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Abstract—In Wi-Fi fingerprint localization, a target sends its
measured Received Signal Strength Indicator (RSSI) of access
points (APs) to a server for its position estimation. Traditionally,
the server estimates the target position by matching the RSSI with
the fingerprints stored in database. Due to signal measurement
uncertainty, this matching process often leads to a geographically
dispersed set of reference points, resulting in unsatisfactory
estimation accuracy.

We propose a novel, efficient and highly accurate localization
scheme termed Sectjunction which does not lead to a dispersed
set of neighbors. For each selected AP, Sectjunction sectorizes
its coverage area according to discrete signal levels, hence
achieving robustness against measurement uncertainty. Based on
the received AP RSSI, the target can then be mapped to the sector
where it is likely to be. To further enhance its computational
efficiency, Sectjunction partitions the site into multiple area clus-
ters to narrow the search space. Through convex optimization,
the target is localized based on the cluster and the junction of
the sectors it is within. We have implemented Sectjunction, and
our extensive experiments show that it significantly outperforms
recent schemes with much lower estimation error.

Keywords-Indoor localization; Wi-Fi fingerprint; clustering;
sectoring; convex optimization.

I. INTRODUCTION

Indoor Location-Based Services (LBS) has attracted much
attention in recent years due to its potential social and com-
mercial values. The quality of such service largely depends on
the localization accuracy of mobile devices.

Many sensor signals have been explored for indoor localiza-
tion, e.g., Wi-Fi [1], FM signal [2], RFID [3], etc. Among all
these, Wi-Fi fingerprinting emerges as a promising approach
because it is easy to deploy and requires no extra sensor
infrastructure beyond the existing Wi-Fi network.

In Wi-Fi fingerprinting, localization is usually conducted in
two phases: an off-line “survey” phase followed by an on-
line “query” phase. In the off-line phase, a site survey is
conducted to collect the vectors of received signal strength
indicator (RSSI) of the Wi-Fi access points (APs) at many
given reference points (RPs) of known locations. The vectors
of RSSI form the fingerprints of the site and are stored at a
database for the on-line phase. In the on-line phase, a user (or a
target) samples an RSSI vector at his own position and reports
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it to the server. The server compares the received signal vector
with the stored fingerprints in the database. By employing
some matching algorithms according to some similarity metric
in the signal space, the server then finds a set of RPs with
fingerprints closely matched with the target’s one (using, for
examples, the nearest neighbor search or k-nearest neighbors
search). These RPs are termed neighbors to the target. The
server then estimates the target position based on them.

Due to statistical fluctuation of signal strengths, there is
uncertainty in signal measurement. Therefore, the matching
algorithm in the on-line phase may find a dispersed set
of neighbors which are quite distant apart in the physical
space. Because of that, localization error is inevitable. It has
been observed that in many sites especially spacious indoor
environment, Wi-Fi fingerprint-based localization can have
error as much as 8 to 15 m [4].

In order to reduce estimation error, a close set of neighbors
should be identified with high accuracy in the on-line phase.
To achieve it, a better approach is to confine the target to a
sector for each of its received AP RSSI. We can effectively
identify the target location based on the overlap region of all
these signal sectors. This is clearly far better than the tradi-
tional matching approach of comparing isolated fingerprints
of reference points independently.

Based on the above observation, we propose Sectjunction,
a novel, efficient and highly accurate indoor localization
technique based on junction of received signal strength (RSS)
sectors. Sectjunction does not lead to a dispersed set of nearest
neighbors, and is highly robust to measurement uncertainty
due to its use of sectors of discrete signal levels.

In Sectjunction, the site is sectorized according to the signal
levels of APs. For an AP, its signal level generally decreases
with distance. We can hence find the Wi-Fi peak, the reference
point corresponding to the maximum signal of the AP. Given
the measured RSS of the AP, we can then identify the sector
with the Wi-Fi peak as the center where the target is likely
to be. As each of the measured RSS values corresponds to
a discrete signal sector, the location of a target can then be
constrained at the junction of these sectors.

We illustrate Sectjunction in Figure 1 given three APs. Each
of the sectors corresponds to a certain signal range, and is
the region where the target is likely to be for that AP. By
considering the junction of the sectors, Sectjunction tightens
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Fig. 1. Illustration of signal sector inter-
section. Crosses represent the Wi-Fi peaks.
The overlapped (red) region denotes the con-
strained area.

Fig. 2. Overview of Sectjunction localiza-
tion system.
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Fig. 3. A Wi-Fi AP’s site survey data
in HKUST atrium. The peak of the signal
map represents the reference point with the
highest signal level.

the search space without leading to a dispersed set of nearest
reference points.

Sectjunction achieves location efficiency and accuracy by a
number of novel approaches:

• RSS Sector Calculation: For each AP, the area is sec-
torized based on the RSS range. This greatly improves
the robustness against measurement uncertainty. In the
sectorization process, clearly the APs with large signal
dynamic range in the whole site are preferred. For compu-
tational efficiency, Sectjunction hence filters out the APs
with narrow dynamic range making use of signal entropy.
Using the filtered APs, the sectors are then calculated
based on discrete signal levels with their Wi-Fi peaks as
the centers.

• Reference Point Clustering: The search space in finger-
print database can be large, consisting of large quantities
of reference points (RPs). To narrow the search space for
computational efficiency, Sectjunction further partitions
the site into clusters consisting of similar signal vectors
using the k-means algorithm. To efficiently identify the
cluster where the target is, Sectjunction elects some
exemplars in each cluster to represent each cluster. Given
a target vector, Sectjunction then maps it to one of the
clusters using these exemplars. The cluster serves as a
constraint in the localization process.

• Localization with Convex Optimization: Given a target
RSSI, the server first computes the sectors and the cluster
where the target is in. Using a novel signal difference
metric comparing signals with measurement uncertainty,
Sectjunction then localizes the target by formulating a
convex optimization problem to maximize fingerprint
matching given the target’s sectors and cluster.

Note that both the RSS sector calculation and RP clustering
can be done off-line, while the mapping of target to sectors
and cluster, and the convex optimization are done on-line. We
have implemented Sectjunction as a real system and conducted
large-scale experimental trials in our HKUST campus. Our ex-
perimental results further confirm the strengths of Sectjunction
with substantial error reduction (typically by more than 30%
in our results).

We briefly review related work here. Much of the previous

work treats the RSSI signals together as a single vector and
use some pattern matching technique on these vectors in local-
ization. The work in [5] first stores in database the sequence of
Wi-Fi RSS vectors while the user is travelling as patterns along
different corridors in an indoor environment. Then the target
compares its online measured RSS sequence with them and
finds the most similar one matching its trajectory. In the work
of [6], the order of different AP RSSIs at RPs is considered as
matching pattern. The work in [7] first finds the unique RSSI
vectors in the area as landmarks. The location of a target is
then mapped to the RPs with landmarks most similar to the
sampled RSSI. It is clear that, as pattern matching is applied
on the vector of RSSI signals, these approaches are susceptible
to measurement uncertainty and hence estimation inaccuracy.
Sectjunction, on the other hand, treats the individual AP signal
independently in forming a sector for each one. By considering
the junction of these sectors, much higher accuracy can be
achieved. In the work of [8] [9], Euclidean distance is used to
compute the similarity between the RSSI values of observed
target and reference points. The estimated location is then
based on the most similar RP or a weighted sum of k nearest
neighbors. We use a markedly different approach to compute
signal difference which effectively captures the impact of
measurement uncertainty.

The rest of this paper is organized as follows. After de-
scribing the system design of Sectjunction in Section II, we
discuss in Section III how RSS sectors are calculated in order
to constrain the target region for localization. In Section IV,
we present how to cluster RPs to narrow the search space. We
formulate the convex optimization for localization with a novel
comparison metric of random signals in Section V. Illustrative
results on our experimental trials are presented in Section VI.
We conclude in Section VII.

II. SYSTEM FRAMEWORK

We show in Figure 2 the server setup of Sectjunction. In the
offline phase, Wi-Fi reference data in terms of pairs <reference
point location, RSSI vector> and version information is stored
in a database (RSSI is in dBm). The module RSS Sector
Calculation filters out the APs with narrow signal dynamic
ranges and sectorizes the area after that. Then the server
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conducts reference point clustering to partition the site into
smaller regions and elects a number of exemplars for each
cluster. After the two modules, the system is prepared for
online estimation.

In the online phase, a target’s RSSI vector is first mapped
to a reference point cluster and a set of RSS sectors. Using a
novel comparison metric for random signals as its objective,
Sectjunction then estimates the target location using convex
optimization with the cluster and sectors as constraints.

III. RSS SECTOR CALCULATION

In RSS sector calculation, for each AP the area is sectorized
corresponding to different discrete signal levels. Clearly, the
AP of wider signal range in the site is preferred because this
leads to many sectors and hence higher localization accuracy.
To achieve this, Sectjunction first filters away those APs of
small signal range using entropy (Section III-A). Using the
reduced set of APs, sectors are then formed by first finding
the Wi-Fi peak for the AP in the area (Section III-B). With
the Wi-Fi peak as the center, Sectjunction then calculates the
radius of the sector for online mapping (Section III-C).

A. AP Filtering Based on Entropy
In the survey stage, we measure different Wi-Fi signal levels

at different reference points. For all the measured signals in
the site, some APs may have large signal range and various
measurement values. These APs can generate more sectors
given the same signal strength interval. These are the APs
needed in localization estimation. To find them, Sectjunction
measures each AP’s entropy and keeps those with high entropy
[10] for signal sectoring. The basic idea is as follows.

We first discretize the signal range of each AP into fixed
intervals. Given an AP l, denote RSSIl as the set of measure-
ment values in the whole survey site. Let minl(RSSIl) and
maxl(RSSIl) be the minimum and maximum signal value
of AP l, respectively. The width of an interval, denoted as
wb, is defined as wb = (maxl(RSSIl) − minl(RSSIl))/nb,
where nb is the number of intervals used. For each sector i
of AP l, we use a fixed interval, i.e., [minl(RSSIl) + (i −
1)wb,minl(RSSIl)+ iwb], i ∈ {1, . . . , nb}. Let ψjl be AP l’s
signal value at RP j. Interval i corresponds to the reference
points whose measurement value ψjl from AP l satisfies
minl(RSSIl) + (i− 1)wb ≤ ψjl < minl(RSSIl) + iwb.

We then count the number of RPs within each interval
and calculate the entropy of each AP as follows. Let N l be
the number of reference points that can detect AP l. Denote
the number of RPs whose signal measurement is within the
interval i as N l

i . Then the probability that an RP measures
AP l′s signal value within interval i is given by Pi = N l

i/N
l.

After the signal range discretization of AP l, the entropy of
AP l is given by

Entropy(l) = −
nb∑

i=1

(Pi · log2(Pi))

= −
nb∑

i=1

(
N l

i

N l
log2

(
N l

i

N l

))
.

(1)

Using this definition, the AP with high entropy has large signal
range and there are similar number of RPs within each interval.
Therefore, Sectjunction filters out other APs with low entropy
and generates a set of APs for sectors calculation. We denote
the resultant set of APs as Λ.

B. Wi-Fi Peak as Sector Center
Sectjunction keeps the APs with high entropy. For each of

them, there is a center for all its sectors (which correspond to
different signal levels). The center is the RP with the highest
signal level in the area, and is called the Wi-Fi peak of the
AP.

For each selected AP l ∈ Λ, its Wi-Fi peak, denoted as
WPl, is represented by the following three tuples:

WPl ! {MACl,xl, RSSIl}, l ∈ Λ, (2)

where MACl is its Wi-Fi MAC address, xl is the peak location
and RSSIl represents all its measurement values. Wi-Fi AP
MAC address uniquely identifies an AP. Sometimes the RPs
with maximum signal level may not be unique. In such a
case, we use the centroid of these points as xl. In Figure 3
we show the Wi-Fi peak of a selected AP as measured in
the HKUST atrium. Its high peak and large signal range
can help differentiate the RPs and discretize more sectors for
Sectjunction.

C. Sector Radius Calculation and Mapping
Based on the selected APs, we can generate the sector

radius, i.e., the maximum distance between reference points
and the Wi-Fi peak for a certain signal level. Let Ri be the
set of RPs whose measurements are in interval i. Let δil be
the radius corresponding to signal level of interval i for AP l.
Mathematically, the radius is defined as the maximum distance
between the RPs rj ∈ Ri and the Wi-Fi peak of APl, i.e.,

δil = max{dj |dj = ∥rj − xl∥2, rj ∈ Ri,

minl(RSSIl) + (i− 1)wb ≤ ψjl < minl(RSSIl) + iwb}.
Given the above, a target signal is mapped to a sector in

a straightforward manner. If a target’s measurement φl from
AP l is within the interval i, i.e., minl(RSSIl)+ (i− 1)wb ≤
φl < minl(RSSIl)+ iwb, the corresponding sector constraint
dl equals to δil.

Using maximum distance constrains the target within a
sector, and hence ensures junction of multiple RSS sectors.
For an AP with high entropy, the larger set of radii results in
tighter area sector and hence higher localization accuracy.

IV. REFERENCE POINT CLUSTERING

The search space in fingerprint database usually consists of
a large quantity of reference points, while the target location
is estimated based on only a few of them. To filter out most of
the RPs efficiently, we implement k-means clustering method
to partition the site into small areas (Section IV-A). Then we
elect some exemplars in each cluster. Given a target vector, we
map it first to the cluster which has the most similar exemplars
(Section IV-B) to narrow the search scope to a smaller region.
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A. K-Means Clustering

After Wi-Fi fingerprinting, we implement k-means cluster-
ing method on RSSI vectors to partition the whole survey site
into smaller regions. Physically close RPs usually have similar
vectors and therefore are clustered into the same group.

The clustering process is as follows. After the filtering, we
have an overall L selected APs, i.e., L = |Λ|. Let the average
RSSI of multiple samples from AP l at RP i be ψil. Then
the Wi-Fi RSSI vector at RP i is qi = [ψi1,ψi2, . . . ,ψiL], i ∈
{1, 2, . . . , nr}.

We evaluate similarity between two signal vectors by cosine
metric [11]. The cosine value of the angle between two RSSI
vectors qi and qj is defined as follows:

sim(qi,qj) =
qi · qj

∥qi∥ · ∥qj∥

=

∑L
l=1 ψil · ψjl√∑L

l=1 ψ
2
il ·

√∑L
l=1 ψ

2
jl

.
(3)

Denote the cluster m as Cm. We implement the k-means
clustering in order to minimize the within-cluster sum of
dissimilarity of K clusters, i.e.,

min
Cm

K∑

m=1

∑

qj∈Cm

(1− sim (qj ,µm)) , (4)

where µm represents the mean of the vectors within the cluster
m. All RPs are then partitioned into several smaller regions.

B. Election of Exemplars and Cluster Mapping

Based on the reference points clusters, we describe below
how to map the target to a cluster given an RSSI measurement.

One naive way of mapping is to add target vector into the
set of RSSI vectors and do the clustering again. However,
this is not computationally efficient. To improve the mapping
efficiency, we first elect the exemplars within each RP cluster,
i.e., the RPs which have the highest mean similarity with all
other members in the same cluster. We define the exemplar
RSSI vector qj of the cluster m as follows:

argmax
qj

1

|Cm|− 1

∑

s∈Cm,s ̸=j

sim (qj ,qs) . (5)

To improve mapping accuracy, we use several exemplars in
one cluster. And all clusters have equal number of exemplars
for comparison. Denote the set of exemplars of cluster m as
Qm. We compare the target signal vector with each exem-
plar signal vector with cosine similarity in Equation (3). By
summing up the similarity within each set of reference points’
exemplars, we map the target with RSSI vector p to the cluster
whose exemplars are the most similar, i.e.,

argmax
Cm

∑

j∈Qm

sim (p,qj) . (6)

In this way we can filter out other clusters efficiently and focus
on a single one (small region) for localization.

V. CONVEX OPTIMIZATION FOR INDOOR LOCALIZATION

In this section, we present a convex optimization formula-
tion for indoor localization, by jointly considering the sectors
and cluster the target is at. We first present an objective
function taking into account the impact of signal measurement
uncertainty, followed by the convex optimization formulation.

A. An Objective Function to Compare Random Signals

Much of previous works have not sufficiently considered the
measurement uncertainty for random signals. In order to prop-
erly capture such uncertainty for accurate indoor localization,
we introduce a comparison metric which takes into account
the signal fluctuation (or variance).

In the survey stage, multiple samples of Wi-Fi RSS are
collected at each reference point. Denote the RSS at RP i
from AP l at time τ as {ψil(τ), τ = 1, . . . , S, S > 1},
with S being the total number of samples collected at the
RP. Then the average RSS readings over time domain from
AP l at RP i is ψil =

(∑S
τ=1 ψil(τ)

)
/S. The unbiased

estimate of variance in RSS time samples for AP l at RP
i is σ2

il =
(∑S

τ=1

(
ψil(τ)− ψil

)2)
/ (S − 1).

We consider that the received signal strength ψil of AP l at
RP i follows a certain (unknown) distribution with mean ψil

and standard deviation σil. The Wi-Fi RSSI vector at RP i is
qi = [ψi1,ψi2, . . . ,ψiL]. Denote the RSSI of AP l at the target
as φl and the corresponding vector as p = [φ1,φ2, . . . ,φL].
Denote the set of APs shared by the target and the reference
point i’s data as Ji (0 < |Ji| ≤ L). Given a target’s Wi-
Fi measurement φl (constant) from AP l ∈ Ji, the expected
signal difference between RP i and a given target is defined
as:

∆l(p,qi) = E
(
(φl − ψil)

2
)

= E
(
φ2
l − 2φlψil + ψ2

il

)

= φ2
l − 2φlE (ψil) + E

(
ψ2
il

)

= φ2
l − 2φlE (ψil) + E2 (ψil) + σ2

il

=
(
φl − ψil

)2
+ σ2

il.

(7)

Thus the overall expected signal difference between the refer-
ence point i and the target is given by

∆(p,qi) =
1

|Ji|

|Ji|∑

l=1

∆l(p,qi)

=
1

|Ji|

|Ji|∑

l=1

((
φl − ψil

)2
+ σ2

il

)
.

(8)

If there is no shared APs between the target and an RP, this
RP will be excluded in the final localization.

B. Convex Optimization Formulation

Let ri be the position of corresponding RP i. After cluster
mapping, the search space of the target is narrowed to cluster
Cm with nm reference points, i.e., Cm = {ri|i = 1, . . . , nm}.

IEEE ICC 2014 - Mobile and Wireless Networking Symposium

2614



We assign normalized weight to each RP in the cluster to
represent the RP’s contribution in final estimation. Then we
formulate the estimation problem of the target into finding the
weighted combination of RPs in Cm. Let ωi be the weight
assigned to RP i when locating the target, and the estimated
position can be represented as

x̂ =
nm∑

i=1

ωi · ri, ri ∈ Cm, (9)

where
∑nm

i=1 ωi = 1, 0 ≤ ωi ≤ 1. We illustrate as follows how
we calculate the weights.

First, the weights are constrained by the sector constraints,
which are obtained in Section III-C. Let dl be the predicted
sector radius constraint between target estimation position
x̂ and AP l’s signal peak xl. We can relax their distance
constraints as ∥x̂ − xl∥2 − dl ≤ 0. Such a relaxation, which
corresponds to a signal sector, can help covert the signal
sector constraint into a convex one. Therefore we can solve
the problem by formulating a convex optimization problem to
conduct Sectjunction localization.

Then we obtain optimal weights by solving a convex opti-
mization. We construct the weighted sum of expected signal
difference as our objective function. By jointly considering
the Wi-Fi fingerprint map and the Wi-Fi sector distance con-
straints, Sectjunction localization is formulated into a convex
optimization as follows:

minimize
ωi

nm∑

i=1

∆ (p,qi) · ωi

subject to x̂ =
nm∑

i=1

ωi · ri, ri ∈ Cm,

∥x̂− xl∥2 ≤ dl, l ∈ Λ,
nm∑

i=1

ωi = 1, 0 ≤ ωi ≤ 1.

(10)

The output of the formulation above, ωi, can be used to
estimate the corresponding position by Equation (9).

A target compares its signal vector with the Wi-Fi finger-
print and obtains a series of expected signal difference with
the whole signal map. Then the solution to this optimization
problem ensures that the weight assigned to each reference
point in estimation can jointly minimize the above difference
in signal map and satisfy the sector constraints. In other
words, the RPs that have small signal difference and lie in
junction of sectors will obtain higher weights in Equation
(9) and contribute more in target estimation. Hence in the
minimization problem, the influence from the wrong nearest
neighbors (corresponding RPs) in signal space is reduced.

VI. EXPERIMENTAL RESULTS

A. Experiment Setting and Comparison Schemes

To study Sectjunction performance, we have conducted
experiments in the atrium in HKUST of 2, 000 m2. For each
reference point, 15 samples of RSSI vector are collected

each from 4 different directions (north, west, south and east).
Overall there are 6 clusters and Figure 4 shows the clustered
reference points in the site.

Unless otherwise stated, we use the values below as our
baseline parameters: number of selected APs is 40; the grid
size of reference points in site survey is 5 meters; total number
of reference points is 183; each target collects 3 samples and
uses the mean of their estimation results for localization; 4
exemplars are elected at each cluster; and the width of interval
in signal range discretization is 3 dB.

We compare our scheme with two algorithms: the state-
of-the-art probability-based localization method [12] and the
traditional k-NN (Nearest Neighbors) algorithm [13] based on
Wi-Fi RSSI vector cosine similarity (k = 10 in our baseline).

We mainly use the localization error as our performance
metric, which is the error between the target u’s estimated
location x̂u and its true location xu, i.e., eu = ∥x̂u − xu∥2.
Denote all the sampled targets as V . We evaluate the overall
performance by mean error (ME) of all targets ME =
(
∑|V |

u=1 eu)/(|V |).

B. Experimental Results
In Figure 5, we plot the performance of the three algorithms

against the number of APs used. As the number of APs used
increases, all three algorithms’ performance improves. Then
all the mean errors converge. Sectjunction is less susceptible
than the other two algorithms under sparse APs coverage. It is
mainly because the constraint from reference point clustering
and sector junction ensures that the target is in a small region
and prevent a dispersed set of nearest neighbors in location
estimation.

In Figure 6, we plot the mean error versus site survey grid
size for the three schemes. As the grid size increases, the
performance decreases. However, Sectjunction achieves better
performance under large grid size because it reduces the error
by junction of RSS sectors. Even though grid size increases,
we can still match the target to a physically close RP.

In Figure 7, we show the cumulative probability of location
error for the three schemes. By considering intersection of
multiple Wi-Fi sectors, Sectjunction achieves much higher
accuracy than the other two algorithms. K-NN algorithm is
prone to signal measurement uncertainty and thus generates a
disperse set of nearest neighbors. Probability-based algorithm
assumes a certain distribution of signal level at each reference
point and therefore cannot represent real signal distribution
under limited sampling.

In Figure 8, we show the cumulative error probability with
and without cluster mapping. We see that applying clus-
ter mapping can improve the localization accuracy. Through
cluster mapping, the target is constrained in a small area.
Therefore, we achieve a close set of nearest neighbors and
hence more accurate estimation.

In Figure 9, we compare the cumulative error probability for
different signal comparison metrics in the objective function
of Sectjunction. Denote the target RSSI vector as p and
fingerprint data at RP j as qj . Both Euclidean distance
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Fig. 4. Reference points clustering in the
HKUST atrium. Different colors represent
different clusters.
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Fig. 5. Impact of APs number used over
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Fig. 8. Performance of applying cluster
mapping in Sectjunction.
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Fig. 9. Performance of different signal
comparison metrics in Sectjunction.

(Eud(j) = ∥p−qj∥2) and Cosine similarity (Equation (3)) do
not consider random signal fluctuation in the measurement. In
contrast, expected signal difference as proposed in our scheme
discriminates the fingerprints much better by penalizing the
RPs that have high signal randomness. It effectively mitigates
the measurement uncertainty and achieves much better perfor-
mance than the other two similarity metrics.

VII. CONCLUSION

Traditional Wi-Fi indoor fingerprint-based localization is
often based on comparing signal vector at each reference point
with the target RSSI vector. Due to measurement uncertainty,
this often leads to a dispersed set of nearest reference points
and hence unsatisfactory estimation error.

In this work, we address the problem by proposing a novel,
efficient and highly accurate algorithm called Sectjunction.
Sectjunction maps each of the AP signals measured at a target
to a sector in the site. It also maps the target RSSI vector to a
cluster area in the site. Using convex optimization based on an
objective to compare random signals, the target location can
be estimated by the junction of the sectors and cluster.

We have implemented Sectjunction and conducted extensive
experimental study in our campus. Sectjunction is shown
to effectively mitigate measurement uncertainty, achieving
substantially lower estimation error as compared with state-
of-the art and traditional schemes.
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