol. 5, pp. 755-764,
1992.

E.B. Baum and D. Haussler, “What size net gives valid gen-
eralization?,” in Adwvances in Neural Information Processing
Systems 1, D.S. Touretzky, Ed., pp. 81-90. Morgan Kaufmann,
San Mateo, CA, 1989.

P. Courrieu, “A convergent generator of neural networks,” Neu-
ral Networks, vol. 6, no. 6, pp. 835-844, 1993.

K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,” Neural Networks, vol. 4, pp. 251-257, 1991.
J. Luo, “A bias architecture with rank-expanding algorithm for
neural networks supervised learning problem,” in Proceedings
of the World Congress on Neural Networks, San Diego, CA,
June 1994, vol. 3, pp. 742-747.

L.O. Hall, A.M. Bensaid, L.P. Clarke, R.P. Velthuizen, M.S.
Silbiger, and J.C. Bezdek, “A comparison of neural network and
fuzzy clustering techniques in segmenting magnetic resonance
images of the brain,” IEEE Transactions on Neural Networks,
vol. 3, no. 5, pp. 672-682, Sept. 1992.

N. Karunanithi and D. Whitley, “Prediction of software relia-
bility using feedforward and recurrent neural nets,” in Proceed-
ings of the International Joint Conference on Neural Networks,
Baltimore, MD, USA, June 1992, vol. 1, pp. 800-805.

S.J. McKenna, I.W. Ricketts, A.Y. Cairns, and K.A. Hussein,
“Cascade-correlation neural networks for the classification of

[54]

[56]

[57]

(58]

[59]

[60]

[61]

(62]

cervical cells,” in IEE Colloguium on Neural Networks for
Image Processing Applications, London, UK, Oct. 1992, pp.
5/1-4.

N. Simon, H. Corporaal, and E. Kerckhoffs, “Variations on the
cascade-correlation learning architecture for fast convergence
in robot control,” in Proceedings of the Fifth International
Conference on Neural Networks and their Applications, Nimes,
France, Nov. 1992, pp. 455-464.

T.R. Shultz and W.C. Schmidt, “A cascade-correlation model
of balance scale phenomena,” in Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society, Hillsdale,
NJ, 1991, pp. 635-640.

D.G. Luenberger, Linear and Nonlinear Programming,
Addison-Wesley, 2nd edition, 1989.

J. Park and I. Sandberg, “Universal approximation using
radial-basis-function networks,” Neural Computation, vol. 3,
pp- 246-257, 1991.

G.P. Drago and S. Ridella, “Convergence properties of cascade
correlation in function approximation,” Neural Computing &
Applications, vol. 2, pp. 142-147, 1994.

A.R. Barron, “Universal approximation bounds for superposi-
tions of a sigmoidal function,” IEEE Transactions on Infor-
mation Theory, vol. 39, no. 3, pp. 930-945, May 1993.

L.K. Jones, “A simple lemma on greedy approximation in
Hilbert space and convergence rates for projection pursuit re-
gression and neural network training,” The Annals of Statistics,
vol. 20, no. 1, pp. 608613, 1992.

L.K. Jones, “On a conjecture of Huber concerning the conver-
gence of projection pursuit regression,” The Annals of Statis-
tics, vol. 15, no. 2, pp. 880-882, 1987.

C. Darken, M. Donahue, L. Gurvits, and E. Sontag, “Rate
of approximation results motivated by robust neural network
learning,” Tech. Rep., Siemens Corporate Research, Inc.,
Princeton, New Jersey, Apr. 1994.

V. Kurkova and B. Beliczynski, “Incremental approximation
by one-hidden-layer neural networks,” in Proceedings of the
International Conference on Artificial Neural Networks, Paris,
France, Oct. 1995, vol. 1, pp. 505-510.

T.T. Jervis and W.J. Fitzgerald, “Optimization schemes for
neural networks,” CUED/F-INFENG/TR 144, Cambridge
University Engineering Department, 1993.

C.S. Squires and J.W. Shavlik, “Experimental analysis of as-
pects of the cascade-correlation learning architecture,” Ma-
chine Learning Research Group Working Paper 91-1, Computer
Sciences Department, University of Wisconsin-Madison, 1210
West Dayton Street, Madison, WI 53706, USA, 1991.

R.S. Crowder, “Cascor.c, C implementation of the cascade-
correlation learning algorithm,” 1990.

R.A Jacobs, “Increased rates of convergence through learning
rate adaptation,” Neural Networks, vol. 1, pp. 295-307, 1988.
T.Y. Kwok and D.Y. Yeung, “Constructive neural networks:
Some practical considerations,” in Proceedings of the IEEE In-
ternational Conference on Neural Networks, Orlando, Florida,
USA, June 1994, vol. 1, pp. 198-203.

V.K. Rohatgi, Statistical Inference, John Wiley & Sons, 1984.
D.L. Donoho and I.M. Johnstone, “Projection-based approx-
imation and a duality with kernel methods,” The Annals of
Statistics, vol. 17, no. 1, pp. 58-106, 1989.

P.J. Huber, Robust Statistics, John Wiley & Sons, 1981.

E. Kreyszig, Introductory Functional Analysis with Applica-
tions, John Wiley & Sons, New York, Wiley Classics Library
edition, 1989.

D.H. Griffel, Applied Functional Analysis, Ellis Horwood, 1981.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1999

Tin-Yau Kwok received his Ph.D. degree in
computer science from the Hong Kong Univer-
sity of Science and Technology. His research
interests include the theory and applications of
artificial neural networks, pattern recognition,
machine learning, and data mining.

Dit-Yan Yeung received his B.Sc.(Eng.) de-
gree in electrical engineering and M.Phil. de-
gree in computer science from the University
of Hong Kong, and the Ph.D. degree in com-
puter science from the University of Southern
California. He is currently an assistant profes-
sor in the Hong Kong University of Science and
Technology. His current research interests in-
clude neural computation, statistical learning
theory, and handwriting recognition.

19

