
Bipartite Matching & the Hungarian Method
Last Revised: August 30, 2006

These notes follow formulation developed by Subhash
Suri http://www.cs.ucsb.edu/˜suri.

We previously saw how to use the Ford-Fulkerson Max-
Flow algorithm to find Maximum-Size matchings in bi-
partite graphs. In this section we discuss how to find
Maximum-Weight matchings in bipartite graphs, a sit-
uation in which Max-Flow is no longer applicable.

The O(|V |3) algorithm presented is the Hungarian Al-
gorithm due to Kuhn & Munkres.

• Review of Max-Bipartite Matching
Earlier seen in Max-Flow section

• Augmenting Paths

• Feasible Labelings and Equality Graphs

• The Hungarian Algorithm for
Max-Weighted Bipartite Matching

1

Application: Max Bipartite Matching

A graph G = (V, E) is bipartite if there exists partition
V = X ∪ Y with X ∩ Y = ∅ and E ⊆ X × Y.

A Matching is a subset M ⊆ E such that ∀v ∈ V at
most one edge in M is incident upon v.

The size of a matching is |M |, the number of edges in
M.

A Maximum Matching is matching M such that every
other matching M ′ satisfies |M ′| ≤ M.

Problem: Given bipartite graph G, find a maximum
matching.

2

A bipartite graph with 2 matchings

L R L R

3

We now consider Weighted bipartite graphs. These
are graphs in which each edge (i, j) has a weight, or
value, w(i, j). The weight of matching M is the sum
of the weights of edges in M, w(M) =

∑

e∈M w(e).

Problem: Given bipartite weighted graph G, find a
maximum weight matching.

01

1

33

3

2 22

2 X3X1X

3YY21Y

2

33

Y Y3

X1 X2 X3

21Y

Note that, without loss of generality, by adding edges of weight

0, we may assume that G is a complete weighted graph.

4

Alternating Paths:

3 4 6

Y

X

2Y

X

Y

X

Y

X

Y

X

Y

X

1 3 4 5 6

1 2 5 2 3 4 5

Y

X

2Y

X

Y

X

Y

X

Y

X

Y

X

1 3 4 5 6

1 6

• Let M be a matching of G.

• Vertex v is matched if it is endpoint of edge in M ;
otherwise v is free
Y2, Y3, Y4, Y6, X2, X4, X5, X6 are matched,
other vertices are free.

• A path is alternating if its edges alternate between
M and E − M .
Y1, X2, Y2, X4, Y4, X5, Y3, X3 is alternating

• An alternating path is augmenting if both end-
points are free.

• Augmenting path has one less edge in M than in
E − M ; replacing the M edges by the E − M

ones increments size of the matching.

5

Alternating Trees:

X

1 3 4 5 6

41 2 3 5 6

Y Y

X

Y

X

Y

X

Y

X

2

X

Y

6

Y

X

2Y

X

Y

X

Y

X

Y

X

Y

X

1 3 4 5 6

1 2 3 4 5

An alternating tree is a tree rooted at some free vertex
v in which every path is an alternating path.

Note: The diagram assumes a complete bipartite graph;
matching M is the red edges. Root is Y5.

6

The Assignment Problem:

Let G be a (complete) weighted bipartite graph.

The Assignment problem is to find a max-weight match-
ing in G.

A Perfect Matching is an M in which every vertex is
adjacent to some edge in M .

A max-weight matching is perfect.

Max-Flow reduction dosn’t work in presence of weights.
The algorithm we will see is called the Hungarian Al-
gorithm.

7

Feasible Labelings & Equality Graphs

1 1 1

1 22

3

3 3

1

1 0

2 22

1 1 1

1 22

3

3 3

2 22

A feasible labeling ℓ Equality Graph Gℓ

• A vetex labeling is a function ℓ : V → R

• A feasible labeling is one such that

ℓ(x) + ℓ(y) ≥ w(x, y), ∀x ∈ X, y ∈ Y

• the Equality Graph (with respect to ℓ) is
G = (V, Eℓ) where

Eℓ = {(x, y) : ℓ(x) + ℓ(y) = w(x, y)}

8

1 1 1

1 22

3

3 3

1

1 0

2 22

1 1 1

1 22

3

3 3

2 22

A feasible labeling ℓ Equality Graph Gℓ

Theorem: If ℓ is feasible and M is a Perfect matching
in Eℓ then M is a max-weight matching.

Proof:
Denote edge e ∈ E by e = (ex, ey).
Let M ′ be any PM in G (not necessarily in in Eℓ).
Since every v ∈ V is covered exactly once by M we
have
w(M ′) =

∑

e∈M ′ w(e) ≤
∑

e∈M ′(ℓ(ex) + ℓ(ey)) =
∑

v∈V ℓ(v)

so
∑

v∈V ℓ(v) is an upper-bound on the cost of any
perfect matching.

Now let M be a PM in Eℓ. Then
w(M) =

∑

e∈M w(e) =
∑

v∈V ℓ(v).

So w(M ′) ≤ w(M) and M is optimal.

9

1 1 1

1 22

3

3 3

1

1 0

2 22

1 1 1

1 22

3

3 3

2 22

A feasible labeling ℓ Equality Graph Gℓ

Theorem[Kuhn-Munkres]: If ℓ is feasible and M is a
Perfect matching in Eℓ then M is a max-weight match-
ing.

The KM theorem transforms the problem from an op-
timization problem of finding a max-weight matching
into a combinatorial one of finding a perfect match-
ing. It combinatorializes the weights. This is a classic
technique in combinatorial optimization.

Notice that the proof of the KM theorem says that for
any matching M and any feasible labeling ℓ we have

w(M) ≤
∑

v∈V

ℓ(v).

This has very strong echos of the max-flow min-cut
theorem.

10

Our algorithm will be to

Start with any feasible labeling ℓ

and some matching M in Eℓ

While M is not perfect repeat the following:

1. Find an augmenting path for M in Eℓ;
this increases size of M

2. If no augmenting path exists,
improve ℓ to ℓ′ such that Eℓ ⊂ Eℓ′.
Go to 1.

Note that in each step of the loop we will either be
increasing the size of M or Eℓ so this process must
terminate.

Furthermore, when the process terminates, M will be
a perfect matching in Eℓ for some feasible labeling ℓ.
So, by the Kuhn-Munkres theorem, M will be a max-
weight matching.

11

Finding an Initial Feasible Labelling

1 6 8

6 4

486

000

1

3YY21Y

3X2X1X

Finding an initial feasible labeling is simple. Just use:

∀y ∈ Y, ℓ(y) = 0, ∀x ∈ X, ℓ(x) = max
y∈Y

{w(x, y)}

With this labelling it is obvious that

∀x ∈ X, y ∈ Y, w(x) ≤ ℓ(x) + ℓ(y)

12

Improving Labellings

Let ℓ be a feasible labeling.
Define neighbor of u ∈ V and set S ⊆ V to be

Nℓ(u) = {v : (u, v) ∈ Eℓ, }, Nℓ(S) = ∪u∈SNℓ(u)

Lemma: Let S ⊆ X and T = Nℓ(S) 6= Y . Set

αℓ = min
x∈S,y 6∈T

{ℓ(x) + ℓ(y) − w(x, y)}

and

ℓ′(v) =











ℓ(v) − αℓ if v ∈ S

ℓ(v) + αℓ if v ∈ T

ℓ(v) otherwise

Then ℓ′ is a feasible labeling and
(i) If (x, y) ∈ Eℓ for x ∈ S, y ∈ T then (x, y) ∈ Eℓ′ .
(ii) If (x, y) ∈ Eℓ for x 6∈ S, y 6∈ T then (x, y) ∈ Eℓ′ .
(iii) There is some edge (x, y) ∈ Eℓ′ for x ∈ S, y 6∈ T

13

The Hungarian Method

1. Generate initial labelling ℓ and matching M in Eℓ.

2. If M perfect, stop.
Otherwise pick free vertex u ∈ X.

Set S = {u}, T = ∅.

3. If Nℓ(S) = T, update labels (forcing Nℓ(S) 6= T)

αℓ = mins∈S, y 6∈T {ℓ(x) + ℓ(y) − w(x, y)}

ℓ′(v) =











ℓ(v) − αℓ if v ∈ S

ℓ(v) + αℓ if v ∈ T

ℓ(v) otherwise

4. If Nℓ(S) 6= T , pick y ∈ Nℓ(S) − T .

• If y free, u − y is augmenting path.
Augment M and go to 2.

• If y matched, say to z, extend alternating tree:
S = S ∪ {z}, T = T ∪ {y}. Go to 3.

14

1 6 8

6 4

486

000

1

3YY21Y

3X2X1X

6 8

8

4

46

000 3YY21Y

3X2X1X

6 8

486

000

1X

Y21Y

3

3

X

Y

2X

Original Graph Eq Graph+Matching Alternating Tree

• Initial Graph, trivial labelling
and associated Equality Graph

• Initial matching: (x3, y1), (x2, y2)

• S = {x1}, T = ∅.

• Since Nℓ(S) 6= T , do step 4.
Choose y2 ∈ Nℓ(S) − T.

• y2 is matched so grow tree by adding (y2, x2),
i.e., S = {x1, x2}, T = {y2}.

• At this point Nℓ(S) = T , so goto 3.

15

1 6 8

6 4

486

000

1

3YY21Y

3X2X1X

6 8

8

4

46

000 3YY21Y

3X2X1X

2

6 8

6 4

4

00

64

3YY21Y

3X2X1X

Original Graph Old Eℓ and |M | new Eq Graph

• S = {x1, x2}, T = {y2}
and Nℓ(S) = T

• Calculate αℓ

αℓ = min
x∈S,y 6∈T



















6 + 0 − 1, (x1, y1)
6 + 0 − 0, (x1, y3)
8 + 0 − 0, (x2, y1)
8 + 0 − 6, (x2, y3)

= 2

• Reduce labels of S by 2;

Increase labels of T by 2.

• Now Nℓ(S) = {y2, y3} 6= {y2} = T .

16

6 8

8

4

46

000 3YY21Y

3X2X1X

2

6

8

4

6

6

4

00 3YY21Y

3X2X1X

2

6 8

6 4

4

00

64

3YY21Y

3X2X1X

Orig Eℓ and M New Alternating Tree New M

• S = {x1, x2}, Nℓ(S) = {y2, y3}, T = {y2}

• Choose y3 ∈ Nℓ(S) − T and add it to T.

• y3 is not matched in M so we have just found an
alternating path x1, y2, x2, y3 with two free end-
points. We can therefore augment M to get a
larger matching in the new equality graph. This
matching is perfect, so it must be optimal.

• Note that matching (x1, y2), (x2, y3), (x3, y1)

has cost 6 + 6 + 4 = 16 which is exactly the
sum of the labels in our final feasible labelling.

17

Correctness:

• We can always take the trivial ℓ and empty match-
ing M = ∅ to start algorithm.

• If Nℓ(S) = T, we saw on that we could always
update labels to create a new feasible matching
ℓ′. The lemma on page 13 guarantees that all
edges in S×T and S̄×T̄ that were in Eℓ will be in
Eℓ′. In particular, this guarantees (why?) that the
current M remains in Eℓ′ as does the alternating
tree built so far,

• If Nℓ(S) 6= T, we can, by definition, always aug-
ment alternating tree by choosing some x ∈ S

and y 6∈ T such that (x, y) ∈ Eℓ. Note that at
some point y chosen must be free, in which case
we augment M .

18

• So, algorithm always terminates and, when it does
terminate M is a perfect matching in Eℓ so, by
Kuhn-Munkres theorem, it is optimal.

Complexity

In each phase of algorithm, |M | increases by 1 so
there are at most V phases. How much work needs
to be done in each phase?

In implementation, ∀y 6∈ T keep track of
slacky = minx∈S{ℓ(x) + ℓ(y) − w(x, y)}

• Initializing all slacks at beginning of phase takes
O(|V |) time.

• In step 4 we must update all slacks when vertex
moves from S̄ to S.
This takes O(|V |) time; only |V | vertices can be
moved from S̄ to S, giving O(|V |2) time per phase.

• In step 3, αℓ = miny∈T slacky and can there-
fore be calculated in O(|V |) time from the slacks.
This is done at most |V | times per phase (why?)
so only takes O(|V |2) time per phase.
After calculating αℓ we must update all slacks.
This can be done in O(|V |) time by setting

∀y 6∈ T, slacky = slacky − αℓ.
Since this is only done O(|V |) times, total time
per phase is O(|V |2).

19

There are |V | phases and O(|V |2) work per phase
so the total running time is O(|V |3).

20

