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ABSTRACT
In spacious and multi-area buildings, fingerprint-based local-
ization often suffers from expensive location search. Besides,
context knowledge like inside/outside-region and floor area
is important for complete location service. To address above
issues, beyond the algorithms finding the exact location point,
we study accurate and efficient indoor area classification for
large-scale fingerprint-based system. We first study leveraging
the one-class classification to conduct inside/outside-region
detection given only the inside fingerprints. Then we discuss
different area determination algorithms, and compare their
detection accuracy and deployment efficiency. To further en-
hance accuracy, we also discuss rejecting unclassifiable signals
and calibrating heterogeneous devices. We have implemented
different algorithms on Android platforms. Experimental trials
(totally over 30,000 fingerprints and 15,000 test data) at an
international airport, a business building, a premium shopping
mall and a university campus have evaluated practicability and
deployability of different classification schemes. Our studies
can also serve as design guidelines for area classification.
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INTRODUCTION
Among the techniques explored for indoor location-based ser-
vice (ILBS), fingerprinting localization has become a well-
studied approach as it requires no knowledge of access point
(or base station) locations and line-of-sight signal measure-
ment [4, 13, 27, 45]. In the offline stage of fingerprinting
scheme, the surveyors collect received signal strength indica-
tors (RSSIs) from access points (APs) at predefined locations
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called reference points (RPs). The signals and the positions
together form the so-called fingerprints [15]. Then in the on-
line stage, a target (client or user) collects the vector of RSSIs,
and ILBS compares the signals with stored fingerprints. Co-
ordinates of the most similar fingerprints on the map are then
returned as the final position (location point) of the target.

Previous fingerprint-based ILBS systems often focus on find-
ing the exact location point of a target through some fine-
grained localization algorithms in the 2-D map [4, 17, 53].
However, when we are given a spacious region (say, a shop-
ping mall or an office building), with RF fingerprints collected
at multiple areas (say, floors or rooms), the process becomes
more complicated. Beyond finding the location point, two
critical questions arise: 1) how to detect whether the ILBS user
is inside or outside the fingerprint region (i.e., inside/outside-
region detection)? 2) how to identify which area (say, floors,
rooms or buildings) within the fingerprint region the user is
at (i.e., area identification)? The above concerns can be
summarized as the area classification problem.

Existing ILBS can benefit from solving the area classification
problem in the following aspects:

• Search scope and computation reduction: Area classifica-
tion can reduce the search scope of traditional fingerprint-
based localization [4,53]. A target can be first mapped to an
area like a floor or a building. Then fine-grained localization
schemes like [4, 14, 45, 53] can simply focus on that area.
It is essential especially in the spacious indoor sites like
the international airports, shopping malls or skyscrapers
with large quantities of RPs. If the search scope is not first
significantly reduced through inside/outside filtering or area
mapping, fine-grained localization cannot be effectively and
efficiently conducted. With recent explosion of indoor Big
Data, area classification is an important design in building
the large-scale indoor localization systems.
• Context awareness and notification: Area classification

also provides the current context information [12]. For
example, inside/outside-region detection, represented by
indoor/outdoor detection, is an important part for ILBS.
The systems need to know whether the target is outdoor or
indoor to seamlessly switch between the Google map and
an indoor one. Inside the region of interests, retailers in
a shopping mall aim at pushing specific advertisement or
coupons to users at different areas. The site monitors of
an airport conduct the flow analysis at different areas for
instant site management (or so-called “geo-fencing”).
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Figure 1: Floor plan (left) and photo (middle) of a business building (Hong
Kong Cyberport) and the signal similarity map for a target in two floors (right).
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Figure 2: System design of the area classification system.
It can serve as a plug-in for existing fingerprint systems.

Despite above benefits, the area-classification in large-scale
indoor localization has not yet been thoroughly studied in
many works [4, 27, 53]. Different area classification models
or algorithms have not been compared in spacious sites like
the airports or shopping malls. To fill this gap, we conduct
extensive studies in this paper over the practical deployment
of area classification. Different from the previous fine-grained
localization studies, we need to address the following three
unique challenges in deploying area classification:

1) How to identify whether the target is inside the region given
only the RF fingerprints within the region? Seamless switching
between inside/outside regions is important for the complete
location-based service, especially for indoor/outdoor detection.
As only the inside (say, indoor) fingerprints are provided due
to survey cost, classifying an RSSI vector outside the region
becomes challenging.

2) How to efficiently map the target to the area? Previous
traditional fine-grained localization often needs to search over
all the reference points [4], which is usually computationally
inefficient especially in large-scale fingerprint systems. When
we consider an efficient hierarchal way to locate the target
position (i.e., first area mapping and then fine-grained local-
ization), the area classification algorithm needs to be more
efficient than the traditional fine-grained one such that the
influence over the system overhead is minimal.

3) How to accurately determine the area given noisy signals?
Besides reducing search scope, area classification algorithms
should be robust to signal noise and accurate enough to map
the target to the correct area. Otherwise, incorrect area map-
ping can lead to even worse user experience than the error of
fine-grained localization. Figure 1 shows an example of floor
localization in a business building of Hong Kong Cyberport.
The grid color (corresponding to an RP Fn in site) represents
its RSSI Euclidean distance to query T in signal space [4] (the
redder in color, the closer in distance). Due to high similarity
between RPs at the 2nd and 3rd floors, if the nearest neighbor
matching is applied, the target is mapped from the 3rd floor to
2nd floor, which is unsatisfactory in user experience.

To address above issues, we conduct extensive experimental
studies over the area classification schemes. Our contributions
in this paper are in three folds as follows:

• One-class inside/outside-region detection: We formulate
the inside/outside-region detection into a one-class classifi-
cation or so-called data description problem. Through the
one-class classification, we classify the outside signals as
outliers to those inside ones. Our experiment shows that we
do not need extra fingerprints from the outside environment,
while achieving high accuracy in the indoor/outdoor switch
detection. Such a scheme can be easily applied to other
scenarios like “geo-fencing” or intrusion detection, given
only the fingerprints in the region of interests.

• Extensive studies over area classification models: Beyond
the traditional fine-grained location estimation, area clas-
sification can serve as a preprocessing step to reduce the
search scope first. The area mapping should be efficient
and accurate in order to shed minimal influence upon the
following fine-grained localization process. We extensive-
ly study and compare several machine learning algorithms
(models) for large-scale area classification, including area
identification (floor) and inside/outside-region detection (in-
door/outdoor). We compare their accuracy, training/testing
complexity, and adaptivity to different indoor sites, which
shed more deployment insight for area classification.

• Practical unclassifiable signal rejection and device cali-
bration: To support robust localization under noisy signal
environment, we further design rejection schemes for above
machine learning algorithms if sampled RF signals may not
provide deterministic location results. As the same signal
at different devices may have different readings, we also
propose a practical online approach which calibrates the de-
vice signals based on the RF fingerprints. These studies can
also serve as insightful design guidelines to build a practical
area classification system for spacious indoor sites.

Figure 2 shows the architecture of area classification which
can be integrated with any Wi-Fi fingerprint-based ILBS sys-
tem [4,24]. It is basically divided into offline phase and online
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phase. Each area (like a floor or a building), where the ILBS
systems are applied, is initially assigned with a unique area ID.
During the offline phase, given the fingerprints and their corre-
sponding area IDs, we first train certain classification models
and store their model parameters within the database. Then in
the online phase, the smartphone of the user measures Wi-Fi
signals and then queries for area. The inside/outside-region
detection first checks whether the user is inside or outside the
region of interests (say, indoor or outdoor). If he/she is out-
door, outdoor location service (say, Google map) is provided.
If given he/she is indoor, the system then checks whether the
device type is different from that in database. Online device
RSSI calibration is conducted upon the different devices, and
the device model parameter is stored into the database for later
use. The RSSI vectors are then fed to the area determination
module to find the floors or rooms. Given decision variables
(for example, the probabilities at different areas), the unclassi-
fiable signal rejection module discards the collected signals
if the decision is highly uncertain. Otherwise, the area ID is
returned to the client for fine-grained location estimation.

We have built our LBS system upon Android platforms, and
conducted extensive experimental trials (overall 30,960 Wi-Fi
fingerprints and 15,764 test RSSI vector) in an international
airport, a business building, a premium shopping mall and our
university campus. Our experiment compares these algorithms
in classification accuracy and efficiency, and validates the prac-
tical system design. We present that our proposed calibration
scheme effectively compensates the device heterogeneity for
accurate area localization. Our studies also show that one-
class classification algorithms can efficiently provide seamless
indoor/outdoor switching, requiring no outdoor fingerprint
collection. Though we consider here Wi-Fi RSSIs for ease of
ILBS prototyping on smartphones, the algorithms studied can
be easily applied to other existing or emerging fingerprints,
including Bluetooth and channel state information.

Note that in this paper we generalize floors, outdoor/indoor
and building/room into “areas” given RF fingerprints and the
area ID. Building/room classification is qualitatively similar to
the floor localization. RPs of different buildings or rooms can
be first partitioned into multiple groups via manual operation
or automatic clustering, and then area classification can be
conducted upon these groups. Therefore, we focus on the floor
identification and indoor/outdoor detection in our case studies.

The remainder of this paper is organized as follows. Af-
ter briefly reviewing related works, we first discuss the pre-
liminaries of the area classification with Wi-Fi fingerprints.
Then we present the classification algorithms (models) on the
inside/outside-region detection and then the area determina-
tion. After that, we discuss the unclassifiable signal rejection
and effective device calibration to further enhance classifica-
tion accuracy. We then present the experimental results with
the design considerations and finally conclude our paper.

RELATED WORK
We briefly review the related works as follows. Fingerprint-
based algorithms for indoor localization have been extensively
studied for decades, including RADAR [4], Horus [53], P-
CA [10], PiLoc [26], MapCraft [45], Modellet [24] and IN-

TRI [18]. They either utilize some similarity metrics between
RP fingerprints and target signals, or consider certain prob-
abilistic modeling over the RSSI. Though promising results
have been achieved, few of them have discussed large-scale
area classification for the floor, indoor/outdoor or building
switching issues. Our paper, however, investigates the area
classification problem, and provides the practical insights and
system designs when addressing it. Our area classification de-
sign is also generic enough as a plug-in for above state-of-the-
art systems [16, 24] for accuracy and efficiency improvement.

Some recent works have begun to study area localization [25,
30, 43, 52], ranging from floor classification, indoor/outdoor
switching and room (building) classification. Floor localiza-
tion has attracted attention in recent works [2, 6, 38]. Sky-
Loc [43] utilizes RSSIs from cell towers to locate the floors
on skyscrapers. However, cell signals are likely to be differ-
ent across various cell service providers, which may not be
widely deployed for pervasive fingerprint-based localization.
Inertial sensors like accelerometer readings can indicate the
transition between different floors [51]. F-Loc [49] leverages
crowdsourcing and inertial sensors to improve floor localiza-
tion accuracy. However, the inertial sensors require the initial
location input and constant calibration. Sensor readings may
suffer from external user input noise during crowdsourcing.
Implementing barometer for floor localization has attracted
much attentions recently [31]. Nevertheless, the performance
of barometer may degrade under thermal changes [31], and
requires initial floor input or overtime compensation [47]. Or-
thogonal to above works, our studies utilize commercial and
pervasive Wi-Fi signals beyond the existing networks. We
focus on finding a general classification design, which is more
scalable to existing RF-based ILBS systems and different s-
cenarios in practice. Above works are also amendable to our
study for more advanced fusion applications.

As a typical application of inside/outside-region detection,
indoor/outdoor switching has also been studied recently [34,
35, 37, 56]. Using the signal absence or drop in accuracy
of GPS indoors may not work when the smartphone users
are surrounded by high buildings and detect few satellites
outdoors [44]. Weather (cloudy or rainy) may also affect GPS
detection, as the number of satellites detected may also vary.
Moreover, energy consumption in GPS on mobiles can be
large. The works in [35] and [56] utilize GPS and the fusion
of multiple sensors (inertial motion sensors, light detector and
magnetometer) to classify the indoor/outdoor environments.
In [34], semi-supervised learning is proposed to detect indoor
or outdoor, given unlabeled sensor measurements.

Different from these works on sensor fusion, we use Wi-Fi
fingerprint signals for more general area classification (like
classifying the floors where GPS, light or magnetic field may
not be differentiable), and better scalability over different
mobile devices (like some simple wearable hardwares). Our
novel inside/outside-region detection with one-class classifi-
cation [41] requires no extra outdoor fingerprints beyond the
existing indoor localization systems. Furthermore, our studies
are also amendable to the semi-supervised learning [34] to
accommodate and leverage the unlabeled fingerprints.
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Room/building classification for context awareness has been
recently investigated. Represented by Surround-Sense [3],
classification using sound [39, 42] and light [46] has attracted
much attention. However, calibration or modification over
off-the-shelf smartphones for above signals is needed before
their practical and large-scale deployment. Further hardware
modification may be also needed for better detection accuracy.
The work in [25] searches against the entire Wi-Fi fingerprint
database of different rooms and buildings, which is computa-
tionally expensive for large-scale ILBS deployment. Different
from above, our paper focuses on RF fingerprints for general
deployment purpose and studies the efficient area classification
schemes.

PRELIMINARIES OF FINGERPRINTS
In this section, we briefly introduce the preliminaries of RSSI
fingerprints for area classification. Fingerprints used for area
classification can be the same as those provided for traditional
fingerprinting systems [4]. The survey can be conducted at
the predefined regular grids [24]. Each fingerprint is assigned
with an area ID corresponding to the area (say, the floor or
the building). Note that the area ID is given in the settings
of our paper, and can be derived through some simple map
partitioning or RF fingerprint clustering.

Let N be the number of reference points (RPs), and L be the
number of access points (APs) deployed in the site. Denote
the received signal strength indicator (RSSI) from AP l at RP
n as f l

n (dBm). At each predefined RP, we collect multiple
fingerprint signals in order to mitigate the random effect. The
mean RSSI f̄ l

n at each RP n from AP l is given by

f̄ l
n =

1
Sl

n

Sl
n

∑
s=1

f l
ns, (1)

where f l
ns is the s-th RSSI sample (in dBm) at RP n from AP

l, and Sl
n is the number of RSSI samples collected. Then the

RSSI vector at RP n is defined as

Fn =
[

f̄ 1
n , f̄ 2

n , . . . , f̄ L
n
]
. (2)

Meanwhile, let σ l
n (dB) be the corresponding standard de-

viation of Sl
n collected RSSIs. By definition, if AP l is not

detected at RP n, the signal is stored as 0.

Similarly, given the target measured RSSI t l from AP l, the
RSSI vector at target side, denoted as T, can be defined as

T =
[
t1, t2, . . . , tL] . (3)

In order to differentiate the RSSIs in indoor environment, mW ,
instead of dBm, is used when we consider the signal level, i.e.,

f̄ l
n|mW = 10( f̄ l

n|dBm)/10, (4)

which transforms RSSIs from smartphones to values for better
signal differentiation. Then we differentiate the strong and
weak signal values in the classification. Correspondingly, we
also transform RSSI values t l’s in T from dBm into mW .

Let C be the set of areas to be classified (i.e., classes in the
machine learning), and |C| be its cardinality (then each area

is indexed by c ∈ {1, . . . , |C|}). For each Fn, we have the
corresponding area ID Yn ∈ C. Similarly, for each target-
measured T, we denote its area ID as y ∈ C, which is to be
identified in our area classification study.

ONE-CLASS INSIDE/OUTSIDE-REGION DETECTION
In this section, we first discuss how to detect whether the user
is inside the region of interest. Usually we are not given RF
fingerprints outside the region due to large survey cost (for
example, in the outdoor environment around the target site).
To support ubiquitous localization and efficient inside/outside-
region detection, we consider formulating it into one-class
classification or the so-called data description problem. The
goal of one-class classification is to distinguish between a set
of known objects and all other possible ones [40]. Given a
set of known data (say, inside-region fingerprints), we find
a data description model over them. If a new object (signal)
does resemble the data description, it is likely to belong to the
target data (i.e., inside-region signals in our case). Otherwise,
it is likely to be an outlier or called a novelty [1] (i.e., outside-
region signals). Based on above settings, we can formulate
the inside/outside-region detection problem into a typical da-
ta description problem, given only fingerprints in the inside
region [41]. In the experiment, we train the data description
models based on all the RSSI fingerprints indoors. Then given
the trained models, we classify the incoming RSSI vectors.

In the following, we discuss several approaches for one-class
classification in our studies:

• Support vector data description (SVDD): The kernel func-
tion of support vector machine (SVM) forms a nonlinear
hyperplane classifying the data points. Adaptation of SVM
can serve as outlier detection based on such a nonlinear hy-
perplane [36], forming the SVDD. The SVDD hyperplane
separates the data points from the origin (in the feature
space), and maximizes the distance from the hyperplane
to the origin [29]. Then the incoming RSSIs outside the
hyperplane are classified as outliers (i.e., outdoor).

• Self-Organizing Map (SOM) [21]: SOM uses a self-
organizing map to describe the fingerprints. The construc-
tion of SOM over the fingerprints is to map them into the
feature space which retains their neighboring distances via
a neural network [21]. Then the outlier detection is based
on reconstruction error, which is the difference between this
fingerprint vector and its closest neuron in the trained SOM.

• Minimax probability machine (MPM) [11]: MPM finds the
linear classifier that separates the data from the origin in
the signal space [40]. The linear classifier represents the
hyperplane such that with at least a certain probability that
the given fingerprints lies within the inside-region, given
the mean and covariance matrix. The mean and covariance
matrix of the fingerprints are used to determine outliers [11].

• Principal component analysis (PCA) [7, 40]: PCA data
description maps the target data into a linear subspace con-
structed from principal components. PCA determines a
subspace hyperplane which minimizes the squared projec-
tion error. The observations which lie far away from the
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projection directions are classified as the outliers (outside-
region RSSI vectors). Specifically, PCA data description
checks the reconstruction error of the input fingerprint vec-
tor, i.e., the difference between the original object and its
projection onto the subspace.

While in this paper we focus on indoor/outdoor detection,
one-class classification can be easily applied to other region
detection such as the site monitoring and geo-fencing.

AREA IDENTIFICATION
In this section we discuss how to identify the target area, giv-
en the decision that the user may be in the site of interest.
Different from inside/outside-region detection, the existing
fingerprint systems often provides available at different areas
of the site. We discuss several models: nearest neighbor (NN),
signal heuristic classification (SHC), artificial neural network
(ANN), deep belief network (DBN) and support vector ma-
chine (SVM). For each algorithm, we discuss how to apply it
on area determination and its computational complexity.

Nearest Neighbor (NN)
NN finds the nearest neighbor to the target signals from all the
areas [25, 43]. Specifically, NN calculates the Euclidean dis-
tance between target RSSI vector and each of the fingerprints
at RP n [4, 24], i.e.,

En =
L

∑
l=1

(t l− f̄ l
n)

2, (5)

and finds the one with the smallest distance (or through
Bayesian schemes like [53]). In our experiment, we implemen-
t the algorithm in [4, 43], find the RP with minimum signal
distance and returns its area ID to the user. NN can be seam-
lessly applied to many existing localization systems [4]. Once
the nearest neighbors in signals are discovered, we can figure
out both the area and the exact location point.

Given |C| areas, L APs and N RPs in each area, the overall
complexity using NN is O(|C|LN). Note that O(|C|N) is
usually large in the spacious site and hence the computation is
heavy. Further using k-nearest neighbors algorithm introduces
higher accuracy but heavier computation.

Signal Heuristic Classification (SHC)
Based on some recent empirical studies [6], the number of
APs shared between the area (say, the floor) and the maximum
signal strength among these shared APs are two important
factors for area localization. Specifically, we first preprocess
the fingerprints to find the group of APs that covers each area
to be classified. The more APs are shared between the target
RSSI vectors and the group of APs within the area, the more
likely that the target is there. Meanwhile, we count the number
of strong signals within the shared APs. Strong RSSIs of the
common APs indicate that the target is at that area. The area
satisfying above two rules is returned to the user [6].

Offline computation complexity is O(|C|NL), as we need to
sweep through all RPs in sites to find the strong APs. Online
complexity depends on the AP number, which takes O(|C|L)
in finding the corresponding AP features in each area.

Artificial Neural Network (ANN)
To classify different areas, we construct a traditional multi-
layer neural network according to Back Propagation (BP)
network [8]. We use two hidden layers, a shallow structure,
to balance between accuracy and training complexity. Each
neuron in the input layer corresponds to an AP, while each
neuron in the output layer corresponds to a specific area. In
the testing phase, the output layer returns the scores, and we
find the area ID with the largest value in the output.

The online classification of ANN is fast with O(#Layers×
L). However, offline computation time in training is usually
heavy due to tedious training process and random parameter
initialization. In practice, the number of iteration is often
intractable to converge for the multi-layer neural network [32].

Deep Belief Network (DBN)
A DBN can be viewed as a composition of simple learning
modules, each of which is a restricted type of restricted Boltz-
mann machine (RBM) [23]. RBM contains a layer of visible
units that represent the input data, and a layer of hidden units
that learn to represent features of observations and capture
high-order correlations in the fingerprints. An RBM with mul-
tiple hidden units is a parametric model of the joint distribution
between the hidden and observed variables. RBMs are stacked
and trained in a greedy manner. Given the fingerprints at all
floors (say, fingerprint data F), we initially train the hidden
units based on the RBMs [23]. Then DBN conducts unsuper-
vised learning in order to learn the weight matrix W in RBM,
which represents the correlation between dimensions. After
such initialization, the DBN is unfolded into a neural network.
Then we retrain the neural network over the given fingerprints
and conduct further supervised learning and classification.

The major implementation issue with DBN is that the training
process is computationally expensive due to multiple RBMs.
Therefore, a greedy approach has been implemented in order
to learn the deep belief network one layer at a time to reduce
the learning time [19]. Once the DBN is trained, we can
simply utilize the ANN to classify the RSSI vectors online,
which takes O(#Layers×L).

Probabilistic Support Vector Machine (SVM)
We formulate SVM classification in “one-against-all" form.
For each area, we find an SVM model to distinguish it from
others, which are together considered as a single class [8]. |C|
areas hence have |C| SVM models. For each online query
SVM finds the probability that the target is at this area against
others. Given |C| probabilities, we then find the area with
maximum probability and return its ID to the user. In our area
classification, we implement the C-SVM [9].

We implement probabilistic SVM which outputs the probabili-
ty that the target is in each area. Its outputs can be further used
for signal rejection or probabilistic localization. The training
phase takes O(|C|3N3) [9]. For the online classification, SVM
takes linear time with respect to number of support vectors
(SVs) for each classification, i.e., O(#SVs). In practice, we
also find that the number of support vectors is much less than
O(L). Given |C| areas, the overall computation for each area
query takes O(|C|×#SVs), which is smaller than O(|C|L).
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SIGNAL REJECTION & DEVICE CALIBRATION
To further improve the accuracy, we discuss how to reject
unclassifiable signals and calibrate heterogeneous devices.

Unclassifiable Signal Rejection
Due to measurement noise or missing of AP signals, RSSI
vectors may be similar across different areas and may lead
to incorrect results. Through our deployment experience, we
have observed that the decision values of the algorithm may
be also similar at different areas. If the area decision is highly
uncertain (unclassifiable), rejecting this signal can prevent
misclassification and improve the user experience. Inspired
by above, we empirically study and find the rejection schemes
for each algorithm as follows:

• NN: We reject a given RSSI query if the top k RPs with the
most similar signals are not at the same floor.

• SHC: If multiple areas match the same signal heuristics
(strongest signals within common APs), we reject this T for
further classification.

• ANN & DBN: Recall that the target area is mapped to the
one with the highest output value from ANN (similarly, in
the output layer of DBN a neural network is applied). We
accept the RSSI signal to be classifiable if the maximum in
all output values are less than a given threshold α , or their
standard deviation is greater than a certain β .

• SVM: We reject T if all of the probabilities calculated are
less than a predefined threshold, or the difference between
the largest and the second largest probabilities is less than a
certain value. Specifically, we sort the pc’s in descending
order and reject the query signal T if

∀c, pc ≤ λ , or p1− p2 ≤ γ p1, (6)

where p1 and p2 are the two largest probabilities, while λ

and γ are the two predefined threshold parameters.

Besides discarding the unclassifiable Wi-Fi samples, we can al-
so implicitly send (crowdsource [48]) them to the cloud server
for further data analysis and system adaptation, which reduces
the rejection rate. To determine these rejection parameters,
in practical deployment, we may collect some test data for
optimal parameter verification. In our experimental settings,
we will provide the corresponding parameters with respect to
each classification model.

Device RSSI Calibration
For the same RSSI, different smartphones may have different
measurement values due to their Wi-Fi network interface dif-
ference [28]. For each target RSSI t̃ l from AP l, a linear shift
d from RSSI t l using a different device [24] has been reported,
i.e., t̃ l = t l +d. We consider a scalable online calibration in
order to reduce offline manual efforts. We first calculate the
similarity between the target RSSI vector and that of each RP.
After that, the RPs with similar signal vectors can be leveraged
for online signal calibration in order to get d. RSSI vector
comparison uses cosine similarity [20], denoted as cos(T,Fn),
between T and Fn. The cosine similarity compares the relative
signal trend of different APs rather than the absolute RSSI

values. For each t̃ l ∈ T, we find the corresponding the corre-
sponding f l

n’s at RPs from AP l. Given pairs of
[̃
t l , f l

n
]
, we

conduct the linear regression [22] and obtain the correspond-
ing offset d for target RSSI t̃ l . To mitigate the effect of random
noise, we find the top several RPs with cos(T,Fn) > η (say,
η = 0.95 in our experiment) for linear RSSI calibration [18].

The device calibration can be conducted in a crowdsourced
manner. We can leverage the ILBS user data for calibration
and store these d’s for different phone models. At the be-
ginning, given the MACs and Wi-Fi interface vendors, some
smartphones get online calibrated and their RSSI offsets are s-
tored in the database. The same smartphone models of the later
users can then benefit from these crowdsourced parameters.

EXPERIMENTAL EVALUATION
In this section, we present the experimental studies over these
classification models. We first present the experimental set-
tings and our comparison metrics. Then we discuss the experi-
mental results and the deployment recommendations.

Experimental Settings & Performance Metrics
In our extensive experiment trials, we have tested the floor
localization on the following sites:

• Hong Kong Cyberport (HKCP): A premium business build-
ing (Figure 1) where we collect 1,012 fingerprints (4 m grid
size) and 1,949 target data from 3 floors (overall more than
70,000 m2). Samsung S3, Coolpad F1, Lenovo A680 and
HTC One X are utilized for target data collection.

• Hong Kong Olympian City (HKOC): A premium shopping
mall (Figure 3), where we collect 3,021 fingerprints (5 m
grid size) and 5,441 targets from three floors (overall more
than 50,000 m2).

• Hong Kong International Airport (HKIA): where we con-
duct studies over 5,592 fingerprints or RPs (5 m grid size
in totally more than 20,000 m2 area) and 1,950 targets on
two neighboring sites, i.e., the 5th (the departure gate) and
the 7th floor (the check-in counter). We conduct experiment
on these two floors as they are the authorized areas and
assessed by most airline passengers (Figure 4).

• HKUST campus (Figure 5): the university campus where
we collect 18,177 fingerprints (3 m grid size) and 869 tar-
gets from 5 floors (the 2nd to the 6th floor; totally more
than 15,000 m2 area). For indoor/outdoor detection, we
also conduct extensive fingerprint collection over a 1,000
m2 indoor yard (320 RPs).

During the site survey, we utilize different smartphones, in-
cluding HTC One X, Coolpad F1, Lenovo A680 and Samsung
S3 for fingerprint and target signal collection. Our online RSSI
calibration is applied when the target device model is different
from that stored in the database. During fingerprint prepro-
cessing, we filter the APs tethered by the smartphones, and
combine the virtual APs according to their MAC addresses.

Note that these sites are often spacious without explicit wall
partitions between them (like Figure 1). At each RP, we collect
fingerprints from four different directions (north, south, west
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Figure 3: Floor map of the
HKOP shopping mall (1st, 2nd
and 3rd floor).

Figure 4: Floor plan of HKIA (5th
floor for arrival and 7th floor for de-
parture).

2nd Floor

3rd Floor

 4th, 5th, 6th 

Floor

Figure 5: Floor map of HKUST
campus (4th ∼ 6th floors have the
similar floor map).

Outdoor

Glass Wall & Roof

Indoor

Figure 6: Site photos of indoor
and outdoor sites for testing (uni-
versity campus).

and east) respectively to reduce the effect of human body on
signals. Before the site survey, we do not have the knowledge
of AP locations and their exact number at different floors. The
target data collection is collected at least 1 month after the
site survey stage. Wi-Fi fingerprint and target data collection
is conducted during working hours and therefore we do not
exclude the cases when there are people (crowds) nearby.

We have empirically studied the optimal parameters for each
algorithm, which are shown as follows. In NN, if the top
k = 5 nearest neighbors are from different areas, this target
RSSI vector is rejected. In ANN, we construct a typical four-
layer artificial neural network with two hidden layers. The
first hidden layer has 20 neurons, and the second one has 3
neurons. We empirically set α = 0.7 (maximum score) and
β = 0.1 (standard deviation) for signal rejection in ANN. In
SVM, we use the grid search to find the parameters. We
use the linear kernel, C-SVC [9], and [λ ,γ] = [0.6,0.3] for
signal rejection in our SVM. In DBN, the number of training
epochs is set to be 1,000, and 3 hidden layers and sigmoid
functions are applied in its neural network classification. If
the maximum score in the output layer of DBN is less than
0.95, the system rejects the signal.

To evaluate inside/outside-region detection, we also conduct
indoor/outdoor switch tests near our campus hall. We use HTC
One X and Lenovo A680 to collect fingerprints and query data
(targets). The site survey process is similar to the above floor
localization. Overall 3,158 fingerprints (in 4 m survey grid)
and 5,555 targets are collected. In this experimental site, the
glass roof structure above the campus hall allows penetration
of GPS signals and makes simple GPS-based indoor/outdoor
detection (i.e., whether GPS is not detected) difficult. Hence,
we focus on Wi-Fi fingerprinting in the experiment. Mean-
while, we also test the IO-Detector [56] in this site.

Empirical parameter studies are also conducted for different
schemes in indoor/outdoor detection, whose default settings
are as follows. In PCA, we empirically select 35 principal
components. The size of the self-organizing map in SOM is

40. Width parameter of RBF in SVDD is 0.5. In MDM, the
width parameter in RBF is set to be 0.1.

We evaluate the area identification and inside/outside-region
classifiers based on the following performance metrics:

• Classification accuracy: the number of correct decisions
over that of all the classifiable samples (after signal rejec-
tion). It characterizes the robustness under different building
structures and signal noise levels.

• Online computational time: which calculates the mean lo-
calization time of each given target measurement. The less
time the calculation takes, the less energy the mobile device
consumes and the shorter time the users have to wait for.
We also measure the energy consumption of area detection
to further compare their deployment efficiency [54].

• Offline model training time: We measure the computation
time in the model learning. Based on our deployment expe-
rience, tedious offline training or fine-tuning may take great
engineering efforts, while the simple model trainings are
usually preferred for fast LBS deployment.

• Rejection rate (RR): the number of unclassifiable samples
over the overall number of targets [33]. It also characterizes
the robustness of the algorithms in classifying noisy and
abnormal signals.

• True negative rate (T NR), which evaluates the performance
of a rejection scheme, and is given by T NR = T N

T N+FP . T N
denotes the number of true negative, i.e., correctly rejected
samples that in fact have wrong floor mapping. FP denotes
the number of false positive, i.e., wrongly rejected samples
that actually can have right area mapping.

• True positive rate (T PR), which is given by T PR = T P
T P+FN .

T P denotes the number of true positive, i.e., the accepted
samples which in fact have correct floor mapping. FN de-
notes the number of false negative, i.e., the rejected samples
which actually have correct floor mapping.
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Figure 7: AP detection frequency of RPs at
different sites (HTC One X).
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Figure 12: SVM accuracy versus different
devices in the business building (RSSI finger-
printing with Lenovo A680).

We also utilize TPR and TNR for the indoor/outdoor detection.
In this scenario, “positive” corresponds to indoor fingerprints,
while “negative” corresponds to outdoor fingerprints.

Experimental Results & Deployment Recommendations
Note that the APs are deployed by different parties and we
do not have exact knowledge of their locations and power. In
the airport, overall 1,800 APs are detected. In the university
campus, overall 1,702 APs are detected. In business building
overall 424 APs are detected. In the shopping mall, overall 977
APs are detected. Due to the different wall partitions and AP
coordination, different number of APs are detected at each RP
in Figure 7. Note that in our Wi-Fi fingerprints, we do not rule
out the noisy cases when there are crowds nearby. Figure 8
shows the cumulative probability of signal noise (standard
deviation σ l

n of f l
n at each RP). We may observe that there

is larger noise within the university campus and the airport
than the business building due to the larger data size and more
people access. From above, we expect that the site difference
in AP detection and signal noise may lead to different area
classification results.

Figure 9 shows the area identification accuracy versus pro-
portion of AP removal at each target. We utilize the business
building for comparison, as we have shown in the introduction
that it is a typical challenging site for area classification (re-
sults in other sites are qualitatively similar). We simulate the
effect of new wall partitioning or crowd blocking. As shown

in Figure 9, all of their accuracy degrades with removal of
APs. Loss of some important APs (strong or unique APs)
leads to high signal similarity across floors. We may observe
that AP loss and random noise are two important factors in the
mapping error of Figure 1.

We can observe in Figure 9 that SHC suffers from missing
APs as SHC largely relies on strong RSSI to differentiate the
floors. SVM and DBN outperform other algorithms under
all kinds of AP removal. Through optimization, the support
vectors in SVM can preserve the differentiation of floors af-
ter AP removal. Multiple stacked RBMs in DBN introduce
deep structure and extract good features from the fingerprints,
making it less sensitive to AP loss. In the business building,
due to high similarity and noisy signals, ANN suffers from
overfitting in the random noise of training samples. Therefore,
it cannot accurately classify the targets there.

Figure 10 shows the area identification accuracy versus survey
grid size. We remove some of the RPs according to their inter-
val (from 4 m to 8 m) in order to form different grid size. As
shown in Figure 10, all algorithms degrade in classification ac-
curacy when the survey grid size increases. Accuracy of SHC
degrades under large grid size, because it greatly relies on
the completeness of fingerprints. Some strong signal measure-
ments are lost under RP removal. Overall, SVM performs with
better accuracy than other algorithms. It is mainly because
SVM still retrieves support vectors from the remaining signals
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after fingerprint reduction, which is less sensitive to training
sample number. DBN significantly decreases in classification
accuracy as the trained belief network largely relies on the
given fingerprint data in order to represent the fingerprint map.
If the size of fingerprint is significantly reduced (say, given
sparse survey), its classification accuracy may decrease.

Figure 11 summarizes the area identification accuracy using
different algorithms at these indoor sites. We observe that they
all achieve high accuracy in the university campus, mainly
because there are many wall partitions in the campus building
to differentiate the RF signals, which matches the observations
in [6, 25, 43]. However, some algorithms achieve lower accu-
racy in the business building and other spacious sites because
of the noisy signals there. SVM achieves robust performance
in all sites, as it finds the support vectors which can effectively
differentiate the RSSI vectors in the sites. Capturing the rela-
tionship between the floors and signals, SVM is more accurate
than other algorithms in the campus and the mall. The deep
structure of DBN is adaptive to fewer RF fingerprints and
achieves higher detection accuracy in the business building
and the airport than SVM.

Figure 12 shows the area identification accuracy of proba-
bilistic SVM using different devices in the business building
before and after our online device calibration. We can observe
much higher localization accuracy among different mobile
devices after proposed RSSI calibration. It is mainly because
the proposed online calibration successfully adjusts the RSSIs
among different devices, enhancing the scalability in practical
deployment. Note that after RSSI calibration, difference in
accuracy is mainly because different smartphones may detect
different number of APs. We have also applied our calibration
scheme over other schemes, and the improvement is qualita-
tively similar. For brevity we do not repeat them here.

Figure 13 shows the rejection rate (RR) of different algorithms
at these experimental sites. We may observe higher rejection
rates in the shopping mall and the business building, as the
fingerprint signals are similar across areas in the building,
making the LBS less responsive to user query. Compared with
other sites, as there are more wall partitioning in the campus,
we can observe a lower rejection rate for SHC, NN and SVM.
Overall, DBN and ANN have higher rejection rate in the mall

and the business building. It is because the over-fitted neural
network trained from the input fingerprints can be sensitive to
noise in these two sites.

We compare average classification time (online) of the algo-
rithms for each query. We focus on the performance in the
business building with HTC One X as other results are quali-
tatively similar. Note that NN is much slower than other four
algorithms (around 2.45 s per target) in this site due to large
search space (3,021 RPs). SHC takes 0.2115 s for each target.
SHC is faster as it only considers the APs detected at each
target. SVM takes 0.0383 s as the training process retrieves
vector variables [ω , b] to represent differentiation between
signals. ANN takes 0.2493 ms for one target, while DBN uses
average 8.10 ms for online classification. In terms of offline
training time, both NN and SHC do not require extra model
learning. SVM takes 2.376 s and ANN takes 1.884 s for all
RF fingerprints in the business building. DBN takes overall
268.73 s due to its deep structures. We can see that DBN takes
much longer training time than other schemes. For practical
deployment, we highly recommend reducing the computation
through approaches like parallel programming to save training
time and also the implementation efficiency.

ANN and DBN are much faster than NN, SHC and SVM.
It is because the trained models using ANN and DBN are
more compact (only the weights are stored), leading to higher
efficiency in computation. In our experiment, the DBN com-
putation is heavier than ANN as DBN has a deeper structure
with more layers and layer units. We also measure the power
consumption using above different schemes in online testing
based on PowerTutor [54]. On average the floor localization
application with NN takes 364 mW, SHC takes 317 mW and
SVM consumes 167 mW. With relatively lower consumption,
ANN takes 107 mW and DBN takes 127 mW. Therefore, in
order to save energy for mobiles, SVM, ANN and DBN are
preferred.

Figure 14 shows the rejection TPR and TRN of different al-
gorithms in the business building using HTC One X. We may
observe that for each algorithm TNR is smaller than TPR. It is
mainly because in deployment, the rejection scheme should en-
sure TPR with higher priority. It is mainly because once “floor
jump" error happens, the user experience of LBS significantly
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degrades. Note that a slightly sensitive rejection design may
simply lead to negligible delay in location response. After
the previous rejection, the smartphone may collect another
RSSI vector in around 0.5 s, and then it conducts another floor
classification in less than 0.5 s. Therefore, the user in fact does
not experience much delay in the real deployment.

We have further conducted floor classification in our university
campus using SVM, DBN and the basic barometer-altitude
transformation [5]. We define 1 as correct decision, 0 as in-
correct one and −1 as signal rejection for SVM and DBN.
We have collected RSSI vectors and barometer readings in
around 13 hours (around 90,000 barometer readings). Fig-
ure 15 shows that without continuous and timely calibration
the barometer experiences significantly different readings at
a single location. Hence the pure barometer without exter-
nal calibration (compensation) can only achieve 51.57% ac-
curacy in our floor determination, which also matches the
observations in [31, 50, 55]. On the other hand, SVM and
DBN achieve better detection accuracy with RSSI. Specifi-
cally, SVM achieves 92.7% identification accuracy and DBN
achieves around 86.25% accuracy.

To summarize, the advantage of the barometer over the RF
signals is the low power consumption (around 10 mW) and
the high accuracy given compensation. RF fingerprint-based
floor detection is more robust than the barometer under dy-
namic thermal change. In practical point of views, deploying
barometer is more suitable in measuring altitude offset rather
than the absolute floor height, or fusing with other wireless
signals for more general floor classification.

We have also tested each of the one-class classification al-
gorithms for indoor/outdoor detection, which is shown in
Figure 16. We can observe that the overall indoor/outdoor
classification accuracy of SOM, SVDD, MPM and PCA are
84.97%, 81.35%, 88.97% and 95.69%, respectively. From
above results, we may observe a better accuracy using PCA
for indoor/outdoor detection. It is mainly because PCA re-
duces the dimensions in fingerprints and meanwhile some
noisy dimensions are also filtered, leading to better classifi-
cation accuracy. SOM relies on a neural network for feature
space mapping, which suffers from overfitting of training da-
ta. How to combine these classifiers for detection accuracy
improvement will be studied in our future work.

Furthermore, for SOM, SVDD, MPM and PCA, the TPR
in one-class classification is 88.54%, 84.80%, 99.73% and
99.06%, respectively. The corresponding TNR is 80.88%,
85.72%, 82.45% and 95.60%, respectively. We observe that
TPR is often higher than TNR in most schemes. It is be-
cause the indoor RSSI vectors often include strong signals due
to more APs indoors, leading to easier classification. Some
outdoor RSSI vectors near the boundary occasionally mea-
sure strong indoor APs and hence lead to misclassication for
outdoor signals. We have also tested the IO-detector [56] in
our university campus. IO-detector jointly leverages the light
sensors, magnetometer and cell tower for indoor/outdoor de-
tection. It achieves 86.76% detection accuracy (TPR is 99.9%
and TNR is 71.93%) in our experimental site. We observe that
when deploying in the glass-roof area the cell and light sensor
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Figure 16: Accuracy/TPR/TNR comparison
of SOM, SVDD, MPM and PCA in the
inside/outside-region detection (campus).

readings are not differentiable between indoor/outdoor and
hence the TNR is not high. We can observe that RF fingerprint-
based inside/outside-region detection is more adaptive to such
environment with similar light intensity and cell signals. Fur-
ther sensor fusion with light sensors or cell signals can be
applied with higher expense of energy consumption.

We have also compared the offline training and online running
time of one-class classification algorithms. The average train-
ing time for SOM, SVDD, MPM and PCA is 106.0 ms, 7.3 ms,
0.276 ms and 2.6 ms, respectively. The corresponding average
testing time for a query is 0.0410 ms, 0.0962 ms, 0.1061 ms
and 0.0860 ms, respectively. SOM and PCA are both fast in
classification as they first map the target RSSI vectors to lower
dimensions for classification and lead to less computation. To
summarize, our results show PCA data description can be a
more accurate and efficient way for indoor/outdoor detection.

CONCLUSION
Area classification can be leveraged for context awareness and
to improve the computation efficiency of LBS systems. De-
spite its benefits, there have not been systematic deployment
studies over accurate and efficient area classification algo-
rithms (inside/outside-region detection and area identification)
in spacious indoor sites like airports or shopping malls.

In this paper, we study large-scale fingerprint-based area clas-
sification through extensive qualitative and quantitative studies.
We study the existing challenges in finding correct indoor areas
(including floors, indoor/outdoor and buildings) and efficien-
t deployment of different schemes. Extensive experimental
studies in several spacious sites have further validated our
system designs and insights for area-aware classification in
spacious sites. Our extensive experimental comparison stud-
ies show the practicability and deployability of efficient area
determination models, proper rejection schemes of unclassifi-
able signals, inside/outside-region detection with the one-class
classification and adaptive online device calibration.
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