Bipartite Matching & the Hungarian Method
Last Revised: August 30, 2006

These notes follow formulation developed by Subhash
Suri http://www.cs.ucsb.edu/"suri.

We previously saw how to use the Ford-Fulkerson Max-
Flow algorithm to find Maximum-Size matchings in bi-
partite graphs. In this section we discuss how to find
Maximum-Weight matchings in bipartite graphs, a sit-
uation in which Max-Flow is no longer applicable.

The O(|V|3) algorithm presented is the Hungarian Al-
gorithm due to Kuhn & Munkres.

e Review of Max-Bipartite Matching
Earlier seen in Max-Flow section

e Augmenting Paths
e Feasible Labelings and Equality Graphs

e The Hungarian Algorithm for
Max-Weighted Bipartite Matching

Application: Max Bipartite Matching

A graph G = (V, F) is bipartite if there exists partition
V=XUYwthXnNnY=0and EC X xXY.

A Matching is a subset M C FE such that Vv € V at
most one edge in M is incident upon v.

The size of a matching is | M|, the number of edges in
M.

A Maximum Matching is matching M such that every
other matching M’ satisfies |M'| < M.

Problem: Given bipartite graph G, find a maximum
matching.

A bipartite graph with 2 matchings

We now consider Weighted bipartite graphs. These
are graphs in which each edge (7, 7) has a weight, or
value, w(z, 7). The weight of matching M is the sum
of the weights of edges in M, w(M) = > .cpr w(e).

Problem: Given bipartite weighted graph G, find a
maximum weight matching.

Y, Y, Y3
®
3 3
2
o
X1 Xy X3

Note that, without loss of generality, by adding edges of weight
0, we may assume that GG is a complete weighted graph.

Alternating Paths:

Y, Y, Ys Y. Ys Y Y, Y, Ys Y, Vs
@ ®
X, X, X3 X4 Xs Xg X, X, X3 X4 Xs

Let M be a matching of G.

Vertex v is matched if it is endpoint of edge in M
otherwise v is free

Yo, Y3, Yy, Y, Xo, Xy, X5, Xg are matched,
other vertices are free.

A path is alternating if its edges alternate between
M and :
Y1, X2, Yo, X4, Ys, X5, Y3, X3 is alternating

An alternating path is augmenting if both end-
points are free.

Augmenting path has one less edge in M than in
, replacing the M edges by the
ones increments size of the matching.

Alternating Trees:

Y, Y, Yz Y, Ys Yg Y, Y, Yz Y, Ys Yg
\I\\I\. .

®

X, Xy Xz X4 Xg X X, Xy Xz X, Xs Xg

An alternating tree is a tree rooted at some free vertex
v in which every path is an alternating path.

Note: The diagram assumes a complete bipartite graph;
matching M is the red edges. Root is Y5.

The Assignment Problem:

Let G be a (complete) weighted bipartite graph.

The Assignment problem is to find a max-weight match-
ing in GG.

A Perfect Matching is an M in which every vertex is
adjacent to some edge in M.

A max-weight matching is perfect.

Max-Flow reduction dosn’t work in presence of weights.
The algorithm we will see is called the Hungarian Al-
gorithm.

Feasible Labelings & Equality Graphs

A feasible labeling ¢ Equality Graph Gy

e A vetex labeling is a function? : V — R

e A feasible labeling is one such that

l(x) +L(y) > w(x,y), VeeX,ycY

e the Equality Graph (with respect to /) is
G = (V, Ey) where

Ey=A{(z,y) 1 {(z) +(y) = w(z,y)}

1 1 1
A feasible labeling ¢ Equality Graph G/

Theorem: If / is feasible and M is a Perfect matching
in £y then M is a max-weight matching.

Proof:

Denote edge e € E by e = (ez, ey).

Let M’ be any PM in G (not necessarily in in E)).
Since every v € V is covered exactly once by M we
have

w(M') = ZeeM'w(e) < Zeer(e(ezv) + E(ey)) — Zvev l(v)

SO > ey ¢(v) is an upper-bound on the cost of any
perfect matching.

Now let M be a PMin E,. Then
w(M) =Y ecp w(e) = Xpey £(v).

So w(M") < w(M) and M is optimal.

1 1 1
A feasible labeling ¢ Equality Graph G/

Theorem[Kuhn-Munkres]: If 7 is feasible and M is a
Perfect matching in £/, then M is a max-weight match-

ing.

The KM theorem transforms the problem from an op-
timization problem of finding a max-weight matching
Into a combinatorial one of finding a perfect match-
Ing. It combinatorializes the weights. This is a classic
technique in combinatorial optimization.

Notice that the proof of the KM theorem says that for
any matching M and any feasible labeling ¢ we have

w(M) < > L(v).

veV
This has very strong echos of the max-flow min-cut
theorem.
10

Our algorithm will be to

Start with any feasible labeling ¢
and some matching M in E,

While M is not perfect repeat the following:

1. Find an augmenting path for M in Ey;
this increases size of M

2. If no augmenting path exists,
improve ¢ to ¢/ such that £, C E.
Go to 1.

Note that in each step of the loop we will either be
increasing the size of M or E, so this process must
terminate.

Furthermore, when the process terminates, M will be
a perfect matching in E, for some feasible labeling 7.
So, by the Kuhn-Munkres theorem, M will be a max-
weight matching.

11

Finding an Initial Feasible Labelling

Y10 Y20 Y30

1 6 8 1
6 4

X16 X2 8 X34

Finding an initial feasible labeling is simple. Just use:

VyeY, ly) =0, VoeX l(z)=max{w(z,y)}
yE

With this labelling it is obvious that

Ve e X,y €Y, w(z) < L(z) + £(y)

12

Improving Labellings

Let ¢ be a feasible labeling.
Define neighbor of w € V and set S C V to be

Ny(u) =A{v : (u,v) € Ep, }, Np(S) = UyesNp(u)

Lemma: Let S C X and T' = Ny(S) # Y. Set
<7, xe@);%{ (z) + €(y) — w(z,y)}
and

l(v) —ay fves
U(w)=1{ ¢(v)+ap fveT
Z(v) otherwise
Then /' is a feasible labeling and
(i) If (z,y) € By forz € S,y € T then (z,y) € Ep .

(i) If (xz,y) € Ep forx & S,y €T then (z,y) € By .
(iii) There is some edge (z,y) € Ey forz € S,y €T

13

The Hungarian Method

1. Generate initial labelling ¢ and matching M in E,.

2. If M perfect, stop.
Otherwise pick free vertex u € X.
Set S ={u}, T =10.
3. If Ny(S) = T, update labels (forcing N,(S) # T)
Qp = minsES, y&T {E(x) + £(y) — w(w,y)}
l(v) —ay Ifves
(w) =2 L(v)+ap foeT
(v) otherwise

4. If NK(S) =T, picky € Ng(S) —T.

o If y free, u — y Is augmenting path.
Augment M and go to 2.

e If y matched, say to z, extend alternating tree:
S=Su{z}, T=TU{y}. Goto 3.

14

Yi0 Yo0 Y30 Y10 Y20 Y30 Y10 Y20 Y30

=
(o]
[o¢]
D
D
[
(o]
. [o¢]
/

°
X16 X2 8 X34 X16 X2 8 X34 X16 X2 8 X34
Original Graph Eq Graph+Matching Alternating Tree

e Initial Graph, trivial labelling
and associated Equality Graph

e Initial matching: (z3,v1), (z2,y>)
o S={x1}, T =0.

e Since Ny(S) #= T, do step 4.
Choose yo € Ny(S) —T.

e yo is matched so grow tree by adding (y», z5),
e, S ={z1,22}, T = {y2}-

e At this point Ny(S) = T, so goto 3.

15

Y10 Y20 Y30 Y10 Y20 Y30
[
1 6 8 1 6 8
6 4 4
[
X16 X2 8 X34 X16 X2 8 X34
Original Graph Old E, and | M|
o S=A{z1,22}, T = {y2}

and Ny(S) =T

Calculate ay
(6+0-—1,
. 6+ 0 — 0,
= min
e rES,y&T) 38+ 0 -0,
| 8+ 0 -6,
= 2

Reduce labels of S by 2;
Increase labels of 1" by 2.

X1 4

X2 6 X3 4

new Eq Graph

(xla yl)
(r1,y3)
(z2,y1)
(z2,y3)

Now Ny(S) = {y2,y3} # {y2} = T.

16

Y10 Y20 Y30

V%

X16 X2 8 X34 X1 4 X2 6 X34 X2 6

Orig Ey, and M New Alternating Tree New M

o S={x1,z2}, Ne(S) = {y2,y3}, T = {y2}
e Choose y3 € Ny(S) —T and additto 7.

e 3 IS not matched in M so we have just found an
alternating path =4, y», x2, y3 with two free end-
points. We can therefore augment M to get a
larger matching in the new equality graph. This
matching is perfect, so it must be optimal.

e Note that matching (z1,y2), (z2,y3), (z3,¥1)
has cost 6 + 6 4+ 4 = 16 which is exactly the

sum of the labels in our final feasible labelling.

17

Correctness:

e \We can always take the trivial £ and empty match-
ing M = () to start algorithm.

o If Ny(S) = T, we saw on that we could always
update labels to create a new feasible matching
¢’. The lemma on page 13 guarantees that all
edgesin Sx T and S x T that were in E, will be in
Ey. In particular, this guarantees (why?) that the
current M remains in £, as does the alternating
tree built so far,

e If Ny(S) # T, we can, by definition, always aug-
ment alternating tree by choosing some =z € S
and y ¢ T such that (z,y) € E,. Note that at
some point y chosen must be free, in which case
we augment M.

18

e S0, algorithm always terminates and, when it does
terminate M is a perfect matching in £, so, by
Kuhn-Munkres theorem, it is optimal.

Complexity

In each phase of algorithm, |M| increases by 1 so
there are at most V phases. How much work needs
to be done in each phase?

In implementation, Vy € 1" keep track of
slacky = mingcg{l(z) + £(y) — w(z,y)}

e Initializing all slacks at beginning of phase takes
O(|V]) time.

e In step 4 we must update all slacks when vertex
moves from S to S.
This takes O(|V|) time; only |V| vertices can be
moved from S to S, giving O(|V'|?) time per phase.

e In step 3, ay = min, 7 slacky and can there-
fore be calculated in O(|V'|) time from the slacks.
This is done at most |V| times per phase (why?)
so only takes O(|V|?) time per phase.

After calculating «y we must update all slacks.
This can be done in O(|V|) time by setting

Vy € T, slacky = slacky — ay.
Since this is only done O(|V|) times, total time
per phase is O(|V]?).

19

There are |V| phases and O(|V|?) work per phase
so the total running time is O(|V|3).

20

