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Abstract-Vehicular networks are novel wireless networks
particularly for inter..vehicle communications. In vehicular
networks, the current rate adaptation algorithms are not applicable
to the new situations (e.g., high mobility, SNR fluctuation and
complicated environment). We propose a novel hybrid rate
adaptation scheme named as GeRA (Generic Rate Adaptation). The
key idea of this scheme is to make use of both context information
and signal strength information to estimate current channel
condition in a much more efficient and accurate way. CeRA
dynamically and adaptively switches the rate selection resources
between our well-designed context information empirical model and
SNR prediction model according the current situation to achieve the
high mobility, density and variation. In our extensive empirical
experiments and performance evaluarion, we compare this scheme
with two types of rate adaptation algorithms and one latest vehicular
networks rate adaptation. Our experiments in real vehicular
environment show that GeRA performs better than other choosing
algorithms under different mobilit)T scenarios, different traffic
density and different cross ..layer protocols. Our scheme achieves
significant higher goodput than traditional rate adaptation
algorithms, up to 93%

• Compared to the context information based
algorithm, GeRA also has better performance in most scenarios.

Keywords-generic rate adaptation; context informaiton; SNR;
vehicular networks

L INTRODUCTION
VANET (Vehicular Ad Hoc Network) is a subclass of

MANETs (Mobile Ad Hoc Networks). It is a new approach with
advantages as low latency, direct communication, broader
coverage and charge free to achieve better communications and
traffic management among vehicles [20]. In 2003~ ASTM and
IEEE adopted the Dedicated Short Range Communication [I]
standard (ASTM E 2213-03) [2] which provide wireless
conununications capabilities for transportation applications
within a 1000metersrangeat typical highway speeds and provide
seven 10 MHz channels at the 5.9 GHz licensed band for
Intelligent Transportation Systems [3. The increasing multi-rate
technology leads to a question: how can we choose one proper
transmission rate fromthe extended rate range? Onepossible way
is to employ the ratc adaptation. Rate adaptation is to estimate
real-time link quality, then select the optimal transmission rate to

obtain the maximum throughput all the time.
To achievethe goalsof rate adaptation, many works have been

conducted. One category of the methods is the transmitter-based
rate selection schemes, e.g., ARF [5L AARF [6]~ CARA [7]~

Samplerate [8]~ RARA [9], which use packet statistics to estimate
current channel condition. Anothercategory of the methods is the
receiver-based ones, e.g., RBAR [10] and OAR [11], depending
on SNR for the adaptation algorithms.

Compared to traditional wireless networks, vehicular networks
have the following unique features bring great challenges to make
the currentrate adaptation methods not workwell.

1) High mobility
Vehicle's moving speed is always much higher than the nodes

in traditional wireless networks [12]. The unprecedented high
mobility of vehicular networks brings a big challenge to the
channel condition. The channel condition can be significant
changed in very short time, which requires very tiny delay
between channel estimation and rate selection. Highmobility also
results in the intermittent connection between vehicles.

2) SNR fluctuation
High fluctuation of SNR is obvious in vehicularnetworks. The

difference between consecutive SNRvaluescan be as largeas 10
dB. When the vehicle situation suddenly changes, such as the
vehicle acceleration, direction changing, or neighbor vehicle
location changing, they may cause significant SNR fluctuations
which result in high error rate when using pure SNR-based or pure
context information based rate adaptation algorithms.

3) Complicated environment
In vehicular networks, both the transmitter and the receiverare

outdoors" suffering from the weather condition, traffic jam, tall
building obstacle and reflection ofsignals [12]. Because vehicles
move fast through different scenarios, and the complicated
channel condition variation makes us hard to precisely measure
and describe them in empirical models, those model-based rate
adaptation schemes designed for the VANET hard be used for
every environment condition, and at the same time building
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empiricalmodel for all situationwill cost a lot of trainingefforts
andcomputations,

Even in the VANET, a category of model-based algorithms,
CARS and MTRA, are proposed, which utilize the context
information (distance and relative velocity) to build empirical
models, and then conduct the rate selection. But this categoryof
methods needsa lot of training effortsto get the modeland results
in high computationcost and low scalability.

To solvethe challenges broughtby VANET,we do need a new
approach, whichshouldbe more efficient, accurate and genericto
differentenvironments.

In vehicular networks, one of the unique characteristics is the
context information of vehicles. Context information consistsof
information about the environment that is availableto the vehicle,
such as the position, speed and acceleration. We can obtain that
information from a GPS device and employ wireless devices to
periodically broadcast the locations and receive the location
information from neighboring vehicles. When we exam the
context information and transmission data from a large scale taxi
dataset collected from a large city in China [12], we have an
interestingobservation that data transmission is criticalrelative to
the context information. Based on the real data varying the
distance and speed, we obtain an empirical model of distance,
speed and goodput (the application level throughput), which can
describe the relationship between context information and
transmission data. Hence, based on this interesting observation,
we propose the following novel method to achieve generic rate
adaptation for vehicular networks,

In this paper, we introduce a new Generic Rate Adaptation
algorithm (GeRA) utilizing both context information and SNR
value as the complement methods for each other. We switch
between context information modeland SNRtable dynamically,
avoiding the inaccurate estimation in dramatically changing
environments as conductedin the previousworks.

The three main advantages of GeRA are as follows. First,
GeRAdoesnotneedmuch implement cost,but can achieve short
delay and high Goodput in vehicularnetworks. We employSNR
value to catch up with the fast changing channel condition in
vehicular networks, and solve the slow response and inaccurate
evaluationproblemsin the existingschemeswithoutincurringthe
overhead of RTS/CTS4 We also apply SNR prediction to gain
much more accuracy in channel quality estimation. Second,
GeRA is robust to collisions from the hidden nodes. Both of
context information and SNR valuesare orthogonal to collisions.
Third, GeRA has quick response. When the data transmission
begins, this scheme can quickly make rate selection without
sending probing packets or do not have any communication
history in a recent time window.

In a summary,the main contributions ofthis paper arebelow.
• We utilize the dynamic switching between context

information and SNR. based selection to solve the high

dynamic, SNR fluctuation and environment challenges.
• We have the relationship model describing the context

information and Goodput
• We employreal dataset to evaluateGeM, and show that

GeRA performs muchbetter than severalrate adaptation
algorithms in terms of efficiency, scalability and
Goodput

Il RELATED WORK

A~ Transmitter andstatistics-based method
ARF [5] and AARF [6] adapt the transmission rate as the met

threshold of frame reception ONOE [13] gives credits to those
transmission rates that incurless retransmission. By usingaverage
number of retries, CARA [7] also base on frame statistics
information. SampleRate [8] is a bit-rate selectionalgoritlunthat
probes higher bit-rates.RRAA [14] shortensthe delay caused by
the large estimationwindow sizeby using short-termloss ratio.

B4 SNR-based method
After the first receiver-based rate adaptation algoritlun RBAR

[IO]~ OAR [II] uses RTS/CTS exchange" which may cause
transmission overhead In R.ARA [9], the receiver notifies the
sender to increase or decrease transmission rate through
regulating transmission rate of ACK frame, which is also not
supportedby standard 802.11 protocols. Since 2008, researchers
proposedto directlyget the SNR information at the transmitter so
that the RTS/CTS overheadcanbe eliminated, e.g., CHARM[15]
and SGRA [16]. As we discussed above, the challenges in
VANETmake the above two categoriesnot work well

C. Model-based method
As the demand for high-bandwidth application in vehicular

wireless networks keeps increasing, some novel algorithms that
can adapt to fast-changing channel quality have been proposed,
such as CARS [17] and MTRA [18]. They choose to predict
channel quality with context information. CARS features the use
of context information such as transmitter-receiver distance and
relativevelocity,it conductsa set ofoutdoorexperiments to build
an empirical model which reflects the relationship between PER
(packet error rate) and context information. MTRA is a
self-adaptive model-tree-based rate adaptation in vehicular
networks. It uses the decision tree induction algorithmto predict
BER and selects the optimalrate. But this category ofmethods is
hard to achieve great efficiency, scalability and high goodput
becausetheyneed tremendous trainingeffortsdue to environment
changing.

ill. GERA:GENERIC RATE ADAPTATION

In this section, we first introduce the overview of our novel
generic rate adaptation scheme. Second we successively present
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the context informationempirical model, SNR prediction model
andthehybrid rate selection algorithm separately.

A. GeRA OvervieM1
Our scheme aims at maximizing the goodput, which heavily

depends on the ability to accurately and efficiently predict the
channelquality. To tackle the challeIiges from the high mobility,
SNR fluctuation and complicated environment in VANET, we
utilize the context information and SNR value to estimate the
channelconditionand adapt to the changingenvironment.

As shown in Fig. 1, GeRA consists of three maincomponents:
empiricalcontext informationmodel, SNR predictionmodel, and
hybridrate selection algorithm. GeRAworksas follows: First,the
empirical model obtains the context information from the
application layer and provides output to the rate selection
algorithm. Second,with data transmission, SNRpredictionmodel
accumulates knowledgeabout the relationshipbetween SNR and
the transmission rate obtained from 802.11 Wireless Firmware.
Last, the hybrid rate selection algorithm dynamically makes the
rateadaptation from theoutputs of the above twomodels. When a
vehicle initially transmitsdata, the empiricalcontext information
model comes to work, and then the data adaptation utilizes SNR
prediction model to achieve much more accurate and 'scalable
performance..

Figure1~ Scheme Structure

B. EmpiricalContext Information Model
Contextinformationis definedas the environment information

that can imply the channel quality and is available to vehicles. It
includes vehicle position, speed, and acceleration that are
obtained by GPS devices. Soa vehicle cancompute thedistance
and relativespee.d to the target vehicle in a low cost way,

To use context information in link-layer rate 'adaptation, we
need to build the modelofcontext information, transmission rate
and the resulted goodput. We consider the distance and relative
speed to constmet the model, which are the most significant
factors of goodput according. to our realistic datasets.

Note that there are already several analytical and empirical
models for radio frequency (RF) propagation in free space. The
free space path loss model and the ray propagationmodel can be
usedto model the effectof distance, The delay tap model or ray
models with delayprofiles [19] can be used. to modelthe effect of

speed. However, none of them are devised of modeling the
collective effects of distance and speed. Hence we conduct
empirical experiments to develop the model describing the
relationship among distance, speed, and the goodput. In the
experiments, wevary thedistance from0 to 250 meters and speed
from 0 to 100 kmph for each usable link layer bit-rate and
recorded the resulted goodput Fig. 2 plots the relationship
between contextinformationand goodputfor bit-rate 54M.

Figure 2: Relationship betweencontext information andgoodput

From our experiments, we find that the high speed and long
distance require a low transmission bit-ratein orderto maintain a
better goodput. Because in such a harsh environment, the high
transmission rate tends to the low SNRat the receiverand mostof
the data frames cannot be decoded successfully. But for the low
speed and short distance, wecanachieve high transmission rate.

C. SNR Prediction Model
Contextinformation can help vehicle to selecttransmission rate

before knowing well about the environment However" in
VANET,the channelconditionvariesso fast dueto the multi-path
effect, obstacles, weather conditions, and background
interference. Such a complicatedcommunication channel is hard
to be precisely modeled. Fortunately SNR is a good measure of
channel quality because theoretically the relationship between
SNR and BER is well-known across variousbit-rates. Therefore"
SNR can be employed to estimate the vehicle that picks the
optimal bit-rate to maximize goodput, Moreover, SNR can be
estimated on every frame reception so that it operates on an
enoughshort timescaleto combat fast channelqualityvariations.

Everyvehicle maintains a tableaboutthe relationship between
goodput, g,and (rate, SNR) pairs .. In 802.11 standards. there are 8
usable bit-rates,denotedby {fIt r2 ••• fa}. And the channel SNR is
typically in the range of 0 to 60. We divide this range into 12
equallysizedpartitions,denotedby {Sl, 52 ••• SI2}. In thisway,. the
table has a total of96 entries, each ofwhich relates the expected
goodput to a (rt, Sj) pair, where lSi, ~12. In particular, gri,sjt

definedas the expectedgoodputwhen the frame is transmittedat
ratert and SNR8j, is givenby

_ drid
grl4 -

trlN (1)

Intuitively, the table should be updated for every successful
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IV. EMPERJCAL EXPERlMh'NTS ANDPERFORMANCE EVALUATION

We compare our novel hybrid algorithm with three reference
rate adaptation algorithms, namely AARF~ RBAR and MTRA
which each represents one main category of latest methods, such
as the Transmitter-statistics-based (AARF)~ Receiver-SNR-based
(RBAR), and context-information-based (MTRA).

The results arc from empirical experiments with 802.113
installed on two test vehicles. We usc 802.11 a because their
parameters are very similar to 802.llp (the standard for vehicular
networksbut still not realized in vehicularnetworks).

A. Evaluation Methodology
We employ the following metrics to evaluate the rate

adaptation algorithms. Goodput is defined as the average number
of bits transmitted successful per second. Our objective is to
maximize the goodput by adapting the transmission rate to
varying channel condition. Successful transmission is defined as
the aggregate numberof packets that arc successfully transmitted
for all the vehicles in the total communication time. Average
transmission time is definedas theaveragetransmission time used
for delivering a single packet, including the backoff and the
retransmission time. Successful transmission to rate distribution:
the successful transmitted packets are classified according to the
rate used for transmission.

B. Evaluation under Different Vehicle Speeds
In vehicularnetworks,vehicle speed is an important factor that

can seriously affect the performance ofrate adaptation algorithms.
We vary the velocity value frOID 8 mps to 28 mps, which is
approximately equal to 30 kmph and 100 kmph respectively. This
velocity range is very close to the case where vehicles move in
urban environment.

Figure 3: Goodput with increasing vehicle speed in vehicle 10 infrastructure

«: =(l~c)sde'r' +clscm- -Sa'r'e I (8)

Note that Q~ b, c are design parameters. According to our
experience, we choose the following values: a=O.l~ b=O.9~ c=O.l.
Let B~c;NRt rate) be the SNR table. With the predicted SNR .. the
vehiclecan now look up the table and select the best transmission
rate by

r· =argmax(B(spdt ? r))
rE:{rl./~·-·rl~} (9)

(7)

(4)

(6)

g,-;.Sj = T
('7,sj +

Andspdh the predicted SNR, is given by
Spdt =save - bsde.'

Where

(3)
Note that T, the air time including both the time used for

transmission and the back-off time, is givenby,

T ::::: Ttransmission + Tback~off

(2)
A subtler problem is when the frame fails one transmission

attempt. In this case, the instant SNR is not available since no
ACK is received. We choose to still update the table with a
previous recorded SNR and let D, the length of the frame, be zero.
The table is then updated by

d . ..
71.S)

frame transmission. Assuming SNR symmetry at the transmitter
and receiver, we can estimate the channel's SNR whenever an
ACK frameis received. If the frame is successfully received at its
first transmission, then let D be the length of the transmitted frame
and The the air time used for transmission at tr; Sj). The table then
is updated in the following way:

_ d r i ..y +D
grl.Sj - r.: T

rl.$J +

D. Hybrid Rate Selection Algorithm
The algorithm consists of two parts. First, when the SNR table

is empty, GeRA will simply consult the model of context
information to find out the most promising rate for transmission.
Let It (distance, speed, rate) represent the model and d be the
distance to the receiver and s be the relative speed. Then r", the
selected transmission rate, is givenby

r- =argmax(M(d,s,r»
rE{" .r~·· ·rl~} (5)

If the frame transmitted at this rate fails, the algorithm will
choose the next lower rate for retransmission and so on.

Second, if the vehicle is equipped with up-to-date SNR
information, then it will first predict the SNR and then consult the
SNR table to find the most promising transmission rate. Since in
vehicular networks SNR value often has high fluctuations, it is
much more difficult than in WLAN to predict the future SNR.
LWMA (Light Weighted Moving Average) and EWMA
(Exponentially Weighted Moving Average) used in previous rate
adaptations works" both cannot handle the high fluctuation and
irregularities in observed SNR~ Hence we choose to combine the
moving averages and the deviations to predict a conservative SNR
value for the next transmission. Let Save be the average SNR~ Scw'

be the current SNR and Sde1~ be the deviation in observed SNR.
Then the average SNR is given by

sm"e =: (1~«v.: + as'7lr
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In Fig. 3, all algorithmsperform worse as the speed increases.
When the vehicle speed is low,GeRA performs much betterthan
other algorithms.. This is because when the speed is low, the time
durationthatvehicles are in the transmissionrange is much longer,
hence the total communication time is longer. For example,
although at the beginning of the transmissionGeRA and MTRA
both use the context informationfor rate selection and thus have
comparable goodput performance, as the time goes by GeRA
changes to use SNR information for rate selection, which can
generate better performance .. Therefore, on average GeRA can
outperformMTRA. It is clearthat AARFandRBAR bothproduce
much lower goodput than GeRA and MTRA. AARF slowly
respond to channelchangingdue to higher and higher rate update
threshold, it is too conservative to use any higher data rate. The
overhead caused by RTS/CTS exchange seriously influences the
performance of RBAR.. In vehicle-to-vehicle scenario, the
experiments show similar results.

C.. Evaluation under Different Cross-layer Protocols
Most previous works only consider maximize goodput at the

Link Layer. The assumptionbehind is that the higher the goodput
at the Link Layer, the higher the goodput at the Application layer.
However,this is not true in manycases. Ifthe transmissionrateat
the link layer varies significantly in the range of (6 to 54Mbps),
this ratevariability cancause TCP working inefficiently.

After comparing the performance in TCP and UDP scenarios,
from Fig .. 4 and Fig, 5 wecan concludethat in both TCP and UDP
scenarios, GeRA works well.

Figure4: Goodput with increasingvehiclespeedin UDPscenario

Figure5: Goodputwith increasingvehiclespeed in TCP scenario

v. CONCLUSION

In this paper, we proposed a hybrid rate adaptation scheme

(GeRA) to tackle the challengesfrom rate adaptationin vehicular
networks, GeRAperforms betterthan thelatestAARF andRBAR
rate adaptation schemes, and outperforms MTRA vehicular
networkrate adaptationscheme. This hybrid scheme is proved to
have better performance than history statistics-based, SNR-based
and empirical model-based schemes. In future, wewill testGeRA
in much more scenarios.. The accuracy of channel condition
prediction needs to be improvedfurther,
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