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Abstract—Unsupervised domain adaptation (UDA) seeks to
bridge the domain gap between the target and source using
unlabeled target data. Source-free UDA removes the requirement
for labeled source data at the target to preserve data privacy and
storage. However, previous works on source-free UDA assume
knowledge of domain gap, and hence is limited to either target-
aware or classification task. To overcome it, we propose TASFAR,
a novel target-agnostic source-free domain adaptation approach
for regression tasks. Using prediction confidence, TASFAR es-
timates a label density map as the target label distribution,
which is then used to calibrate the source model on the target
domain. We have conducted extensive experiments on four
regression tasks with various domain gaps, namely, pedestrian
dead reckoning for different users, image-based people counting
in different scenes, housing-price prediction at different districts,
and taxi-trip duration prediction from different departure points.
TASFAR demonstrates significant superiority over state-of-the-
art source-free UDA approaches, achieving an average error
reduction of 22% across the four tasks and comparable accuracy
to source-based UDA, all without relying on source data.

Index Terms—Domain adaptation, unsupervised learning, re-
gression model, model uncertainty

I. INTRODUCTION

Deep learning has shown promising results in various tasks,

including location sensing [1], [2], [3], people counting [4],

[5], and activity recognition [6], [7]. However, the performance

of deep models often significantly degrades when the target

data deviates from the input distribution of the training dataset,

known as the source domain. To tackle this, unsupervised

domain adaptation (UDA) has been proposed to learn a target

model, i.e. aligning the model features extracted from both

source and target domains using unlabelled target data.

In traditional UDA, the source dataset is made available

to the target for adaptation. Due to the potential large size

of the database (several gigabytes or more), it is not storage-

efficient and unsuitable for devices with limited storage ca-

pacity. Though some works [8] [9] have tried to reduce such

storage by compression, they still consume substantial storage

with trade-off on the adaptation quality. To remove dataset

storage, source-free UDA has been recently proposed, which

is to adapt the source model pre-trained by source data directly

with unlabeled target data. In this work, we consider one-shot

source-free UDA; readers interested in consecutive adaptations

may refer to studies on continual learning [10], [11], [12] and

references therein.

0Code is available at https://github.com/Siriusize/TASFAR DA.

In source-free UDA, the absence of source data causes

complication in measuring the domain gap (the discrepancy

between the input distribution of the source and target).

Existing approaches bridge the gap based on either input data

or features. The approaches based on input data require prior

knowledge of domain gap and simulate such gap by means of

data augmentation to extract invariant features [13], [14], [15].

On the other hand, the feature-based approach is generally

applied to classification tasks by measuring and minimizing

domain gaps in feature space [16], [17], [18], [19].

While impressive, previous approaches assume the knowl-

edge of domain gap. As target domains are often agnostic

when designing adaptation algorithms, domain gaps can be

unknown, heterogeneous and complex to simulate [20]. For

example, a source model may be deployed in different target

scenarios in terms of user behaviors, device heterogeneity and

operating environments. Furthermore, many machine learning

tasks are regression in nature. In contrast to classification tasks

where target data of the same label can be correlated in the

feature space to shed light on domain gap [16], [18], the vast

continuous label space of regression tasks without overlapping

labels poses great difficulty for the deep regressor to adapt and

converge.

We consider, for the first time, target-agnostic source-free

UDA for regression tasks. The key observation is that the target

label, like the input data that all conform to the target domain,

also originates from the same target scenario. As an example,

if a target user’s stride length mostly falls into a certain

range (say, 0.5 to 0.8m), his/her next stride length is likely

within the range as well. Therefore, in contrast to the previous

approaches that measure and bridge domain gaps in input data

or feature space of the source model, we directly estimate the

label distribution of the target scenario and use it to calibrate

source models. By considering only the label distribution, we

can achieve target-agnostic adaptation for regression tasks that

is orthogonal to target domain.

We propose TASFAR, a novel target-agnostic source-f ree

domain adaptation approach for regression tasks. We show its

overall system diagram in Figure 1. TASFAR first classifies

the target data into confident data and uncertain data based

on a confidence classifier depending on prediction confi-

dence [21] [22]. Based on the confident data, TASFAR uses

a label distribution estimator to generate a label density map.

Then, a pseudo-label generator leverages the label density map
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Fig. 1. System diagram of TASFAR. First, TASFAR uses a confidence
classifier to classify the target data into confident and uncertain data. The
confident data are used by a label distribution estimator to generate a label
density map. The uncertain data are pseudo-labeled by a proposed pseudo-
label generator based on the label density map. Then, TASFAR uses the
pseudo-labeled uncertain data to train the source model to be the target model.

to pseudo-label the uncertain data. Finally, TASFAR uses the

pseudo-labeled uncertain data to fine-tune the source model by

supervised learning, after which the target model is delivered.

To the best of our knowledge, TASFAR is the first target-

agnostic source-free regressor adaptation approach based on

label distribution. Our contributions are the following:

• Label distribution estimator using prediction confidence:
We estimate the label distribution of confident data to

pseudo-label uncertain data. However, the target labels

are unavailable in the setting of UDA. We thus propose

a label distribution estimator to overcome it. To be

specific, the proposed estimator utilizes the prediction

confidence of the source model to estimate the target label

distribution, which is represented as a label density map.

• Pseudo-label generator based on label density map:
Generated from the same target scenarios, the label

distribution of confident data can be the prior knowledge

of the labels of uncertain data. Therefore, we propose

a pseudo-label generator that utilizes the label density

map to pseudo-label the uncertain data. Specifically, the

pseudo-label generator pseudo-labels uncertain data by

considering the joint distribution of label density map

and source model prediction. To avoid generating low-

quality pseudo-labels that cause accuracy degradation,

the generator also weighs the pseudo-labels by evaluating

their credibility based on the map densities.

We have conducted extensive experiments to validate TAS-

FAR on four regression tasks: location sensing (pedestrian

dead reckoning) [23]; image-based people counting [24]; and

two prediction tasks [25], [26]. We compared TASFAR with

the existing source-free UDA with pre-defined domain gap and

traditional source-based UDA approaches (expectedly the best

performance due to the availability of source dataset). Our

experimental results show that, as compared with the state-

of-the-art source-free UDA approaches, TASFAR achieves on

average a substantial 14% and 24% reduction in localization

error on different users and counting MSE on various crowd

scenes, respectively, and 22% and 28% reduction of prediction

errors on the two prediction tasks. Without access to source

datasets, TASFAR impressively achieves similar accuracy as

the source-based UDA approaches.

The remainder of this paper is organized as follows. We

review related works in Section II and present TASFAR in

Section III in terms of its confidence classifier, label dis-

tribution estimator, and pseudo-label generator. We discuss

in Section IV illustrative experimental results, followed by

conclusion in Section V. Finally, we discuss future works in

Section VI.

II. RELATED WORK

UDA for deep models has been extensively studied [27],

[28], [29]. These works align the source and target domains

either by input data or deep model features. Some pioneering

works on data alignment [30], [31] reduce the domain gap

by importance sampling on source data to simulate target

data distribution. Recent data alignment approaches [32], [33],

[34] study style transfer from target to source data through

deep generative models. Instead of manipulating the input data

directly, the feature alignment approach focuses on aligning

the extracted deep features from both domains to minimize the

feature discrepancy. This discrepancy can be measured using

techniques such as maximum mean discrepancy (MMD) [35],

[36], [37], adversarial neural networks [38], [39], or recon-

struction loss [40]. However, these traditional UDA approaches

require the coexistence of source and target datasets. This may

raise concerns on source-data privacy and can be troublesome

when deploying to resource-constrained devices.

To overcome that, some research works study transforming

source data into lightweight forms [41], [42]. Works in [8],

[43], [44] compress the source data into generative models

and deploy the source model with the data generator to target

scenarios for UDA. However, the deep generator may not

protect data privacy [45] and still consumes the precious

storage of resource-constrained devices. Other works align

target features with the stored statistics of the source feature,

such as feature prototype [46], feature histogram [9], and batch

normalization parameters [47]. However, these methods are

limited to addressing small domain gaps, and there is a trade-

off in adaptation quality when compared to traditional source-

based UDA approaches. This limitation arises because the

proposed feature statistics inevitably experience information

loss from the source datasets.

Source-free UDA further reduces the storage requirement

by adapting the source model with only a set of unlabeled

target data, which is more privacy-preserving and applicable

for resource-constrained devices. Existing studies focus on

either input data or feature alignment. The input data-based

approaches [13] [14] [15] learn to extract domain-invariant

features against data augmentation (e.g., image rotation) that

simulates the domain gap from target to source, whilst they

require target-specific knowledge that is usually unavailable
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when designing adaptation algorithms. The feature-based ap-

proach studies to measure the similarity of the target feature to

the source. Works in [17] [16] use the information entropy of

classification score as an indicator of feature similarity, where

low information entropy indicates source-like features. Other

works [18] [19] optimize the compactness of the target features

because the source features are usually clustered or correlated

by classification categories. Nevertheless, the current source-

free approaches either rely on target-specific information or

the properties of classification, which cannot be extended

to regression tasks whose target domains are unknown. In

comparison, TASFAR explores the label distribution of tar-

get scenarios to calibrate source models, regardless of any

classification properties or information of target domains.

III. TASFAR DESIGN

In this section, we discuss the technical design of TASFAR.

First, we overview TASFAR in Section III-A and introduce its

confidence classifier in Section III-B. Then, we discuss the

label distribution estimator in Section III-C and pseudo-label

generator in Section III-D.

A. Overview
The problem entails a source regression model fθs and

a set of target data (xt, yt) ∈ Dt(⊂ D). The parameters

of the source model θs ⊂ Θ are learned from a source

dataset (xs, ys) ∈ Ds(⊂ D). The ground truth (or label) of

the target data yt exists but is unknown. Even though the

source model fθs is performing the same task in both source

and target scenarios, i.e., Pr(x|ys) = Pr(x|yt), the statistical

distribution of inputs (i.e. domain) of both datasets can be

different, i.e., Pr(xs) �= Pr(xt), which is termed domain

gap. Our objective is to adapt the parameters of the source

model θs to be θt ⊂ Θ, so the target model fθt minimizes the

prediction error on target domain

min
∑

(xt,yt)∈Dt

‖fθt(xt)− yt‖n . (1)

In the problem setting of source-free UDA, the labels of the

target data are unavailable. We need an alternative objective

that complies with Equation 1. For this, previous works try

to align accuracy on the target to the source, where they

either simulate or measure from classifiers the domain gap

and extract domain-invariant features against it. However, they

either only work for specific target domains or are designed

for classification tasks. In this paper, we aim to design an

adaptation approach for regression models and consider a

more practical setting where target domains are unknown in

advance, which calls for a new objective.
Instead of extracting domain-invariant features, we directly

aim for Equation 1 by replacing the target label yt with a

pseudo-label ŷt:

min
∑

(xt,yt)∈Dt

‖fθt(xt)− ŷt‖n , (2)

where the pseudo-label ŷt is supposed to be closer to the

ground truth yt compared with the source model prediction.

In contrast to previous approaches that operate on the input or

feature space of source models, this adaptation directly focuses

on the label space of target scenarios. However, obtaining the

pseudo-label ŷt is not intuitively straightforward.

In most machine-learning paradigms, the labels that provide

supervised information are generally regarded as independent,

while their underlying meanings are essentially correlated

in the real world. Take an image-based recognition task as

an example. The categories of “dog” and “cat” naturally

resemble each other in front of the label “boat”, though such a

pattern is not presented by their one-hot labels. Conceptually,

the correlation among label classes is referred to as ‘dark

knowledge” in the field of knowledge distillation [48], [49],

[50]. By exploring such correlation among label classes,

works in model compression have successfully equipped small

models with the accuracy of large models, especially for deep

classifiers [51], [52]. Enlightened by knowledge distillation,

we extend the idea of dark knowledge to source-free UDA for

regression tasks, regarding regression as the classification task

with infinite categories of labels. Nevertheless, the challenging

issues remain: 1) how are the labels of target scenarios

correlated, and 2) how to leverage the correlation to get the

pseudo-label?

We observe that, in many tasks, target labels are inherently

correlated due to the target scenarios. Specifically, due to the

same target scenarios, the generation processes of the labels

usually share commonalities, such as the same person, site,

device, and so on. Therefore, just like the input data that

all conform to the target domain (say, cartoon or realistic

images), the target labels from the same scenario usually form

a label distribution that characterizes the scenario. To illustrate

this, we show one example in Figure 2 using the task of

stride length estimation, where the label distribution reflects

the walking pattern of the person.

From another perspective, the label distribution of a scenario

can be viewed as the prior knowledge of predicting single

labels, which is especially useful when a prediction is un-

certain. For example, if an elder’s stride length mostly falls

into a range (say, 0.5 to 0.8m), his/her next stride length is

highly likely to be within the range. Intuitively, when making

a random guess, a stride length within the range is expected

to be more accurate than the out-of-range one. Therefore, we

can leverage the label distribution to generate pseudo-labels

for those uncertain predictions, which are expected to be more

accurate than the original ones. In this paper, we capture the

density information of label distribution, which serves as the

prior knowledge to calculate pseudo-labels. More details will

be discussed in the following, where we will cover which

data need pseudo-labels, how to estimate the label distribution

of target scenarios, and how to leverage the distribution to

generate the pseudo-labels.

B. Confidence Classifier

In this section, we discuss two important considerations to

get our intuition down to earth, which leads to the design of

the confidence classifier.
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Fig. 2. Stride length distribution
of different users: label distribution
often characterizes target scenarios.

Fig. 3. Example of pedestrian dead
reckoning: larger uncertainty tends
to indicate larger errors.

How to estimate the label distribution of target scenarios
without target labels? If the predictions from the source model

are accurate, we can use these predictions to estimate the label

distribution of the target. Unfortunately, due to the domain gap

between the target and source, we cannot guarantee all source

model predictions on target data are accurate. Thus, we need a

recognition module to differentiate those accurate predictions

from all source model predictions on the target data.

The accuracy of predictions is related to the prediction

confidence – since the source model usually produces accurate

predictions on familiar input data that lead to high prediction

confidence, source model usually shows high confidence in

its predictions with high accuracy. We thus use prediction

confidence from source models to recognize the accurate

predictions. Note that confidence (or uncertainty) estimation

for deep learning has been well-studied. For example, the

prediction variance caused by the Dropout layer [53] can be

interpreted as prediction confidence [21]. More uncertainty

estimation methods can be found in [22]. Since most of the

uncertainty estimation approaches are orthogonal to both tasks

and model performance, employing these approaches does not

influence the generality of our approach.

Which kind of target data needs pseudo-labels? We con-

sider the label distribution as the scenario’s prior knowledge

which is independent of the individual pieces of the target

data (or inputs). Thus, it fits for calibrating the source model

predictions when the predictions are uncertain. Specifically,

the source model shows low prediction confidence when it

has trouble analyzing a target input, indicating a failure to

utilize the information from input data. In this case, we use

the label distribution to calibrate the source model predictions

when the prediction confidence is low.

Considering the two factors, we build a confidence classifier

to differentiate the target data into confident data and uncertain

data based on the source model predictions. The predictions

on the confident data are utilized to estimate the label dis-

tribution of the target, which calibrates the predictions that

the source model makes on the uncertain data. The criterion

to differentiate the target data is actually related to how

well the source model learns from the source data. In other

words, the model’s performance on the source data determines

its level of confidence in making predictions. Therefore, we

differentiate uncertain and confident data based on a threshold

Algorithm 1 Pseudo code of confidence classifier

Input: Target dataset xt ∈ Dt, source model fθs
Parameter: Uncertainty threshold τ
Output: Confident and uncertain data set SETC , SETU

1: Initialize SETC , SETU

2: for xt in Dt do
3: Calculate prediction uncertainty ut using fθs
4: if ut < τ then
5: Save (fθs(xt), ut) to SETC

6: else
7: Save (fθs(xt), ut) to SETU

8: end if
9: end for

return SETC , SETU

of prediction uncertainty τ whose value is determined by the

model performance on source data.

Specifically, if a source model learns well from the source

dataset, it should be confident about most of the predictions.

Therefore, we regard it as a confident prediction if η (pro-

portion) of the source data show uncertainty lower than τ .

This threshold also applies to target data only if using the

same source model. It can be determined after the source-

model training. Finally, we present the confidence classifier

by pseudo-code in Algorithm 1.

C. Label Distribution Estimator

In this section, we introduce our design on the label distribu-

tion estimator, which delivers a label density map M of the tar-

get scenario using the source model predictions ỹt = fθs(xt)
with prediction uncertainty ut from the confident data. For a

concise expression, we focus on the single-dimensional label

and leave its extension to the multi-dimensional label at the

end of Section III.

We refer to label density as the number of labels that

appear in a unit region. Thus, we build a grid (or discrete)

representation of the label density, named label density map.

Formally, we denote the label density map as a set of label

densities:

di = M(i), (3)

where i ∈ N denotes the index for label density di. If target

label yt is available, the label density for index i is

di = 1/D
K∑

k=1

(
y
(k)
t − y0

g
∈ [i, i+ 1)

)
, (4)

where (·) denotes indicator function, y0 is the smallest label

value considered, g is the grid size of the label density

map, K is the number of the confident data, and 1/D is

a normalization term.

Unfortunately, the label of the target data is unavailable.

Thus, we propose a label distribution estimator that uses

confident data to estimate label density map. Specifically, the

estimator is based on the correlation between prediction error

and uncertainty since a higher uncertainty indicates a potential
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Fig. 4. Illustration on label distribution estimator. It first estimates the label
distribution of each piece of confident data and then accumulates the estimated
instance-label distributions into a label density map.

larger error. To make it more straightforward, we further show

in Figure 3 an example (from location sensing) to illustrate the

correlation.

This intuition leads to the technical design of the label

distribution estimator, which is illustrated in Figure 4. The

estimator first estimates the label distribution of each piece

of confident data. Then, it accumulates and discretizes the

estimated distributions as the label density map of the target

scenario.

Estimating label distribution based on model prediction is

to estimate prediction uncertainty, which is usually presented

as the variance of prediction in uncertainty literature [22],

[54], [53]. Thus, we can leverage the prediction variance to

estimate label distribution. In this paper, we employ Gaussian

distribution, where we also experimentally compare other

error models in Figure 8. Specifically, we model the label

distribution of a prediction ỹ
(k)
t as

y
(k)
t ∼ N

(
y|ỹ(k)t , σ

(k)
t

)
, (5)

where we call it instance-label distribution.

Prediction uncertainty relates to model structure and training

process [22]. Thus, existing uncertainty estimation approaches

usually requires calibration to reflect prediction errors. Since

the estimation of the instance-label distribution is based on

that larger uncertainty indicates a larger error, we model their

relationship by a polynomial function

σ
(k)
t = Qs

(
u
(k)
t

)
, (6)

where Qs can be modeled based on the source dataset before

delivering to the target scenario.

We regard the modeling of Qs as a curve-fitting problem.

In particular, the standard deviation of the error σt entails

that around 68% data whose errors should be less than σt.

Thus, we learn Qs so that, for each value of uncertainty ut,

around 68% predictions in the source datasets have errors

lower than Qs(ut). Nevertheless, σt is hard to directly de-

termine since ut is a continuous variable. To tackle this, we

divide source data into q segments according to their prediction

uncertainty (similar to Figure 3) and fit a parameterized curve

to those segments

min
∑
q′∈q

∥∥∥Qs

(
u(q′)
s

)
− e(q

′)
σ

∥∥∥
n
, (7)

where u
(q′)
s is the mean uncertainty of the segment q′, and e

(q′)
σ

is the estimated standard deviation of errors in the segment.

For simplicity, we use a first-order linear regression model

Qs(ut) = a0 + a1ut, (8)

where a0 and a1 are optimized by least square method [55]⎧⎪⎨
⎪⎩
a1 =

∑
q′∈q u(q′)

s e
(q′)
δ −|q|ūsēδ

∑
q′∈q

(
u
(q′)
s

)2−|q|ū2
s

,

a0 = ēδ − a1ūs.

(9)

Overall, we name it instance-label estimator, which uses

each piece of confident data to estimate the instance-label

distribution.

With the function Qs, we are able to model the label

distribution of each piece of confident data by Equation 5.

This enables us to assign the label to the density map by

probability, i.e. accumulation and discretization. In particular,

the probability of the kth label in M(i) is

d
(k)
i =

∫ i+1

i

Sk (y0 + gI) dI, (10)

where the Gaussian probability density

Sk(y) =
1

σ
(k)
t

√
2π

exp

⎛
⎜⎝−

(
y − ỹ

(k)
t

)2

2
(
σ
(k)
t

)2

⎞
⎟⎠, (11)

and the standard deviation σ
(n)
t = Qs

(
u
(k)
t

)
. Totally, the label

density map can be estimated by

di = 1/D
K∑

k=1

d
(k)
i , (12)

based on Equation 4 with probability calculated from Equa-

tion 10. Finally, we present the pseudo-code of label distribu-

tion estimator in Algorithm 2.

D. Pseudo-label Generator

In this section, we first introduce how to create the pseudo-

label using the label density map M . Then, we discuss

evaluating the credibility of each pseudo-label. Both parts

contribute to the loss function that supervises the adaptation

training for the source model.

How to generate pseudo-labels using label density map?
The basic idea of the pseudo-label generator is illustrated in

Figure 5. We stick to the grid representation of label density

map and denote the grid range as

Yi = y0 + g[i, i+ 1). (13)
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Algorithm 2 Pseudo code of label distribution estimator

Input: Confident data set SETC

Parameter: Grid size g, label value range y ∈ [y0, ym],
function Qs from Equation 6

Output: Label density map M

1: Calculate the number of grids J =
⌊
ym−y0

g

⌋
2: Initialize M(j) for j = 1, 2..J
3: for (fθs(xt), ut) ∈ SETC do
4: Calculate σt = Qs(ut)
5: for j = 1, 2..J do
6: S(y) = 1

σt

√
2π

exp
(
− (y−fθs (xt))

2

2(σt)
2

)
7: M(j) = M(j) +

∫ j+1

j
S (y0 + gI) dI

8: end for
9: end for

10: for j = 1, 2, ...J do � Normalization

11: M(j) = M(j)/ |SETC |
12: end for

return M

Fig. 5. Illustration of the basic idea of pseudo-label generator.

As mentioned, we regard the label distribution of confident

data as the prior knowledge of the label of uncertain data.

For an uncertainty data x
(j)
t , we estimate the posterior label

distribution as the joint distribution of prior knowledge and its

instance-label distribution

Pr
(
y
(j)
t ∈ Yi

)
= Pr

(
y ∈ Yi|ỹ(j)t , u

(j)
t

)
× Pr(Yi), (14)

where ỹ
(j)
t = fθs

(
x
(j)
t

)
. On the right-hand side, we model

the first probability as a Gaussian distribution similar to

Equation 5 and the second probability using label density map

Pr(Yi) = M(i).

Based on the posterior label distribution, we generate the

pseudo-label that should be close to the grids with high

probability. Instead of selecting the grid with the highest

probability, we calculate the pseudo-label by interpolating

grids according to their probability:

ŷ
(j)
t = 1/Y

∑
i

Pr
(
y
(j)
t ∈ Yi

)
Ȳi, (15)

where Ȳi denotes the center of the grid, and 1/Y is the

normalization term. Through such an interpolation, the gen-

erated pseudo-label is naturally close to the dense grids when

the label density map shows a clear local trend. Otherwise,

it will be close to the source model prediction. This avoids

causing accuracy degradation when the prior knowledge is not

informative.

To understand the relationship between the estimated la-

bel distribution of confident data Pr(ycon) and uncertain

data Pr(yunc), we present Pr(yunc) by the joint distribution

of N independent samplings

Pr(yunc) =

N∏
i=1

Pr
(
y(i)unc

)
. (16)

By considering Equation 12, their relationship can be repre-

sented as

logPr(yunc) = N logPr(ycon) +
N∑
i=1

logPr(y(i)unc). (17)

Intuitively, Pr(ycon) serves as the prior knowledge for esti-

mating Pr(yunc), while they do not have to be the same.

Should we equally trust all pseudo-labels? We regard the

label density map as a preference (or prior knowledge of the

scenario) when the source model is uncertain about its predic-

tions. Therefore, we should place greater trust in the pseudo-

label when the source model’s prediction lacks confidence, and

conversely. In order to evaluate the credibility of the pseudo-

labels, we normalize the confidence of the source model

predictions. In particular, we use the confidence threshold τ
as a reference to normalize the confidence of source model

prediction

Id =
τ

u
(j)
t

. (18)

Also, we assign a higher credibility to pseudo-labels when a

clear trend is formed in the label density, On one hand, a clear

trend means that the local label densities of a prediction (in

label space) should not be evenly distributed. This can be

achieved by the interpolation method in Equation 15 because

the uniform distribution of the local density will render the

pseudo-label close to the prediction. On the other hand, the

location where the pseudo-labels are calculated should have a

high label density. We denote such a feature by local mean

density d̄l regarding the global mean density d̄i

Il =
d̄l
d̄i
. (19)

Here, we regard the locality as the grids whose centers are

within three standard deviations from the prediction, i.e.∥∥∥Ȳi − ỹ
(j)
t

∥∥∥
n
< 3σ

(j)
t , (20)

and the credibility of the pseudo-label is

βt =
Il
Id

. (21)

We use it as the weight of the pseudo-label in the adaptation

training.

Overall, the loss function for the adaptation training is

Lada =
∑

xt∈Dt,
ut>τ

βtL (fθs(xt), ŷt) , (22)
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Algorithm 3 Pseudo code of pseudo-label generator

Input: Label density map M , uncertain data set SETU , grid

size g, minimum label value y0, grid number J
Parameter: Uncertainty threshold τ , function Qs

Output: Pseudo-label set SETP

1: Initialize SETP

2: d̄i =
∑J

j=1 M(j)/J � Calculate global mean density

3: for (fθs(xt), ut) ∈ SETC do
4: for j=1,2,...,J do
5: V ARW = 0, V ARY = 0, βt = 0
6: Initialize SETM

7: σt = Qs(ut)
8: ym = y0 + (j + 0.5)g � Calculate grid center

9: if |ym − fθs(xt)| < 3σt then
10: S(y) = 1

σt

√
2π

exp
(
− (y−fθs (xt))

2

2(σt)
2

)
11: V ARW+ = M(j)× ∫ j+1

j
S (y0 + gI) dI

12: V ARY = V ARY + ym × V ARW

13: Save M(j) to SETM

14: end if
15: end for
16: ŷt = V ARY /V ARW � Calculate pseudo-label

17: βt =
d̄i×ut

τ ×
∑

m∈SETM
m

|SETM | � Calculate credibility

18: Save (ŷt, βt) to SETP

19: end for
return SETP

where the pseudo-label is calculated from Equation 15, the

loss weight βt is from Equation 21, and L is task-dependent.

Besides training on the uncertain data, we suggest as well

involving the confident data in the adaptation training using

the pseudo-label ŷt = ỹt. Because the confident data also

belongs to the target data, involving them in the training data

facilitates the model adapting to the target scenario and avoids

the catastrophic forgetting issue [11] where deep models may

forget previous knowledge when learning new ones. The

pseudo-code of the pseudo-label generator is presented in

Algorithm 3.

Finally, we discuss extending the approach to tasks with

multi-dimensional labels. It mainly distinguishes from the case

of single-dimensional labels by requiring a label density map

with a multi-dimensional index i ∈ Nm where m is the label

dimension. This leads to a multivariate Gaussian distribution

in Equation 5, which requires estimating the covariance matrix

for Equation 7. For simplicity, we suggest treating label

dimensions as independent if they are not coupled by the loss

function during the training process.

IV. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we demonstrate illustrative experimental

results to verify TASFAR, where we introduce the experimen-

tal setting in Section IV-A and present illustrative results in

Section IV-B.

A. Experimental Setting

To verify TASFAR, we first experiment it with two regres-

sion tasks – pedestrian dead reckoning [23] and image-based

people counting [24] – because their target domains are usually

heterogeneously different, and the applications often require a

source-free adaptation due to storage and privacy concerns.

Then, we additionally verify TASFAR on two prediction tasks

– California housing price prediction [25] and New York City

taxi trip duration prediction [26]. The two tasks further validate

TASFAR’s generality to different tasks.

Pedestrian dead reckoning (PDR) [23] is a task of location

sensing. It aims to estimate the user’s walking trajectory

using the phone-mounted IMU sensors, specifically, the ac-

celerometer and gyroscope. We employ RoNIN [23] as a

baseline model to adapt, which is a state-of-the-art PDR model

based on temporal-convolutional neural network (TCN). The

model focuses on 2D trajectories, where we model the two

dimensions independently. In the experiment, we adapt the

baseline model to 25 users separately, wherein 15 users have

contributed to the source datasets but perform differently in the

tests (small domain gap), and the other 10 users are completely

unseen by the baseline model (large domain gap).

Different users have different walking behaviors with ran-

dom carriage states of the phone, causing heterogeneous

domain gaps. Each user may contribute one or multiple

trajectories – user in the seen group provide, on average, 250m

trajectories, and that of the unseen group is 500m. To verify

that TASFAR is applicable to not only the target data that have

been adapted but all data from the target scenario, for each

user, we use 80% trajectories for adaptation and the rest for

testing. Note that the labels are unavailable in both adaptation

and testing.

The evaluation for PDR focuses on how well the model

recovers the trajectory. In this paper, we evaluate the PDR

model by two metrics:

• Step error (STE): The model outputs a displacement

vector using IMU signals every two seconds (one step).

We measure the Euclidean distance between model output

and ground truth in each step and average them over a

trajectory by

STE = 1/J
∑
j∈J

‖yj − ỹj‖2 , (23)

where the trajectory has J steps;

• Relative trajectory error (RTE) [23]: RTE measures the

localization error in terms of trajectory

RTE =

∥∥∥∥∥∥
∑
j∈J

yj −
∑
j∈J

ỹj

∥∥∥∥∥∥
2

(24)

with an aligned starting point between the estimated

trajectory and the ground-truth trajectory.

We also experiment TASFAR on image-based people count-
ing [56] which counts the number of people from single

images. We use MCNN [24] as our baseline model, which
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is a classic and well-recognized people-counting approach

based on convolutional neural network. In our experiment, the

baseline model is trained on Part-A (482 images) of the Shang-

haitech dataset [24] and are adapted to Part-B (716 images) of

it, where the two parts are differentiated by scenes and people

densities. The resolution of each image is 768×1024. Similar

to the PDR experiment, we use 80% data for adaptation and

the rest for testing. We follow the original paper to evaluate

the experimental results by mean squared error (MSE) and

mean absolute error (MAE).

To verify the generality of TASFAR to different tasks, we

additionally apply it to predict California housing price [25]

and New York City taxi trip duration [26]. Generally, the

two tasks are using the provided features (such as house age

and pickup date) to predict house prices in California and

taxi trip duration in New York. To form domain gaps, we

separate the two datasets spatially since both the house price

and taxi trip duration are related to (house or take-off) location.

Specifically, we separate California as coastal (target) and

non-coastal (source) areas according to [57] and New York

as Manhattan (target) and non-Manhattan (source) areas. We

employ a MLP-based model [58] as baseline and evaluate the

two tasks by mean squared error (MSE) and rooted mean

squared logarithmic error (RMSLE), as provided by their

datasets.

We compare TASFAR with the following state-of-the-art

schemes:

• MMD-based UDA (MMD): Work in [36] proposes a tra-

ditional source-based UDA approach using source data.

It measures the domain gap by MMD and aligns them in

the feature space;

• ADV-based UDA (ADV): Work in [38] proposes a tra-

ditional source-based UDA approach using source data.

It leverages a pre-trained adversarial neural network to

bridge the domain gap in feature space;

• UDA without source data (Datafree): Work in [9] con-

ducts UDA without using source data. Instead, it stores

source feature distribution via a soft histogram and re-

gards the feature distribution as a domain gap.

• Augmentation-based source-free UDA (AUGfree): Work

in [14] is a source-free UDA approach based on data

alignment. It requires a known domain gap and simulates

the gap by data augmentation, where the domain-invariant

features are extracted. In the experiment, we follow the

original paper and employ the variance perturbation as

the augmentation method.

In the experiment, we use the Dropout mechanism to

calculate model uncertainty. Uncertainty is presented by the

standard deviation of predictions from twenty samplings with

a dropout rate of 0.2. To reduce randomness, we repeat each

experiment five times and report the average result. Unless

particularly specified, we show the results on the adaptation

set.

Fig. 6. Visualization of the estimated (left) and true (right) label density map
based on two PDR users.

B. Illustrative Results

In this part, we experiment on the system parameters using

PDR in Section IV-B1 and show performance of TASFAR with

the comparison schemes in Section IV-B2. Then, we extend the

experiments and analysis to people counting in Section IV-B3.

Evaluations of the two prediction tasks are in Section IV-B4.

A failure case is analyzed in Section IV-B5.

1) Study on System Parameters: We study how TASFAR

performance varies with its system parameters. Unless speci-

fied, the experiments are on the seen group of PDR using the

identical grid size on the two label dimensions of PDR label.

We first visualize the estimated label density maps and

compare with their ground truth, using two sample users from

PDR. In Figure 6, from the ground truths of the label density

maps, both label density maps display ring-shaped patterns

in the high-density grids, which indicates the users’ regular

walking speeds. Also, the clusters on rings indicate the users’

walking patterns. From the figure, the estimated label density

maps accurately capture the ring-shaped pattern and clustering

information of the high-density grids. The larger ring of the

upper figure shows that the walking speed of the user tends

to be larger than the other user. And, the clustered regions

of the high-density grids indicate that the upper user is more

likely to make sharp turns than the other one. This confirms

the effectiveness of the label distribution estimator and justifies

the use of the estimated label density map to calibrate source

models.

To verify the label distribution estimator (Equation 12),

we present the mean absolute error (MAE) of the estimated

label density map in Figure 7. As shown in the figure, the

MAE converges to MAE=2/0 with extremely small/large grid

sizes. This is because larger grids ease the estimation task,

and vice versa. For instance, an extremely large grid would

involve all target data in both the estimated and ground truth

maps, leading to the same label density. Nevertheless, we will

provide an explanation as to why using a large grid is not

recommended in the subsequent analyses.

In Figure 8, we show how pseudo-label accuracy varies

with grid size based on different distribution forms of error

models. First, there is no significant difference among different

error models, which verifies that TASFAR is compatible with
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Fig. 7. Error of label distribution es-
timator varies with grid size: a larger
grid size leads to a lower estimation
error.

Fig. 8. Pseudo-label error varies
with grid size: a large grid size is
not preferred.

Fig. 9. Pseudo-label error varies
with segment quantity q: a too
small q is not preferred.

Fig. 10. Pseudo-label error varies
with the ratio η.

Fig. 11. Distribution of the corre-
lation coefficient between credi-
bility βt and prediction error over
different users.

Fig. 12. Ablation study on the credibil-
ity βt.

Fig. 13. Learning curves of adap-
tation training: early stop when the
rate of error reduction slows down.

Fig. 14. Comparison on STE
reduction rate.

different distribution forms, as long as it shows larger errors for

high prediction uncertainty. In terms of pseudo-label accuracy,

the figure suggests a small grid size, while it may lead

to low accuracy as in Figure 7. This is because the grid

interpolation of TASFAR (in Equation 15) makes it robust to

the estimation error, while the performance will only degrade

with an extremely large grid. Overall, the system performance

is not sensitive to the choice of the grid size. Even though,

an extremely small grid size is not preferred. Specifically, the

computation complexity of constructing a label density map

is O(n/g) based on n pieces of confident data with grid size

g, indicating that it consumes more computing resources to

construct a label density map with smaller grid size. Since the

accuracy flattens off when the grid size reduces, there is no

need for a small grid size.

In figure 9, we set the grid size to be 10cm and investigate

how pseudo-label accuracy varies with segment quantity q
in Equation 7. The figure shows that the pseudo-label ac-

curacy quickly converges with a small q. Therefore, only

a few segments can capture the relationship between model

uncertainty and prediction error. The convergence also shows

that TASFAR works with a wide range of q. We empirically

set q = 40 for the following experiments.

In Figure 10, we study how to select the confidence ratio η
for the confidence classifier as discussed in Section III-B. The

figure shows how pseudo-label error varies with η, where

the pseudo-label error decreases when η is less than 0.9.

As explained in Section III-B, a small η leads to a small

confidence threshold τ so that the accurate predictions may

be considered as the uncertain ones. Also, a too large η may

decrease the numbers of uncertain data such that no data are

available for adaptation. Even though, the figure shows a wide

range of η to use. In this paper, we set η to be 0.9.

We validate the pseudo-label credibility βt (from Equa-

tion 22) in Figure 11. For trajectory data (with multiple steps)

of each person, we calculate the Pearson correlation coefficient

of βt and the pseudo-label accuracy and summarize them

as a probability distribution function (PDF) over different

users. As shown in the figure, the coefficients of all users

exhibit a positive correlation, where most users’ correlations

are larger than 0.5. Therefore, TASFAR will assign large

weights to the accurate pseudo-labels (in Equation 22), which

avoid generating low-quality pseudo-labels that cause accuracy

degradation.

We further conduct an ablation study of βt in Figure 12.

With or without using the weight βt, the figure compares

the STE varies with epochs in the adaptation training. Both

curves show lower STEs with βt, while the gaps are reduced

with more training epochs. This is because the pseudo-labels

with larger βt tend to be more accurate than those with small

weights. The model would stress more on the pseudo-labels

with large βt in the beginning because of the large weights.

This explains the gap shown in the two curves. As the number

of epochs increases, the gaps are reduced because the training

losses of these pseudo-labels (with large βt) are reduced when

the model starts to focus on the ones with less accurate pseudo-

labels. Thus, we should employ an early stop to improve

adaptation performance.

As the adaptation training process is automatic and unsu-

pervised, we study the early stop issue in Figure 13 We show
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Fig. 15. Comparison on STE reduc-
tion between adaptation and test sets.

Fig. 16. The ratio of uncertain data
and errors in the seen and unseen
group.

Fig. 17. How many users’ RTE
from the seen group are reduced?

Fig. 18. How many users’ RTE
from the unseen group are re-
duced?

the learning curve of the same users as in Figure 12. In the

figure, both curves show the regular patterns of deep model

training: the speed of the training loss drops gradually reduces

as the epoch increases. The significant training loss drops, at

small epochs, shows that the adaptation training is bridging

the gaps between source model predictions and pseudo-labels

with large weights βt (from Equation 22). Therefore, the

change in the loss-dropping speed indicates a changing focus

from the large βt to the smaller one. So, we can early

stop the adaptation training when the loss-dropping speed is

significantly reduced, i.e. epoch 250 of user 1 and epoch 100 of

user 2. This also agrees with the satisfactory stopping epochs

from Figure 12.
2) Performance Analysis in PDR: In this part, we analyze

the experimental results on PDR and compare TASFAR with

the comparison schemes. Unless particularly specified, we

demonstrate results on adaptation data.

We first evaluate the STE reduction in the seen group and

show the reduction distribution over the individual user in

Figure 14. The figure shows TASFAR achieves similar error

reduction compared with source-based UDA approaches, i.e.,

MMD and ADV, while the improvement from other source-

free approaches is insignificant. Datafree can only achieve

small improvements because it merely aligns domains in terms

of feature statistics. The adaptation performance of AUGfree

varies across different users because its augmentation only

fits a few users. In comparison, the STE of each person is

significantly reduced by applying TASFAR because it directly

calibrates the source model using label distribution of the

target scenarios. Considering that different users have different

signal distributions, this experiment has verified that TASFAR

is practical and general to heterogeneous target domains.

We verify the performance consistency in adaptation and

test sets in Figure 15. TASFAR achieves an averaged STE

reduction of 13.6% in the adaptation set and 13.4% in the test

set, and all schemes show similar error reductions between

the two sets. Firstly, the schemes are not accessible to labels

of both adaptation and test sets. Secondly data from both

sets are generated from the same domain, where the test data

distribution is similar to that of the adaptation. This explains

the consistent performance of TASFAR in both adaptation and

test sets and validates that the adaptation can be achieved by

using a group of data from target domains.

Figure 16 shows the ratio of uncertain data and their

prediction errors regarding the whole dataset. Due to the

domain gaps between the target and source, the uncertain data

ratios of both seen and unseen groups are larger than η = 0.9.

The ratio of the unseen group 18.6% is larger than that of

the seen group 16.2% due to its larger domain gap. From the

figure, the error ratios are much larger than the data ratios

in both groups because the errors are mainly incurred by

uncertain data. Therefore, TASFAR only pseudo-labels the

uncertain data, though, it can achieve commendable adaptation

performance because the uncertain data group is the main

source of the inaccuracy.

Besides using STE to show model accuracy on the uncertain

data, we show the RTE of both confident and uncertain data

in the test set. Specifically, we show how many localization

errors are reduced over the test trajectories in Figure 17. The

figure shows the numbers (in ratio) of trajectories whose error

reduction is more than a threshold (x-axis), where TASFAR

achieves 0.92m (or 7%) average error reduction for trajectories

with an average length of 50m. This is comparable with

the source-based UDA, outperforming other source/data-free

approaches. Also, the result conforms to the conclusion drawn

from the STE experiments. Note that the localization error

of PDR is temporally dependent, where the location of the

next step depends on the last one. So, the errors sometimes

cancel each other’s bias over the trajectories. Therefore, it is

possible that Datafree can outperform AUGfree in RTE while

performing worse in STE.

We study the performance of TASFAR to both small (seen)

and large (unseen) domain gaps in Figure 18. As users from

the unseen group are not exposed to the source model in model

training, the domain gaps of the unseen group are larger than

those of the seen group. As the errors of PDR are cumulative,

the error reduction is more significant in longer trajectories.

From the figure, TASFAR still shows comparable RTE re-

duction with the source-based UDA approaches. It reduces

around 3.13m of RTE for trajectories with an average length of

100m. This validates that TASFAR is capable of handling both

small and large domain gaps in terms of the input distribution

because it explores label space that is decoupled from the input

space.
3) Performance Analysis in People Counting: To show that

TASFAR can work with multiple signal forms, we conduct

experiments of image-based people counting. To capture the

properties of target scenarios, we apply TASFAR to images
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Fig. 19. Comparison of the differ-
ent scenes of people counting on
the test set.

Fig. 20. TASFAR’s performance
with or without partitioning the test
data.

Fig. 21. TASFAR’s performance on the
two prediction tasks.

Fig. 22. Label distribution with
two users in PDR.

TABLE I
COMPARISON ON CROWD COUNTING. TASFAR PERFORMS COMPARABLY WITH THE TRADITIONAL SOURCE-BASED UDA APPROACHES ON THE

ADAPTATION SET, UNCERTAIN DATA FROM THE ADAPTATION SET, AND TEST SET.

Adaptation (whole) Error Reduction (%) Adaptation (uncertain) Error Reduction (%) Test Error Reduction (%)
Scheme MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Baseline 56.4 86.8 - - 114.4 143.8 - - 71.7 141.5 - -

MMD* 51.5 82.2 8.7 5.3 80.1 96.7 29.9 32.7 59.6 110.9 16.8 21.5

ADV* 52.1 81.9 7.6 5.6 76.4 97.2 33.2 32.4 59.7 111.0 16.7 21.6
AUGfree 56.3 86.9 0.2 0 113.6 142.5 0.7 0.9 71.5 141.0 0.2 0.3
Datafree 56.2 86.1 0.4 0.8 108.1 134.5 5.5 6.5 69.5 134.1 3.0 5.2
TASFAR 52.4 80.3 7.0 7.5 74.0 97.5 35.3 32.2 59.9 107.4 16.5 24.1
* Source-based UDA approach

Fig. 23. Sample images of sites from the people-counting dataset [24].

belonging to the same sites (streets) separately from the test

dataset. The sample images from the three sites are shown in

Figure 23, where scene 3 tends to be more crowded than the

others from our observation.

In Table I, we compare the experimental results on the

adaptation and test set. The source model (baseline) performs

worse on the uncertain set than on the whole adaptation

set because of the high prediction uncertainty. Although all

schemes reduce more errors on the uncertain set than the whole

adaptation set due to the large error, TASFAR significantly

outperforms the other source-free approaches in both MSE and

MAE and achieves comparable results with the source-based

UDA approaches. After adaptation, the experimental results

of the test set also come to a consistent conclusion: Datafree

only reduces errors slightly and AUGfree does not perform

well on people counting because its augmentation approach

misfits the task, while TASFAR achieves 16.5% and 24.1%
error reduction in terms of MAE and MSE that are comparable

with the source-based UDA approaches.

We further compare TASFAR with the other approaches on

different scenes in Figure 19. We only show MMD because it

performs similarly to ADV. Similarly to the results in Table I,

TASFAR achieves comparable performance with the source-

based UDA on all three scenes, outperforming AUGfree

and Datafree. Interestingly, TASFAR outperforms the existing

source-free approaches in scene 2 and 3, and surpass them by

a large margin in scene 1. This is because the crowded scene 3

maintains a stable pedestrian stream, forming a prominent

feature in label distribution. In all, the accuracy improvement

in all three scenes has verified that TASFAR can work with

different crowd scenes.

In Figure 20, we discuss TASFAR’s performance without

partitioning the test dataset by scene. From the figure, TAS-

FAR shows better performance in all three scenes when their

adaptation sets are partitioned. This is because data from the

same scenes are correlated by the target scenarios, providing

prominent features in the label distribution that are leveraged

by TASFAR. On the contrary, fusing data with multiple scenes

may corrupt the features of each target, degrading the adap-

tation performance of TASFAR. Even though, TASFAR can

still achieve good performance without partitioning because

the crowd density of the Part B dataset is inherently correlated.

4) Performance Analysis in Prediction Tasks: To verify the

generality of TASFAR in different tasks, we further show in

Figure 21 its performance on two prediction tasks. On the tar-

get regions, TASFAR has reduced 22% MSE and 28% RMSLE

separately in predicting housing price and trip duration. Since

(house and take-off) location is a key factor of housing price

and trip duration, the baseline models that are learned from one

district cannot perform well in another district. Even though,

the housing prices and trip duration in the target district are

naturally correlated. TASFAR captures such correlation and

improves the accuracy for the target district.

5) Failure Case Analysis: Finally, we show a failure case in

the PDR task where the target model, calibrated by TASFAR,

is only marginally better than the source model. Specifically,
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we manually balance the target data by using two users’ data

as the target, upon which TASFAR only reduces around 1%

STE. The performance is similar to those of other source-free

approaches. To analyze it, we visualize target label distribution

in Figure 22. As shown, the two users have different step

lengths and walking patterns, so the label distribution displays

a double-ring shape that differentiates the single-person case

in Figure 6. However, the label distribution of one user usually

cannot serve as the prior knowledge of the other, resulting in a

failure of adaptation. To avoid causing accuracy degradation,

the TASFAR would generate pseudo-labels that are close to

the source-model predictions (due to the double-ring shape)

and assign small weights to adaptation loss since the label

densities are spread out over the map. Ideas to tackle such

cases are further discussed in Section VI.

V. CONCLUSION

The traditional source-based unsupervised domain adapta-

tion (UDA) uses both unlabeled target data and the training

dataset (on the source domain) to overcome the domain

gap between the target and source. To protect source data

confidentiality and reduce storage requirements, source-free

UDA replaces source data with a source model and adapts

it to the target domain. Previous source-free UDA approaches

measure and bridge domain gaps in input-data or feature space

of the source model, which only works for specific domain

gaps or classification tasks.

In this paper, we propose, for the first time, a target-agnostic

source-f ree domain adaptation approach termed TASFAR for

regression tasks. TASFAR is based on the observation that the

target label, like target data that all conform to the target do-

main, also originates from the same target scenario. Therefore,

in contrast to previous source-free UDA approaches, TASFAR

directly estimates the label distribution of the target scenario

and uses it to calibrate source models. Specifically, TASFAR

classifies the target data into confident and uncertain data and

proposes a label distribution estimator, based on the confident

data, to estimate the target label distribution, represented as a

label density map. Then, a pseudo-label generator utilizes the

label density map to pseudo-label the uncertain data, which

is used to fine-tune the source model based on supervised

learning.

To validate TASFAR, we have conducted extensive ex-

periments on four regression tasks, namely, pedestrian dead

reckoning (using the inertial measurement unit), image-based

people counting from single images, and two prediction tasks.

We compare TASFAR with state-of-the-art source-free UDA

and source-based UDA approaches. The experimental results

show that TASFAR significantly outperforms the existing

source-free UDA with around 14% and 24% reduction in

localization error and mean absolute error (MSE) in the pedes-

trian dead reckoning of different users and people counting

with various crowd scenes, respectively. In the two prediction

tasks, TASFAR reduces 26% of the prediction errors. Without

the need for any source data, its performance outperforms

the previous source-free UDA approaches and is notably

comparable with the source-based UDA approaches.

VI. FUTURE WORK

To achieve source-free domain adaptation for regression

tasks on agnostic target domains, TASFAR explores the label

properties that originate from target scenarios themselves, such

as environmental features, behavioral patterns of users, cyclic

events of the scenes, and so on. This observation makes TAS-

FAR well-suited for adaptation in real-world scenarios, where

the label distributions are naturally imbalanced because of the

heterogeneous target scenarios. Consequently, its performance

gain is not so marked in tasks where the target data comes from

multiple sources or where labels are manually balanced, such

as those datasets for data competitions. TASFAR may achieve

only minimal accuracy improvement on such tasks since their

scenario properties may be corrupted or intentionally reduced.

One direction of future works can focus on how to partition

test data so as to better utilize the characteristics of the

target scenario. This partition may depend on task-specific

knowledge. When applying TASFAR to a specific task, we

can partition the target data into multiple segments based on

task-specific knowledge. In each segment, we independently

assign pseudo-labels to the uncertain data. For example, in

a surveillance-based people counting, TASFAR may perform

better if we treat the morning and evening as two target

scenarios. From this perspective, TASFAR may serve as a

general framework to incorporate more task-specific knowl-

edge to achieve better adaptation performance on real-world

applications.

Finally, we discuss the potential application of TASFAR to

classification tasks, despite its specific design for regression

models. Technically, TASFAR may be straightforwardly ap-

plied to classification tasks. Without leveraging classification

properties, however, TASFAR by itself is not expected to

show advantages over those approaches in classification tasks.

Nevertheless, TASFAR can be seamlessly integrated with other

classification-based approaches as a plug-in module. Specifi-

cally, TASFAR may be used to explore the correlation among

label classes of a classification task and generate soft pseudo-

labels for uncertain data. Such kind of information (namely

dark knowledge) has been successfully verified in the field

of knowledge distillation. We thus believe it may be useful

in source-free domain adaptation, which can be an interesting

future work to study.
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