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Abstract

Referring expression comprehension (REC) involves lo-
calizing a target instance based on a textual description.
Recent advancements in REC have been driven by large
multimodal models (LMMs) like CogVLM, which achieved
92.44% accuracy on RefCOCO. However, this study ques-
tions whether existing benchmarks such as RefCOCO, Re-
fCOCO+, and RefCOCOg, capture LMMs’ comprehensive
capabilities. We begin with a manual examination of these
benchmarks, revealing high labeling error rates: 14% in
RefCOCO, 24% in RefCOCO+, and 5% in RefCOCOg,
which undermines the authenticity of evaluations. We ad-
dress this by excluding problematic instances and reeval-
uating several LMMs capable of handling the REC task,
showing significant accuracy improvements, thus highlight-
ing the impact of benchmark noise. In response, we intro-
duce Ref-L4, a comprehensive REC benchmark, specifically
designed to evaluate modern REC models. Ref-L4 is distin-
guished by four key features: 1) a substantial sample size
with 45,341 annotations; 2) a diverse range of object cat-
egories with 365 distinct types and varying instance sizes
from 30 to 3,767; 3) lengthy referring expressions averag-
ing 24.2 words; and 4) an extensive vocabulary comprising
22,813 unique words. We evaluate a total of 24 large models
on Ref-L4 and provide valuable insights. The cleaned ver-
sions of RefCOCO, RefCOCO+, and RefCOCOg, as well as
our Ref-L4 benchmark and evaluation code, are available at
https://github.com/JierunChen/Ref-L4.

1. Introduction
Referring expression comprehension (REC) [37, 66] in-

volves the task of localizing a specific target instance

based on a given textual description. The advancement

of REC has been significantly propelled by the superior

language processing capabilities of large language models

*Equal contribution.
†Corresponding author.

The pale green rectangular eraser features a depiction of a 
bear, accompanied by the word "ERASER" inscribed in 
green. A transparent plastic covering with patterns partially 
envelops it. Positioned at the bottom right corner of the 
picture, the eraser rests on a cluttered desk surrounded by 
an assortment of artistic materials and drawings.

In the produce area, a stack of fresh green corn cobs can be 
found on a black display stand close to the end of the aisle.

man in hatyellow

(a) Examples from RefCOCO, +, g

a knife cutting a cake

(b) Examples from our Ref-L4 benchmark

The game board is a square, wooden framework positioned 
at the lower part of the picture, featuring a grid of tiny 
recessed circles containing circular tokens. 

Figure 1. Examples from the previous RefCOCO, RefCOCO+,

and RefCOCOg datasets, and our our Ref-L4 benchmark. Cur-

rent datasets typically contain overly brief expressions and sim-

ple scenes with large target instance. In contrast, our Ref-L4

benchmark features more detailed expression, a broader variety of

scenes with more categories, and instances across various scales,

particularly the challenging small instances. We also rigorously

identity labeling errors within current datasets, with an example

shown in the upper-right subfigure.

(LLMs) [36, 56, 57]. This progress is particularly evident

in the exceptional performance of large multimodal mod-

els (LMMs) [2, 9, 12, 16, 58, 82] on well-known bench-

marks such as RefCOCO [73], RefCOCO+ [73], and Re-

fCOCOg [35]. These models have demonstrated remark-

able accuracy, with CogVLM [63], for instance, achieving

an impressive accuracy rate of 92.44% on the RefCOCO

benchmark.

This paper begins with a critical question: do existing

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

513



Table 1. Statistics of the labeling er-

ror rates for RefCOCO, RefCOCO+,

and RefCOCOg, respectively. For each

benchmark, the statistics are conducted

on the combination of the validation

and test sets.

Benchmark Annotations Errors
Labeling

Error Rate

RefCOCO 21,586 3,054 14%

RefCOCO+ 21,373 5,201 24%

RefCOCOg 14,498 675 5%

Table 2. Performance of four LMMs on REC task across our cleaned and the original

versions of RefCOCO, RefCOCO+, and RefCOCOg benchmarks, using the conventional

accuracy as the evaluation metric. The evaluation is performed on the combination of the

validation and test sets for each benchmark. †: models fine-tuned on the specific dataset.

Benchmark ONE-PEACE† OFA-L† OFA-L Qwen-VL CogVLM-Grounding

RefCOCO 92.15 89.85 85.13 88.51 92.44

RefCOCO (Cleaned) 94.11 (+1.96) 92.06 (+2.22) 87.95 (+2.81) 90.68 (+2.18) 94.58 (+2.13)

RefCOCO+ 88.14 85.06 77.56 82.52 88.55

RefCOCO+ (Cleaned) 90.79 (+2.66) 87.38 (+2.32) 80.50 (+2.94) 85.60 (+3.08) 91.43 (+2.87)

RefCOCOg 89.18 84.77 79.25 85.11 90.67

RefCOCOg (Cleaned) 90.75 (+1.57) 86.39 (+1.62) 80.89 (+1.64) 86.79 (+1.68) 92.36 (+1.68)

Table 3. Comparison between our Ref-L4 benchmark and other REC benchmarks, including RefCOCO, RefCOCO+, and RefCOCOg. For

the latter three benchmarks, we combine their validation and test sets for statistics. The instance size and image size are represented by

their respective square roots. Avg. length: average length of annotations. Vocab.: vocabulary size.

Benchmark Images Instances Annotations Categories Avg. Length Instance Size Normalized Inst. Size Image Size Vocab. Size

RefCOCO 3,000 7,596 21,586 71 3.6 105 - 607 0.17 - 1.0 230 - 640 3,525

RefCOCO+ 3,000 7,578 21,373 71 3.6 105 - 607 0.17 - 1.0 230 - 640 4,387

RefCOCOg 3,900 7,596 14,498 78 8.4 83 - 610 0.22 - 1.0 277 - 640 5,050

Ref-L4 (Ours) 9,735 18,653 45,341 365 24.2 30 - 3,767 0.05 - 1.0 230 - 6,606 22,813

REC benchmarks truly capture the comprehensive capabil-

ities of LMMs? The foundational benchmarks, RefCOCO,

RefCOCO+, and RefCOCOg, were introduced sequentially

in 2015, 2016, and 2016, respectively. In RefCOCO, the re-

ferring expressions are notably succinct, ranging from sin-

gle words like “yellow” (see Fig. 1 (a)) and “lady” to brief

descriptions such as “far left person” and “white shirt”.

RefCOCO+ intentionally excludes locational prepositions

commonly found in RefCOCO, favoring short yet semanti-

cally rich expressions like “man in hat” (see Fig. 1 (a)) and

“plastic cup with just ice”. RefCOCOg provides a bit more

elaborate annotations, including examples such as “a bench
that is close to the mopads” and “the dog with a paw on
the windowsill”. These brief annotations align the REC task

more closely with the straightforward mapping from textual

labels to a visual element. This similarity raises concerns

about the adequacy of these benchmarks in thoroughly eval-

uating the nuanced language comprehension and reasoning

abilities of modern LMMs.

Regarding visual complexity, the RefCOCO, Ref-

COCO+, and RefCOCOg benchmarks represent a restricted

set of object categories (fewer than 80), limiting their re-

flection of real-world diversity and their ability to assess

the extensive world knowledge acquired by modern LMMs.

Additionally, the target instances in these datasets are often

large relative to the total image (see Fig. 1 (a)), simplifying

the task compared to more challenging scenarios involving

complex or wide-angle scenes with small objects. Lastly, a

significant limitation of these datasets is the prevalence of

labeling errors, with an example shown in the upper-right

subfigure in Fig. 1 (a).

Labeling Error Rates of Existing Benchmarks. To be-

gin, we manually assess the labeling error rates of the val-

idation and test sets in RefCOCO, RefCOCO+, and Ref-

COCOg, discovering a high error rate across these bench-

marks. The labeling errors include, typos, misalignment be-

tween referring expressions and target instances, as well as

inaccurate bounding box annotations, as depicted in Sec. 6.

As illustrated in Tab. 1, the labeling error rates for Ref-

COCO, RefCOCO+, and RefCOCOg are 14%, 24%, and

5%, respectively, indicating that evaluations performed on

these benchmarks may lack authenticity.

Reevaluation on RefCOCO, RefCOCO+ and Ref-
COCOg. In response, we manually exclude the problem-

atic instances from the validation and test sets of RefCOCO,

RefCOCO+, and RefCOCOg. Subsequently, we reevalu-

ate four LMMs capable of handling the REC task—namely

ONE-PEACE [61], OFA-L [60], Qwen-VL [1], and

CogVLM-Grounding [63]—on both the cleaned and origi-

nal versions of these datasets, as shown in Tab. 2. Across all

models and cleaned benchmarks, we observe a significant

accuracy improvement, ranging from 1.57 to 3.08, com-

pared to their performance on the original versions. This

demonstrates that noise in the benchmarks has affected the

valid evaluation and comparisons the models’ true capabil-

ities. To support further research in the REC field, we will
release the cleaned versions of RefCOCO, RefCOCO+, and
RefCOCOg. Moreover, the accuracy gains after filtering the

noise highlight the performance plateau on current bench-

marks, motivating us to propose a new, more challenging

benchmark to better assess and distinguish REC models.

Ref-L4: A Comprehensive REC Benchmark for
Modern LMM Evaluation. We present Ref-L4, where

L4 signifies four key aspects: a Large number of testing
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samples, Large diversity in object categories and instance

scales, Long referring expressions, and a Large vocabulary.

These features make Ref-L4 a comprehensive benchmark

for assessing the REC capabilities of contemporary LMMs.

Tab. 3 provides a detailed comparison between Ref-L4 and

other benchmarks including RefCOCO, RefCOCO+, and

RefCOCOg. Our Ref-L4 benchmark stands out due to the

following characteristics:

• Large-Scale. Ref-L4 includes 9,735 images, 18,653

unique instances, and a total of 45,341 annotations, sig-

nificantly surpassing RefCOCO, RefCOCO+, and Ref-

COCOg. For instance, RefCOCOg offers 3,900 images,

7,596 instances, and 14,498 annotations.

• High Diversity. Ref-L4 features 365 unique categories.

Since the RefCOCO series derive from the COCO 2014

dataset, they encompass up to 78 categories. Addition-

ally, our benchmark covers a wider range of instance

sizes, from 30 to 3,767, measured by the square root of the

instance area. Regarding normalized instance size, our

Ref-L4 incorporates more challenging small instances,

reaching down to 0.05, calculated as the square root of

the instance area relative to the total image area.

• Lengthy Referring Expressions. Each referring expres-

sion in Ref-L4 is a detailed description of a specific in-

stance, with lengths ranging from 3 to 117 words and an

average of 24.2 words. In comparison, the average anno-

tation lengths in RefCOCO, RefCOCO+, and RefCOCOg

are 3.6, 3.6, and 8.4 words, respectively. Examples can be

found in Fig. 1 (b).

• Extensive Vocabulary. Due to the detailed nature of the

referring expressions, Ref-L4 boasts a large vocabulary

of 22,813 words, which is four to six times larger than

those of RefCOCO, RefCOCO+, and RefCOCOg.

Evaluation on Ref-L4. We conduct an evaluation of 24

representative LMMs that can perform the REC task. In ad-

dition to the standard accuracy metric, which considers pre-

dictions with an IoU greater than 0.5 as accurate (Acc0.5),

we also report accuracies at higher IoU thresholds: Acc0.75
and Acc0.9. Furthermore, we introduce a mean accuracy

(mAcc), calculated as the average accuracy from Acc0.5 to

Acc0.95 in increments of 0.05. To gain deeper insights into

the models’ capabilities, we conduct a detailed analysis of

REC performance across different instance scales and cate-

gories. The Ref-L4 benchmark and the evaluation code will
be made available to the community.

2. Related Work
REC and Its Benchmarks. Referring Expression Com-

prehension (REC) [17, 20, 37, 42, 46, 77, 83] is a task

that involves identifying a specific object within an im-

age based on a given referring expression. Unlike object

detection [4, 22, 28, 50, 53], which operates within fixed

categories and a single visual modality, REC necessitates

understanding free-form text to locate objects of any cat-

egory. Phrase Grounding [15, 26, 33, 43, 62, 68, 78] is

similar but typically involves shorter phrases and identifies

multiple regions, whereas REC requires parsing longer ex-

pressions to pinpoint a single unique region. This com-

plexity makes REC an ideal task for evaluating emerg-

ing large multimodal models. Referring Expression Seg-

mentation (RES) [25, 30, 68] requires pixel-level predic-

tion, but its large-scale labeling is too costly compared to

the REC benchmarks. Current REC benchmarks such as

RefCOCO [73], RefCOCO+[73], and RefCOCOg[35] in-

clude tens of thousands of annotations but are limited by

their short expression lengths—averaging 3.6, 3.6, and 8.4

words, respectively. Additionally, they encompass fewer

than 80 categories, lacking real-world diversity. Other REC

benchmarks [3, 7, 8, 10, 11, 13, 18, 23, 32, 47, 52, 59,

65, 69] are often designed for specific scenarios. For exam-

ple, CLEVR-Ref+[32] focuses on simple objects like boxes,

spheres, and cylinders. SK-VG[8] integrates prior scene

knowledge as additional input, while RefCrowd [47] targets

identifying a person within a crowd. By contrast, we intro-

duce Ref-L4, a more general and comprehensive benchmark

encompassing 365 categories and 45,341 annotations. Ref-

L4 features expressions averaging 24.2 words and a vocabu-

lary of 22,813 words, facilitating the accurate evaluation of

REC models on complex expressions and diverse objects.

REC Models. The evolution of REC models has

transitioned from specialized models [19, 31, 55, 70, 74,

84, 86] to generalist models or large multimodal models

(LMMs)[1, 5, 14, 21, 29, 34, 44, 45, 54, 61, 63, 64, 67,

75, 76, 79, 80]. Notable examples of these LMMs in-

clude CogVLM-Grounding[63], SPHINX [14, 29], ONE-

PEACE [61], Qwen-VL-Chat [1], MiniGPTv2 [5], and

Lenna [67]. These models, benefiting from larger model

sizes and extensive training on diverse datasets, exhibit re-

markable performance on conventional REC datasets. For

example, CogVLM-Grounding achieves an accuracy of

94.58% on RefCOCO (cleaned). Additionally, the perfor-

mance gap among models is shrinking, with many LMMs

surpassing 90% accuracy. This performance saturation

raises concerns about the adequacy of current REC bench-

marks for making meaningful comparisons. In response,

we propose Ref-L4, a more comprehensive and challeng-

ing benchmark. We have also conducted rigorous evalu-

ations of 24 LMM models, offering holistic comparisons

that highlight their weaknesses and suggest directions for

improvement.

3. Ref-L4

3.1. Benchmark Creation

Data Sources. Our benchmark is derived from two sources:

1) our cleaned validation and test sets of the RefCOCO [73],
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Instance with:
1) Bounding Box
2) Category Name
3) Brief Expression

“Right teddy bear”

GPT-4V

Please briefly describe the [Category Name] in one sentence.

Instance with:
1) Bounding Box
2) Category Name

The pale green rectangular eraser features a depiction of a 
bear, accompanied by the word "ERASER" inscribed in 
green. 

Expression

Or

Draw a Red Circle on the Target

You are a powerful referring expression generator. Given an image and 
a hint ([Expression]), please generate a discriminative and unambiguous 
expression to describe the target instance highlighted by a red circle. 

GPT-4V
The pale green rectangular eraser … artistic materials and drawings. 

Manual Review

• Uniqueness
• Factuality
• Relevance
• Harmlessness
• No Hallucinations

Final Referring Expression

Crop

Figure 2. Pipeline of generating a referring expression for a target instance.

RefCOCO+ [73], and RefCOCOg [35] datasets; and 2) the

test set from the large-scale object detection dataset Ob-

jects365 [53]. The Objects365 dataset provides a broader

range of categories, varying instance sizes, higher image

resolutions, and more intricate scenes. In the RefCOCO

series, each instance includes a bounding box, a category

name, and an extremely brief expression like “right teddy

bea”. In contrast, the Objects365 benchmark labels each

instance with mainly a bounding box and the relevant cate-

gory.

For the RefCOCO (cleaned) series, we begin by con-

solidating duplicate images and instances, resulting in a

subset of 6, 502 images containing 14, 186 unique in-

stances. For Objects365, we select samples from its test-

ing set based on several criteria: 1) each image has both

height and width greater than 800 pixels; 2) each im-

age is sufficiently complex, containing more than 10 cat-

egories and 20 instances; 3) each instance has a square

normalized size
√

(hw)/(HW ) greater than 0.05, where

(h,w) represents the instance size and (H,W ) denotes

the image size; 4) we randomly sample N instances for

each of the 365 classes defined in Objects365, with N =
min(35, the number of instances for the specific class); 5)

we review and exclude instances with erroneous bounding

box annotations or those difficult to describe uniquely. For

a few rare classes, we relax criterion-1 to 512 pixels and

criterion-2 to 10 instances. Consequently, we collect 3, 233
images and 4, 467 instances from Objects365. Overall, our

Ref-L4 benchmark comprises 9, 735 images and 18, 653 in-

stances, sourced from the RefCOCO series and Objects365.

Referring Expression Generation. Given a target in-

stance and its corresponding image, we leverage GPT-4V

with human reviewers in the loop to generate its precise and

detailed referring expressions. Fig. 2 illustrates the three-

step generation process:

Step-1: Each instance in the Objects365 dataset is linked

to a bounding box and a category name. We begin by crop-

ping these instances from the original images. Next, we

input each cropped area along with the prompt detailed in

Sec. 8.1 into GPT-4V to produce a context-independent de-

scription. For instances from the RefCOCO series, this step

is omitted as each instance already has a brief expression.

Step-2: Drawing inspiration from recent studies on GPT-

4V [71], where GPT-4V is able to pay more attention to in-

stances highlighted by a red circle within an image, we sim-

ilarly encircle the target instance in red to facilitate GPT-4V

in generating a context-aware referring expression. Follow-

ing this, as depicted in Fig. 2, we process the image and

use the prompt outlined in Sec. 8.2 to generate a context-

aware referring expression for each instance. We instruct

GPT-4V to describe various features such as color, size, po-

sition, and context. Additionally, we provide a hint (the

context-independent description from Step-1) in the prompt

to mitigate hallucination issues, resulting in more accurate

descriptions.

Step-3: We manually review all generated referring ex-

pressions to correct any hallucination issues. We ensure that

each expression uniquely describes the instance and is fac-

tual, accurate, and harmless.

Annotation Expansion. To date, we have compiled

18,653 unique referring expressions, each describing a dis-

tinct instance. To assess the robustness of REC models to
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(a) Distribution of expression length. (b) Distribution of instance size. (c) Distribution of normalized instance size.

(d) The distribution of instance numbers over 365 categories.

Figure 3. Analysis of referring expression length, (normalized) instance size, and category distribution.

diverse language inputs, we employ a two-stage rephrasing

process to expand our benchmark: 1) utilizing GPT-4 with

the prompt detailed in Sec. 8.3, to generate rephrased ver-

sions of each expression; 2) conducting a manual review to

ensure that the rephrased expressions are unique, factual,

relevant, and harmless.

• Uniqueness: Discard pairs if expressions could refer to

more than one region without additional context.

• Factualness: Confirm that any mentioned attributes

(color, shape, size, texture, position, relation, etc.) align

with what is visible in the image.

• Relevance: Discard unnecessary details irrelevant to

identifying the region.

• Harmlessness: Ensure that the expressions are neutral

and do not contain inappropriate language that might im-

ply stereotypes, violence, offense, or other potentially

harmful perspectives.

Following the above guidelines, we ensure each expres-

sion reviewed independently by two reviewers for consis-

tency. Only samples with consensus from both reviewers

are retained. As a result, our final Ref-L4 benchmark en-

compasses 9,735 images with 45,341 referring expressions,

each accurately describing one of the 18,653 unique in-

stances. Examples can be found in Fig. 1 (b) and Sec. 7.

3.2. Analysis

Expression Length. Fig. 3a illustrates the distribution

of expression lengths across four different datasets: Ref-

COCO, RefCOCO+, RefCOCOg, and our Ref-L4. Due

the the high overlap of data samples, RefCOCO and Re-

fCOCO+ exhibit similar distributions, with a high density

of shorter expressions peaking at around 3.6 words. Re-

fCOCOg features slightly longer expressions on average,

peaking at approximately 8.4 words. In contrast, our Ref-L4

displays a significantly different distribution, with expres-

sions ranging much longer, peaking at around 24.2 words

and having a long tail extending up to 117 words. This sug-

gests that our Ref-L4 benchmark is structured to challenge

current REC models, requiring them to comprehend and

reason across more intricate and detailed descriptions. Such

lengthier expressions also helps to uniquely referring to

small objects within complex or wide-angle scenes, thereby

reducing ambiguity.

Instance Size. We present the density plots compar-

ing the instance sizes across four benchmarks. We de-

fine the instance size as the square root of the bounding

box area
√
hw (see Fig. 3b), as well as a normalized ver-

sion
√
(hw)/(HW ) (see Fig. 3c), where (h,w) represents

the dimensions of the instance and (H,W ) represents the

dimensions of the image. While current benchmarks in-

clude only medium to large instances, our Ref-L4 bench-

mark presents a broader distribution range, with a particular

emphasis on more challenging small instances.

Categories. Our Ref-4L benchmark comprises 18,653

instances spanning 365 distinct categories, providing more

complex and diverse evaluation scenarios. In contrast, Re-

fCOCO and RefCOCO+ consists of 71 categories, while

RefCOCOg covers 78 categories. Fig. 3d presents the dis-
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Table 4. Scene diversity across 20 consolidated categories, predicted by GPT-4o and manually corrected, based on the combined validation

and test sets.

Category Percentage(%) Category Percentage(%)

Residential & Domestic Spaces 19.68 Entertainment 2.88

Catering & Dining 16.36 Recreational Facilities 2.46

Urban Scenes & Streetscapes 9.14 Water & Maritime Scenes 2.43

Transportation & Transit 8.89 Industrial & Workplaces 1.92

Sports & Exercise 8.71 Outdoor & Adventure 1.75

Wildlife 6.25 Hospitality, Resorts & Lodging 1.28

Commercial & Retail Spaces 5.18 Infrastructure & Public Services 1.03

Educational & Cultural Facilities 4.42 Health & Care Facilities 0.51

Agriculture & Rural 3.79 Natural Landscapes 0.11

Parks & Outdoor Leisure 3.16 Scientific Interest 0.05

(a) Nouns. (b) Verbs. (c) Adverbs. (d) Prepositions.

(e) Colors. (f) Locations. (g) Sizes. (h) Numbers.

Figure 4. The frequency of the 10 most frequently used words in each part-of-speech category, as parsed using the SpaCy library.

tribution of instances among these 365 categories. No-

tably, the ten categories with the highest number of in-

stances are “Person”, “Chair”, “Hat”, “Desk”, “Lamp”,

“Cabinet/shelf”, “Car”, “Sneakers”, “Handbag/Satchel”,

and “Flag”.

Scenes. We provide a detailed scene analysis on our

benchmark. We start by referencing the 365 scene cate-

gories from the Places365 benchmark [85], known for be-

ing the most extensive dataset in scene recognition. These

365 categories are then consolidated into 20 broader groups

using GPT-4o. Each image in our benchmark is processed

by GPT-4o to predict its corresponding scene category, with

manual corrections applied to ensure accuracy. The re-

sulting statistics on scene diversity are summarized in the

Tab. 4, with the combined validation and test sets used for

this analysis.

Vocabulary. Our benchmark’s referring expressions

comprise a vocabulary totaling 22,813 unique words. This

is significantly larger than the vocabulary sizes of Ref-

COCO, RefCOCO+, and RefCOCOg, which are 3,525,

4,387, and 5,050 words, respectively. Fig. 4 illustrates the

10 most frequently used nouns, verbs, adverbs, and prepo-

sitions, along with nouns indicating colors, locations, sizes,

and numbers across all annotations.

3.3. Evaluation

Evaluation Metrics. We propose three distinct evaluation

protocols:

1. Accuracy. This is the conventional metric used in REC.

For a given referring expression and corresponding im-

age, the target instance is considered successfully local-

ized if the IoU between the predicted bounding box and

the ground truth exceeds 0.5. Accuracy is then calcu-

lated as the ratio of successfully localized samples to the
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Table 5. Performance evaluation across 24 models on our Ref-L4 benchmark. NVIDIA A100 GPUs (80G) are utilized. The symbol †
denotes models that outputs segmentation masks.

Model
Val+Test Val Test Small Size Medium Size Large Size

Acc0.5 Acc0.75 Acc0.9 mAcc mAcc mAcc Acc0.5 mAcc Acc0.5 mAcc Acc0.5 mAcc

GPT-4V [38–40] 9.91 1.19 0.12 2.88 2.96 2.85 2.13 0.49 10.29 2.78 14.93 4.83

KOSMOS-2 [41] 48.53 38.34 17.54 34.72 34.89 34.64 24.19 11.63 46.95 32.91 69.32 54.98

OFA-Tiny [60] 55.21 43.22 27.70 41.44 41.53 41.40 17.91 11.49 65.13 49.00 64.46 49.61

OFA-Large [60] 72.53 62.31 45.02 59.17 59.42 59.07 40.13 27.07 81.03 66.49 80.78 69.36

Ferret-7b [72] 57.54 42.44 21.01 40.29 40.31 40.28 30.93 14.57 62.40 43.72 68.18 52.92

Ferret-13b [72] 64.44 49.04 27.46 46.88 47.31 46.71 36.46 17.88 70.50 51.86 73.92 59.09

GroundingGPT [27] 60.84 40.48 12.00 38.19 38.42 38.09 24.43 10.28 67.67 41.04 75.09 53.47

Shikra-7b [6] 65.06 39.62 10.45 38.60 38.91 38.47 43.91 18.50 75.98 46.27 60.60 39.34

Lenna [67] 65.90 58.55 45.58 55.69 55.88 55.60 31.02 23.48 72.90 61.53 78.72 68.66

MiniGPTv2 [5] 66.93 50.50 25.30 47.15 47.43 47.03 32.99 14.85 73.67 51.16 79.52 63.53

Qwen-VL-Chat [1] 73.80 58.05 37.16 55.94 56.18 55.83 47.66 26.26 79.80 61.06 82.01 68.37

ONE-PEACE [61] 70.82 60.09 36.12 55.07 55.49 54.89 22.18 13.98 83.26 63.39 83.81 70.04

SPHINX-MoE [14] 66.23 44.90 15.32 42.38 42.80 42.21 39.48 16.39 72.97 46.38 73.55 54.17

SPHINX-MoE-1k [14] 74.45 62.70 38.85 58.07 58.35 57.95 58.96 37.61 77.80 61.53 79.70 66.77

SPHINX [29] 74.78 53.65 21.15 50.09 50.33 49.99 48.82 22.08 80.56 54.10 83.27 63.34

SPHINX-1k [29] 78.52 62.17 32.95 57.57 57.91 57.42 59.48 33.21 82.95 61.82 84.40 67.68

SPHINX-v2-1k [29] 81.31 70.49 46.59 65.39 65.67 65.27 65.23 43.43 84.00 68.45 88.21 75.91
CogVLM-Grounding [63] 81.70 70.77 48.35 66.09 66.25 66.02 75.06 52.85 86.43 71.31 77.91 66.25

PixelLM-7B† [51] 41.83 27.57 13.32 27.10 27.09 27.11 8.25 4.05 43.90 27.33 62.72 43.64

PixelLM-13B† [51] 49.89 35.37 18.42 34.10 34.52 33.92 17.05 8.54 53.40 35.48 67.59 50.34

LISA-Explanatory† [24] 65.12 52.35 38.26 50.77 50.89 50.72 39.11 27.16 70.03 54.61 75.25 61.09

LISA† [24] 66.23 54.02 39.73 52.18 52.44 52.07 39.24 27.49 71.17 56.05 77.01 63.22

PSALM† [81] 67.26 58.22 44.11 55.46 55.68 55.37 37.35 28.43 75.06 61.79 74.97 63.74

GlaMM† [48] 71.90 60.27 45.15 57.89 58.16 57.78 47.07 34.36 77.17 62.28 80.50 67.14

total number of samples, referred to as Acc0.5 in this

work. To better assess the localization capabilities of

modern REC models, we also report accuracies at higher

IoU thresholds: Acc0.75, Acc0.9, and mAcc, which is the

average accuracy from Acc0.5 to Acc0.95 in increments

of 0.05.

2. Scale-Aware Performance. To gain deeper insights into

model capabilities, we report performance based on in-

stance sizes: small, medium, and large. The size of an

instance is defined as the square root of its area,
√
(hw),

where (h,w) are the dimensions of the instance. Small

instances are those with a size less than 128, medium

instances are between 128 and 256, and large instances

exceed 256. In total, there are 9345, 23280, and 12716
referring expressions describing 2, 954 small, 10, 442
medium, and 5, 257 large instances, respectively.

3. Per-Category Performance. Our benchmark encom-

passes a wide range of categories, up to 365 in total. We

provide an evaluation protocol to assess performance on

a per-category basis.

Benchmark Division. Modern large multimodal mod-

els (LMMs) that are able to handle the REC task typically

use unrestricted and extensive data for training. Our Ref-

L4 benchmark is designed to assess the capabilities of these

advanced models without imposing any limitations on the

training data sources. The benchmark is divided into two

subsets: a validation set, comprising 30% of the data with

7, 231 images, 10, 311 instances, and 13, 420 referring ex-

pressions; and a test set, comprising 70% of the data with

9, 467 images, 17, 242 instances, and 31, 921 referring ex-

pressions. Given that our benchmark includes instances

from 365 categories, we ensure that each category has at

least one sample in both the validation and test sets. While

we provide these two splits, we encourage the combined

use of both sets for model evaluation, especially in the cur-

rent LMM era, where the use of unrestricted training data is

prevalent.

4. Experiments

Main Result. We evaluate a total of 24 LMMs that can per-

form the REC task, dividing them into two categories based

on their output type: those that produce bounding boxes and

those that produce segmentation masks. For models that

output segmentation masks, we convert these masks into

tight bounding boxes to enable evaluation on our Ref-L4

benchmark. Tab. 5 presents the performance of these mod-

els on the validation set, test set, and the combined set, using

the metrics defined in Sec. 3.3. The evaluation prompt of

GPT-4V is available in Sec. 8.4. Among the models that

output bounding boxes, CogVLM-Grounding [63] shows

the best performance, while GlaMM [48] leads in perfor-

mance among the models that output masks.
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Scale-Aware Evaluation. In Sec. 3.3, we present a

scale-aware evaluation to assess the model’s ability to han-

dle different instance scales. Specifically, we categorize

all samples in our benchmark into three sets based on in-

stance size: small, medium, and large. The performance

of 24 models is detailed in Tab. 5. Among the bounding-

box-output models, SPHINX-v2-1k [29] achieves the

best performance with large instances, while CogVLM-

Grounding [63] excels with small and medium instances,

probably due to its improved visual encoder and supporting

higher image resolution than many other works. For mask-

output models, GlaMM [48] outperforms all other models

across all three sets.

Category-Wise Performance. Each instance in our

benchmark is assigned a category label from one of 365

classes. Fig. 5 illustrates the performance of the top four

models across these categories, sorted in descending order

based on their average per-category performance. The re-

sults indicate a training bias issue, as all four models exhibit

poor performance on some common categories.

Evaluation on Diverse Data Sources. Our benchmark

is derived from COCO and Objects365 datasets. We as-

sess the performance of the top four models with bound-

ing box outputs and the top two models with mask out-

puts across various subsets originating from either COCO

or Objects365. These subsets are: 1) the COCO-derived

set (referred to as “COCO”); 2) a subset from Objects365,

where the instances have categories that also exist in COCO

(referred to as “O365-P1”); 3) another subset from Ob-

jects365, where the instances have categories not found in

COCO (referred to as “O365-P2”). Fig. 6 presents the per-

formance of these models across the three subsets. The

“COCO” set shows higher accuracy compared to the other

two sets, partially because most models are trained on the

RefCOCO series and have limited exposure to Objects365

images. “O365-P1” exhibits higher accuracy than “O365-

P2”, as the latter includes more rare categories.

Extending to Referring Expression Segmentation.
The task of Referring Expression Comprehension (REC)

can be extended to Referring Expression Segmentation

(RES) by predicting a pixel-level mask instead of a bound-

ing box. To extend our Ref-L4 for RES, we use a semi-

automated process to transform the bounding boxes into

mask annotations. Specifically, for each target instance and

its corresponding image, we: 1) input the image and the tar-

get instance’s bounding box into the SAM-2 [49] model to

generate an initial mask; and 2) manually review and cor-

rect the predicted mask if any inaccuracies are identified.

We find that SAM-2’s predictions are generally accurate,

with only a small proportion of challenging cases (3.5%)

requiring manual correction. Tab. 6 presents the evaluation

of four models capable of predicting masks. The evaluation

protocols remain consistent as above, except that the IoU is

Table 6. Evaluation of four models on the RES benchmark, ex-

tended from our Ref-L4 REC benchmark. We merge the valida-

tion and test set for evaluation.

Model mAcc Acc0.5 Acc0.75 Acc0.9 mAcc-S mAcc-M mAcc-L

PixelLM 13B [51] 44.3 67.1 48.2 16.7 20.4 47.8 55.6

LISA [24] 48.6 59.5 50.5 38.4 19.1 53.4 61.3

PSALM [81] 57.4 68.0 60.6 46.3 30.0 64.4 64.8

GlaMM [48] 55.2 66.1 57.9 44.9 20.2 63.6 65.6

Figure 5. Category-wise performance of the four top-performing

models on the val+test set, sorted in descending order based on

their average per-category performance. The performance of all

models can be found in Sec. 9.1.

Figure 6. Evaluation of six models on various data sources, with

mAcc acting as the metric. The results of all models can be found

in Sec. 9.2.

calculated between the predicted mask and the ground-truth

mask. In each table, “S”, “M” and “L” represent small,

medium and large instances, respectively. In Fig. 15, we

provide visualizations of nine randomly selected segmenta-

tion annotations from our benchmark.

5. Conclusion
In this work, we first point out several limitations of the cur-

rent REC benchmarks, such as substantial labeling inaccu-

racies and very brief referring expressions. To better assess

the capabilities of models, particularly those LMMs that can

perform the REC task, we present Ref-L4, which features

four key characteristics: 1) a large-scale dataset with 45,341

annotations; 2) a wide range of object categories and vary-

ing instance scales; 3) detailed referring expressions; and 4)

an extensive vocabulary comprising 22,813 unique words.

We evaluate a total of 24 models using various evaluation

protocols. We wish that Ref-L4 could serve as a valuable

resource for researchers and developers, fostering the de-

velopment of more robust and versatile REC models in the

LMM era.
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