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Distributed Servers Approach for Large-Scale
Secure Multicast

Kin-Ching Chan and S.-H. Gary Chan

Abstract—In order to offer backward and forward secrecy for
multicast applications (i.e., a new member cannot decrypt the mul-
ticast data sent before its joining and a former member cannot de-
crypt the data sent after its leaving), the data encryption key has
to be changed whenever a user joins or leaves the system. Such a
change has to be made known to all the current users. The band-
width used for such re-key messaging can be high when the user
pool is large. In this paper, we propose a distributed servers ap-
proach to minimize the overall system bandwidth (and complexity)
by splitting the user pool into multiple groups each served by a
(logical) server. After presenting an analytic model for the system
based on a hierarchical key tree, we show that there is an optimal
number of servers to achieve minimum system bandwidth. As the
underlying user traffic fluctuates, we propose a simple dynamic
scheme with low overhead where a physical server adaptively splits
and merges its traffic into multiple groups each served by a logical
server so as to minimize its total bandwidth. Our results show that
a distributed servers approach is able to substantially reduce the
total bandwidth required as compared with the traditional single-
server approach, especially for those applications with a large user
pool, short holding time, and relatively low bandwidth of a data
stream, as in the Internet stock quote applications.

Index Terms—Distributed servers approach, key tree, multicast
security, re-key messaging, split-and-merge scheme.

I. INTRODUCTION

M ULTICAST is an efficient technique for delivering data
to a large group of users in multimedia applications such

as Internet stock quotes, Internet radio, audio/music delivery,
video surveillance, etc., [1]. Many of these applications requires
data security. The current multicast protocols such as distance
vector multicast routing protocol (DVMRP), core-based tree
(CBT), and protocol independent multicast–distance measuring
(PIM-DM) [2]–[4], however, do not offer any security features
in terms of confidentiality, authenticity and integrity. In this
paper, we mainly study the data confidentiality issue in the mul-
ticast environment (i.e., unauthorized users should not be able
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to access the multicast data). In such a system, a new member
should not be able to decrypt those multicast data sentbefore
its joining (i.e., the so-called “backward secrecy”) and a former
member should not be able to decrypt those multicast data sent
after its departure or eviction (i.e., the so-called “forward se-
crecy”) [5].

Traditional data security is generally based on public key in-
frastructure (PKI) technology and applied in the unicast envi-
ronment. Such a point-to-point approach is not applicable in
the multicast environment with a large number of senders and
receivers (the so-called “participants”) and when the group is
highly dynamic, i.e., the group members join and leave fre-
quently and at random times. Therefore, whenever there is a
membership change in a group, the data has to be reencrypted
with a different key and the corresponding decryption key has
to be made known to all members in the group. If not managed
properly, these “re-key messages” which inform the key change
would consume a large amount of network bandwidth and pro-
cessing overhead. An efficient solution to address this issue of
key management has been proposed independently by Wonget
al. and Wallneret al. [6], [7] Both schemes introduce a hier-
archical key tree structure in which the group members are ar-
ranged as a logical key tree. Each group member is at the leaf of
the tree and belongs to more than one multicast subgroup. Using
this approach, the number of re-key messages for each change
of membership (in the form of “join” and “leave”) is shown to
be only , where is the number of concurrent users
in the system, i.e., the group size.

In each server of a secure multicast system, there is generally
a data manager and a control manager. The data manager
encrypts and transmits data while the control manager is
responsible for key management such as generating, storing
and distributing keys. One problem with a single server system
serving the whole population is that its complexity increases as
the number of user increases, mainly due to the large number
of re-key messages and the size of the key database (there are
generally many keys involved in a secure multicast group).
Therefore, in order to reduce the complexity and manageability
of the system when the multicast group is large, it may be
beneficial to split the group into a number of smaller groups and
serve them independently, thus forming a distributed servers
network. We show in Fig. 1 such a system, in which the servers
distributed in the network serve their respective pools of users.
Note that these servers are not necessarily geographically
distributed—they may be logical servers in a physical server.
Therefore, a distributed servers network may consist of one
or more physical servers, each of which may contain one or
more logical servers. Data is multicast to the users from the
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Fig. 1. Example of multicast system.

respective data manager, while the control manager notifies its
users of the decryption keys.

Note that in such a server network, the total amount of mul-
ticast data traffic is proportional to the number of servers. On
the other hand, as the number of servers increases, the over-
head and, hence, the system complexity, in re-key messaging
decreases (due to a decrease in the number of users served by
each server). Therefore, there is a tradeoff between re-key mes-
saging and data traffic and a corresponding optimal number of
servers such that the total bandwidth requirement of the servers
is minimized given a certain user traffic. Clearly, when the data
rate is high and the users are less dynamic (as in some video
applications), splitting the pool of users into many groups may
not be beneficial; on the other hand, if the data rate is low and
the user pool is large and highly dynamic (as in stock quote ap-
plications), the pool of users is more likely to be split into many
groups.

Note that user traffic to a physical server may not be sta-
tionary. For example, in an Internet stock quote system, user
traffic is expected to be higher at the start of the day than at the
end of the day. It is, therefore, important for a server to split and
merge its traffic dynamically into multiple groups each served
by a logical server in order to minimize the total bandwidth. In
this way, our view of the distributed servers network is thus hi-
erarchical in nature: Given a certain target user traffic, the total
pool of users is split and served by multiple independent phys-
ical servers to minimize the total bandwidth. When the under-
lying traffic changes, each physical server may further split and
merge dynamically into multiple logical servers to serve its user
traffic to minimize its own bandwidth. We propose an efficient
scheme for such splitting and merging, and study the conditions
under which “splits” and “merges” should be executed.

There are three contributions of this paper: 1) we present a
simple and yet accurate model validated by extensive simulation
of a distributed servers network for secure multicast; 2) we de-
termine the optimal number of servers in order to minimize the
total bandwidth in the system given a certain target user traffic;
and 3) we propose a dynamic split-and-merge scheme to re-
duce bandwidth requirement as the underlying user traffic fluc-
tuates, and study the conditions under which this can be done
efficiently.

Our result shows that the distributed servers approach can
achieve a substantial reduction in bandwidth (more than 30%
in our examples) as compared with a single server system for
secure multicast. This is especially true for some applications
characterized by low data rates and fairly large groups of con-
current users (e.g., 100 000) (such as Internet stock quote appli-
cations). With our dynamic split-and-merge scheme, a further
reduction in bandwidth (15% in our example) can be achieved
when the underlying traffic fluctuates as compared with a static
scheme. Given an application, there is an optimal number of
users a server should serve; if the underlying traffic deviates
from the number, our split-and-merge scheme should be used
to regroup the users to reduce the cost.

Much of the previous work on secure multicast focuses on
the key tree scheme. This body of work includes reducing the
number of re-key messages and the number of keys stored in the
server [8]–[10], maintaining the key tree by means of growing
and pruning [11], [12]. Our work is based on the scheme given
in [6] and [7], and we model and analyze it. Previous work ad-
dresses mainly reducing re-key messages and has considered
neither a distributed servers network nor the tradeoff between
multicast data and re-key messages. It mainly focuses on a spe-
cific number of users in the system and provides no analysis on
the re-keying cost when the users join and leave dynamically.
Some other work focuses on non-tree-based schemes. We will
not discuss the schemes here; readers interested in them are re-
ferred to [13]–[15] and references therein.

This paper is organized as follows. In Section II, we first
review the key tree scheme, present a model for the distributed
servers network using this scheme, and provide illustrative
numerical examples and results. In Section III, we discuss and
analyze the split-and-merge scheme. We finally conclude in
Section IV.

II. SCHEME, ANALYTIC MODEL, AND NUMERICAL RESULTS

In [6] and [7], an effective hierarchical key tree approach is
proposed to facilitate the distribution of re-key messages. They
show that, whenever a member joins or leaves the system, the
number of re-key messages is , where is the number
of concurrent users. In this section, we first review the scheme
in Section II-A, then we present the analysis of the scheme in
Section II-B, and provide some illustrative numerical results in
Section II-C.

A. Scheme Description

A hierarchical key tree is a logical tree structure corre-
sponding to each multicast group stored in the control manager.
In the tree representation, group members are arranged at the
leaves and the internal nodes store keys (see Fig. 2 for a-ary
tree with depth ). There are three types of keys. The first one
is a group key used to encrypt/decrypt the multicast data;
the second one is a subgroup key (such as and ) used
to encrypt/decrypt other keys instead of actual data, and the last
one is the individual (public) key . Each member holds the
keys along the path from its leaf to the root. Therefore, for the
case of member, holds . Each subtree in
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Fig. 2. k-ary key tree.

the entire key tree is a subgroup and each member is assigned
to more than one subgroup. For example, memberbelongs to
group .

Whenever there is a membership change, apart from the
group key, all keys held by the new or former member have to
be changed in a bottom-up manner. For example, ifleaves
the group, first is changed to a new subgroup key, say

, which is sent to all members who shared with (i.e.,
’s sibling in the tree). Since is known by , the control

manager has to encrypt using each members’ individual key
and sends it to them by unicast. After sending, the process
can be propagated one level up. Now, has to be changed.
Since is changed to which is unknown to , the control
manager can encrypt the new with all subgroup keys
including and send it to all subgroups in the th level.
The process is repeated upwards one level at a time until it
reaches the root where is changed. Then all keys, including
the group key, held by are changed.

If is a new member joining the group, in order to guar-
antee backward secrecy, all the keys from to have to
be changed. Sinceknows nothing about the keys in the group,
when the control manager changes to the new key ,
can be encrypted by and multicast to ’s siblings and uni-
cast to . Similarly, this process can be propagated upwards one
level at a time, with the control manager multicasting the new
keys to the subgroups under the key and unicasting the key to.

If we assume that the key tree is a-ary full tree, after each
membership change, the number of re-key messages per leave
or join is proportional to the depth of the key tree, , where

is the group size. For each leave, each component of the key
at each level has to be senttimes (one for each branch). For
each join, each component of the key at each level has to be sent
twice (one for multicasting to the old members while the other

one for unicasting to the new member). Therefore, the number
of re-key messages per leave and join is and ,
respectively.

From the above discussion, we see that if we split the user
pool into equal parts, the number of re-key messages for joins
and leaves is reduced to and

, respectively. If such a saving offsets the penalty of an
increase in the data rate, it is beneficial to split the pool. Indeed,
we will see later in the numerical results that the number of
splits can be quite large (e.g., 10) and the corresponding
bandwidth reduction can be in excess of 20%.

B. Analytic Model

In this section, we analyze the system for the case in which
users in a multicast group arrive according to a certain stochastic
process with (target) rate(req/s). Each user stays in the system
with mean duration of 1 seconds. Define as the average
number of concurrent users in the system given by. Let
bits/s be the data rate for a stream.

We consider that the pool of users is equally likely to access
the logical servers and, hence, the average number of con-
current users in a server is . Denote as the
packet size of a re-key message, and as the cost of
each server given by the expected number of re-key messages
per second. Denote bits/s as the total bandwidth used in the
network, which is the sum of the re-key message data rate and
multicast data rate. Clearly, is given by

(1)

We are interested in minimizing by adjusting . To achieve
this, we perform the following analysis of the system.
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TABLE I
NOMENCLATURE USED IN THE PAPER

To analyze our system, we consider that the requests arrive
according to a Poisson process and the holding time is expo-
nentially distributed. The system can, therefore, be modeled by
a Markov process. Let denote the system state
corresponding to the number of concurrent users at a server. Let

be the steady state probability that . It is well known
that

(2)

Note that a state change corresponds to a membership change
which incurs some re-key exchange overheads (costs) in bits.
Let and be the costs for a user joining and leaving the
server in state, respectively. Note that and are random
variables depending on where the user joins or leaves the tree
and are independent of. Let and be the expected
values of and , respectively. We show in Table I the nomen-
clature used in this paper.

By the steady-state properties of the Markov chain,
can then be expressed by

(3)

i.e.,

(4)

(5)

Therefore, in (1) can be rewritten as

(6)

or, equivalently

(7)

(8)

where is a dimensionless parameter defined as

(9)

Equation (8) says that the total network bandwidth is known
once and are obtained.

The closed-form expressions for and are in-
tractable. Therefore, we approximate the key tree as a full tree
at any time. By considering the interesting case where is
large, we therefore have 2 1 2 and

1 , where is the branching
factor of the key tree. We show in Fig. 3 versus

for 4. The discrete points represent simulation results
while the solid line is the analytical result. Clearly, simulation
matches well with our analysis, showing that our approximation
is valid. This is true even when the number of users is not large

15 .
Given , (and hence ) in general first decreases and

then increases as increases. The expression of is still
quite complex and does not allow us to derive a closed form for
the optimal . Hence, we make further approximations as fol-
lows. Observing that the Poisson distribution peaks at its mean,
we approximate the distribution as a-function at its mean, i.e.,

(10)
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Fig. 3. E[J ] + E[L ] versusi (k = 4).

where

if
otherwise.

(11)

Therefore

(12)

(13)

(14)

Using it, we have

(15)

(16)

and can be obtained by setting 0, i.e.,

(17)

Note that if is greater than 2 , then 1;
otherwise, we should use a single server. Furthermore, since

2 , the optimal group size is a constant.

C. Illustrative Numerical Examples and Results

In this section, we present some illustrative numerical results
of the secure server network studied. We first estimate the size
of . According to the IETF standard [16]–[18], a re-key mes-
sage consists of a header (HDR), a sequence number (SEQ), a
security association (SA), a key download payload (KD), a sig-
nature (SIG), and an optional certificate (CERT). It has been
suggested HDR of size 28 bytes, SEQ of size 8 bytes, SA of at
least 48 bytes, KD of at least 11 bytes in addition to the size of
a key, and SIG of at least 4 bytes. Summing them up,is at
least 99 bytes. Including the key and certificate fields, we hence
choose to be 2 kb in our study.

Since the system parameterhas a determinant effect on the
system performance (in terms of total bandwidth consumed), we
first show its representative value for some multimedia applica-
tions given average user holding time1 and data rate of a
stream in Table II. We see that in reality is likely to range
quite widely from 10 (stock quote systems) to 10 (video
applications). In [6], it has been found that for a single server
the optimal branching factor for the key tree is around four
independent of the number of users, which is also validated by
us using analysis or simulation (results not shown here). There-
fore, we will use 4 in our following study. We consider a
baseline system with 10 and 10 , and vary them
one at a time in our sensitivity study. We hasten to note that the
values of and in the table are examples only. As shown in
Section II-B, what affects the system performance is their ratio,
i.e., the value of the parameter. The choice of our baselineby
no means refers to applications with data rate of 5 kb/s. Indeed,
some stock quote applications may have a higher data rate due
to the presentation of charts or graphs. Our study shows that so
long as remains unchanged, the resulting number of optimal
servers remains the same.

We first show the cost advantage in using a server network
by plotting in Fig. 4 1 (i.e., the ratio of total traffic
for a server network with servers to a single server system)
versus given ( 10 and 4). The horizontal line
corresponds to the single server case. For some certain values of

(e.g., 10 ), as increases, 1 first decreases
gradually to reach a minimum (mainly due to the decrease in
re-key messaging), and then increases steadily (mainly due to
the increase in total data bandwidth required). There is, hence,
an optimal to minimize the total network bandwidth. From
the figure, we see that “splitting” the server in an intelligent
manner can substantially reduce the bandwidth requirement of
the system. On the other hand, for some low value of(e.g.,

10 in this case), 1 monotonically increases,
showing that serving the group of users with a single server
is optimal. This is mainly because the data rate is too high as
compared with the re-key overhead to merit splitting. Therefore,
the bandwidth saved for re-key messaging cannot mitigate the
increase in the extra multicast data traffic. There is, hence, a
“break even” at which splitting should be done. This is in
fact given by (17) when , i.e., the break even is at

, which is equal to 2.3 10 for our baseline.
We have also compared our analysis with simulation in this

figure. The discrete points represent our simulation results
while the solid line represents our analysis. Clearly, our analysis
matches very well with the simulation, showing the validity of
our model. In the remainder of this section, we will use analysis
in presenting our results.

We show in Fig. 5 versus using (17). Clearly it is a
straight line. Given certain values of and , as the external
arrival rate (and thereof the number of concurrent users) in-
creases, the user pool should be split into more groups. The
group number may range widely from a few to several hundreds.
What is worth noting from this result is that, as the underlying
arrival rate changes, the number of users served by each server
given by should be kept constant 2 ,
which is roughly equal to 2300 for the baseline) in order to min-
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TABLE II
SYSTEM PARAMETERS FORDIFFERENTAPPLICATIONS

Fig. 4. �̂(m)=�̂(1) versusm, given� (� = 10 , k = 4).

Fig. 5. m versus� (� = 10 , k = 4).

imize the overall network bandwidth. Therefore, the server net-
work should execute some split-and-merge mechanism to dy-
namically adjust to achieve such optimum, which we will
discuss in Section III.

Fig. 6. Maximum saving in bandwidth versus� for a server network as
compared with the single server case (� = 10 , k = 4).

We explore the maximum reduction in network bandwidth of
the server network as compared with the single server case. This
is shown in Fig. 6 as the maximum bandwidth saving, defined
as 1 1 , plotted against . As increases, we tend
to split the user pool into more groups and the saving, therefore,
increases. The saving first increases slowly and then increases
somewhat logarithmically with . In other words, the saving
increases with with a decreasing rate. We see from the figure
that with server networks, the network bandwidth requirement
can be greatly reduced.

We finally show the optimal ratio of data bandwidth to the
total bandwidth of a server (i.e., 1 )
versus for the distributed servers in Fig. 7 (solid line). We
call this ratio “bandwidth utilization.” Also shown in dotted
line is the single-server case. For the single-server case, the
ratio decreases continuously. This is mainly because, asin-
creases, either data rate and/or user holding time decreases, re-
sulting in a relative increase in the re-key overhead. Note that the
single-server approach attains a very low utilization, due to its
high re-key overhead. On the other hand, the distributed servers
approach increases such utilization tremendously. Its utilization
first decreases as with the single-server case whenis less than
the break even point of 2.310 (when 1). This is be-
cause when is small, a single server is optimal. However, when
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Fig. 7. Ratio of data bandwidth with respect to the total bandwidth of a server
at its optimum versus� (� = 10 , k = 4).

increases, utilization for the distributed servers approach in-
creases. It is due to the fact that whenis greater than the break
even , splitting reduces the total system bandwidth. Since each
server now serves a small user pool, the re-key overhead re-
duces, which increases the bandwidth utilization.

III. D YNAMIC SPLIT-AND-MERGESCHEME

Recall that we have shown in Section II that, in order to
minimize the overall network traffic in the system, the number
of users served by each server (and hence the group size) should
remain constant. As the underlying arrival rate fluctuates, a
server should, therefore, dynamically split and merge groups
to achieve such optimum. This is the so-called “dynamic
split-and-merge” scheme, which we propose and study in this
section. The split-and-merge scheme is implemented in a single
physical server to achieve load balancing as the underlying
traffic fluctuates. Therefore, the scheme incurs little overhead
(there is no membership exchange across physical servers) and
fits well in a hierarchical distributed servers system. Essentially
in this scheme, there is a threshold at a server. If the
number of users served by the server increases beyond,
we split the user pool into two or more logical servers. By the
same token, there is another lower threshold ; if the total
number of users in two or more (logical) servers is lower than

, then we merge these groups together. In order to better
explain the scheme, we first introduce a simplified version
in Section III-A, and then discuss the scheme in details in
Section III-A2. We present its analysis in Section III-B and
some illustrative results in Section III-C.

A. Scheme Description

1) -Split-and-Merge Scheme:In this subsection, we
introduce a simplified version of our “dynamic split-and-merge
scheme,” termed “-split-and-merge scheme.” In this scheme,
a server is always “split” into servers, and only servers can
be “merged” together, where is the branching factor of the
key tree.

(a)

(b)

Fig. 8. Examples of merge and split using simplek-split-and-merge scheme
for k = 2.

The “split” portion of the scheme is described as follows. If
the number of users in a server is greater than , the user pool
is split into groups served by logical servers. To achieve this,
we simply remove the root node from the hierarchical key tree
and form new groups which are subgroups of the original key
tree. In this way, the multicast data sent to the newgroups can
be encrypted by their subgroup keys from their own servers. The
delivery of data is secure because these keys are only known by
all members within their respective groups. Since no new key is
generated and sent, the re-key cost of splitting is zero.

We next describe the “merge” operation. If there areservers
in which the total number of users is less than , we merge
the groups in these servers into an aggregated group served by
only one logical server. To achieve this, we add a new root node
and the former root nodes of these groups become the second
level internal nodes. Since there is a new group key which needs
to be known by all the users, we can encrypt the new group
key with each group’s original group key and then send it to its
corresponding group. Therefore, each timegroups are merged,
there are overhead re-key messages.

Fig. 8(a) and (b) show an example of splitting and merging,
respectively, for a binary key tree. If there is a group in which
the total number of users is greater than , we split the
group into two and the original subgroup keys and be-
come the new group keys, and for the new groups. On
the other hand, if there are two groups in which the totalis
less than , we merge them and generate a new group key.
The original group keys, and , become subgroup keys,

and , which can be used to encrypt the new group key
which is sent to these two groups.
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2) Variable-Split-and-Merge Scheme:Now we present the
algorithm for the general case in which variable number of
servers can dynamically merge and split depending on the
number of users they serve. If the number of users in a server
is greater than , we split the server into several servers for
which the number of users in a server is as close as possible to
the optimal group size . If there are some servers in which
the total number of users is less than , we merge the groups
into a single logical server with the goal of getting as close as
possible to . The problem of finding proper groups to be
merged is NP-hard. In order to tackle this problem efficiently,
we can use the first-fit decreasing (FFD) bin-packing algorithm
as proposed in [19], which is a 11/9-approximation algorithm
(Baker gives a proof of this in [20]).

In the FFD algorithm, items are first sorted in decreasing
order of size. There are a number of empty bins of sizewith
increasing index. We place the sorted items into the bins one by
one, placing each item in the first bin in which it will fit (i.e., the
total size of items in the bin does not exceed) in a round-robin
manner. The time complexity of FFD algorithm is shown to be

, where is the number of items.
We can apply the FFD algorithm for merging servers. We con-

sider each server is an item with its group size as the item size.
Imagine that there are many bins with size of . If we can
pack the items into the bins compactly, the number of nonempty
bins is very close to the optimal number of servers. Therefore,
we should try filling each bin as much as possible. After packing
the groups into the bins, we can merge the groups in a bin into
a new larger group served by a single logical server.

Regarding servers which need to be merged in a bin, if the
number of servers is less than, then only a new root node
is created with all the trees attached to the new root (as in the

-split-and-merge scheme). On the other hand, if there are more
than trees, say trees, to be merged, we consider the following
simple algorithm to merge the trees. In order to keep the new key
tree as short and as balanced as possible, we add the taller trees
(i.e., a tree with greater depth) into higher level nearer to the root
(i.e., level ) while the shorter ones into the lower level
(i.e., level ). Fig. 9(a) illustrates a case of merging five
servers with a branching factor of 4. If and are the
shortest two trees, we should add these two trees into the second
level and the taller trees into the first level. The shadowed nodes
represent the new nodes created after merging.

We next discuss the splitting of a large group into multiple
groups so that the sizes of each of the groups are as close as
possible to the optimal size. We first keep splitting the key tree
until every split tree is less than . Then, we use FFD al-
gorithm to merge these trees together such that the sizes of the
new trees are close to the optimal group size. Fig. 9(b) shows
an example of splitting a key tree with different subtree sizes in
the second level. Let be the size of , where 4. We
have shown the case where ,
and , where 1 4. First of all, we split the key
tree into four trees. Since , , , and are
merged together after the FFD process.

Clearly, the variable-split-and-merge scheme is a more flex-
ible scheme than the-split-and-merge scheme because it al-
lows different combinations of groups to merge together. There-
fore, it is more efficient to achieve a group size close to the
optimum.

(a)

(b)

Fig. 9. Merge and split examples using the variable-split-and-merge scheme.

B. Analysis

The analysis of the dynamic split-and-merge scheme is diffi-
cult, especially pertaining to the optimization of and ;
therefore, we have used simulation to study its performance.
However, we do obtain some good analytic results on its band-
width requirement, which we present in this section.

We consider the underlying user traffic as a pseudostationary
Poisson process characterized by a series of upward and down-
ward transitions. Essentially, such a function is characterized by
a series of step functions as shown in Fig. 10. In this figure, we
plot user traffic against time. At time zero, the user traffic is
given by . At time , it steps to (if , then the user
traffic is a step-up function; otherwise, it is a step-down func-
tion) which maintains till . We further define
as the ratio of the duration of traffic staying at with respect
to the total time . In the following, we are mainly interested in
the steady state performance of the system given this step func-
tion. We assume that the duration of the traffic is sufficiently
long so that the transitional overheads of the step is negligible
as compared with the steady state. The extension to the general
case with multiple step transitions (which is simply a sum of
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Fig. 10. Step function of variation of user traffic.

step functions) is straightforward and would not be discussed
here.

If there were no split-and-merge scheme, the number of
servers is kept at for the whole duration . Therefore, the
network traffic of the “static” system, , is given by

(18)

where is given in (16) when the user traffic intensity is.
With the dynamic split-and-merge scheme, the optimal

number of servers after the step is . Hence, the total
network traffic for this scheme is given by

(19)

We finally define the bandwidth saving using our dy-
namic scheme as compared with without as

.

C. Illustrative Numerical Results

We study the variable-split-and-merge scheme with the step
function as given above mainly via simulation. Regarding the
static case, we use the number of servers optimized according
to the traffic at time zero, i.e.,. For the dynamic scheme, we ad-
just the number of servers by using the variable-split-and-merge
scheme. The split-and-merge decision is made after a certain
number of new users join the system (500 in this study). The
baseline parameters are 10 , 10 , 0.5, and

4. We first investigate the influence of the thresholds
and on bandwidth savings. We study the thresholds as ra-
tios to the optimal group size of the current traffic, .

We plot in Fig. 11 the bandwidth saving versus the ratio
given and . We see that as

the ratio increases, the bandwidth saving first increases to a
maximum and then decreases. This is because if is set
to be too low, there are too many split-and-merge overheads
which defeats the saving resulting from such operation; on the
other hand, if the threshold is set too high, the system is not
adaptive to the changes in traffic and, hence, is not of much use.
There is an optimal which leads to maximum bandwidth
saving. Such saving increases asincreases (i.e., as the step
size increases). Note that is quite insensitive to , which
should be set approximately 3.6 times of the optimal group size
of the current traffic.

Fig. 11. Bandwidth saving versus� =(�=m ), given� (� = 10 , � =
10 , k = 4� = 1.2�=m ).

Fig. 12. Bandwidth saving versus� =(�=m ), given� (� = 10 , � =
10 , k = 4; � = 3.6�=m ).

We next show in Fig. 12, the bandwidth saving versus
given , with the optimal . The same gen-

eral trend is observed. The optimal is quite independent
of the step size, which should be set to be about 1.2 times to
the optimal group size.

In Fig. 13, we show the bandwidth saving with the optimized
parameters versus given . The discrete points represent our
simulation results while the solid lines represent our analytic
results, from which we see close match with each other. This not
only validates our analysis, but also shows that the overheads
in split and merge is low. Recall that 1 corresponds to
a step-down function while 1 corresponds to a step-up
function (The case 1 corresponds to static user traffic).
The saving of the dynamic scheme increases with the step size.
For a given , when increases (i.e., the system stays longer
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Fig. 13. Bandwidth saving versus�, given� (� = 10 , k = 4, � =

1.2�=m , � = 3.6�=m ).

Fig. 14. Overhead versus� (� = 10 , k = 4,� = 1.2�=m , � =

3.6�=m ).

at a level different from that was optimized), the saving of the
dynamic scheme is higher as it can adapt to the changing traffic.
This figure shows that when the underlying user traffic is more
dynamic, our scheme achieves lower bandwidth requirement by
adaptively splitting and merging serving groups.

We show in Fig. 14, the total overhead defined as the number
of extra re-key messages to perform merging and splitting,
versus . As the step size increases, the overheads also in-
creases. The case 1 consists mainly of merging overhead,
while 1 consists mainly of splitting overhead. We see that
merging overhead is much higher than splitting overhead. In
any case, both overheads are quite low. These fixed overheads
is incurred each time when the underlying traffic changes. We
see that when the traffic fluctuates slowly, such overhead can
be negligible as compared with the on-going total network
bandwidth requirement for re-key messaging.

IV. CONCLUSION

In order to provide backward and forward secrecy in secure
multicast systems, encryption keys have to be changed when-
ever a user joins or leaves the system. These re-key messages
have to be communicated with the existing users in an effi-
cient manner to minimize the overheads. An efficient solution
for such key management is a hierarchical key tree approach.
However, such an approach still suffers high re-key bandwidth
requirement for a large number of users when a single server is
used. In order to reduce the bandwidth, complexity and man-
ageability of the system, we propose a distributed servers ap-
proach which trades off re-key messaging with some data traffic
to achieve minimum total traffic requirement.

We present a simple model for the system and show that there
is an optimal number of servers to minimize the bandwidth re-
quirement. Such a number is proportional to the number of users
in the system. The bandwidth saving of the system as compared
with the single-server case can be quite significant30 , es-
pecially for the case when the data stream is of lower bandwidth,
the average user holding time is short, and the average number
of concurrent users is high (e.g., the Internet stock quote appli-
cations).

When the underlying user traffic fluctuates, we propose an
adaptive scheme to dynamically split and merge the (logical)
servers in order to achieve the minimum bandwidth. Our scheme
incurs low split-and-merge overhead and achieves further reduc-
tion in bandwidth as compared with the static case. Such saving
increases when the user traffic is more dynamic.
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