
Hyper-BCube: A Scalable Data Center Network

Dong Lin, Yang Liu, Mounir Hamdi and Jogesh Muppala

Department of Computer Science and Engineering

Hong Kong University of Science and Technology, Hong Kong

{ldcse, liuyangcse, hamdi, muppala}@cse.ust.hk

Abstract—Mega data centers are being built around the world to

provide various cloud computing services. As a result, data center

networking has recently been a hot research topic in both

academia and industry. A fundamental challenge in this research

is the design of the data center network that interconnects the

massive number of servers, and provides efficient and fault-

tolerant routing service to upper-layer applications. In response

to this challenge, the research community have begun exploring

novel interconnect topologies including Fat-Tree, DCell, and

BCube and etc. Understandably, this research is still in its

infancy. The proposed solutions either scale too fast (i.e., double

exponentially) or too slow, suffer from performance bottlenecks,

or can be quite costly in both routing and construction. In this

paper, we propose a cost-effective and gracefully scalable data

center interconnect termed Hyper-BCube that combines the

advantages of both DCell and BCube architectures while

avoiding their limitations. We then propose fault-tolerant and

routing mechanisms for Hyper-BCube. Finally, we propose a

comprehensive benchmarking environment that can be used for

accurately and practically evaluating and testing the proposed

data center architecture.

Keywords-Data center, Network topology, Throughput, Fault

tolerance

I. INTRODUCTION

Data center infrastructure design has recently been
receiving significant research interest both from academia and
industry, in no small part due to the growing importance of data
centers in supporting and sustaining the rapidly growing
Internet-based applications including search (e.g. Google),
online video (e.g. YouTube), social networking (e.g. Facebook),
and large-scale computations (e.g. data mining, bioinformatics).

In particular, Cloud computing (e.g. Amazon EC2, Google
App Engine, and Microsoft Azure) is touted as the culmination
of the integration of computing and data infrastructures to
provide a scalable, agile and cost-effective approach to support
the ever-growing IT needs of both enterprises and the general
public [2][11]. Massive data centers providing the core support
infrastructure for the cloud, amounting up to 45% of the total
cost [2]. It is thus imperative that we get the data center
infrastructure, including the data center networking right so
that both the deployment and maintenance of the infrastructure
is cost-effective.

With data availability and security at stake, the role of the
data center is more critical than ever. This is seen in the
increase of data center expenditures, new standards being

established, and the increased role of the data center.
According to industry estimates, the US data center market
reached almost US$39 billion in 2009, growing from US$16.2
billion in 2005. This market trend is seen all over the world.
For example, Taiwan is planning to create a complete supply
chain incorporating a cloud computing-based Internet data
center. The entire supply chain will be sold to overseas markets
and is expected to gain sales and business opportunities of
US$10 billion by 2014 [7].

Traditionally data center networking was based around top
of rack (ToR) switches interconnected through end of rack
(EoR) switches, and these in turn being connected through core
switches. This approach, besides being very costly, leads to
significant bandwidth oversubscription towards the network
core. This prompted several researchers to suggest alternate
approaches for scalable cost-effective network infrastructures,
based on topologies including Fat-Tree [2][11][15], DCell[3],
BCube[4], MDCube[8], and Clos networks[1].

While these initial research efforts are a step in the right
direction, there are still many outstanding and challenging
issues that need to be addressed. For example, the proposed
solutions either scale too fast (i.e. double exponentially) or too
slow, have performance bottlenecks, or can be quite costly.

The motivation in this paper is to provide solutions to these
challenges where the ultimate goal is to build a scalable cost-
effective data center networking infrastructure. In particular,
we propose a data center interconnect, termed Hyper-BCube,
which scales in a flexible way using small commodity switches.
It combines the advantages of both DCell and BCube
architectures while avoiding their drawbacks.

The rest of the paper is organized as follows. In Section II,
we briefly review the related work from the literature. In
Section III, we describe the structure of Hyper-BCube. We then
propose routing, load-balancing, and fault-tolerant mechanisms
for this new architecture. In Section IV, we provide a
comprehensive benchmarking environment to evaluate the
proposed data center infrastructure. Finally, we conclude our
work in Section V.

II. RELATED WORK

Numerous proposals for identifying suitable network
architectures for massive data centers have been investigated
and implemented in both academia and industry. These Data
Center Interconnects (DCIs) can be classified based on
whether they evolved from the field of parallel computing or
whether they evolved based on Internet switches and routers. This research has been supported by a grant from Huawei Technologies Co.

LTD. (Project code: HUAW10B15Z002.09/10PN).

2951

A. DCIs Evolving from Parallel Computing

Several recently proposed scalable and fault-tolerant data
center networking architectures such as DCell [3], FiConn [6],
BCube [4] and MDCube [8] build upon the rich research
literature on the interconnection networks derived for parallel
computations [10] including some earlier research [12][13][14].

DCell is a recursively defined architecture. Servers in DCell
have multiple ports. Each server is connected with a single
mini-switch and with many other servers via communication
links. DCell0 is the basic building block to construct a larger
DCell. It consists of n servers and they are connected to a n-
port switch. DCellk is formed using ak-1+1 DCellk-1s, where ak-1

denotes the number of servers in a DCellk-1. As a result, the
DCell architecture scales double exponentially.

FiConn is another example of a recursive structure. It
requires at most 2 ports on computers, while still can scale up
to millions of computers. The basic element of FiConn, the
FiConn0, is the same as DCell0. Each computer in FiConn has a
port connected to the switch in its FiConn0, which is called
level-0 port. The backup port on the computer is left to connect
to other computers. Assume that there are b available backup
ports inside a FiConnk-1, to construct a FiConnk, one needs to
connect b/2 available ports to b/2 other FiConnk-1s. As a result,
a FiConnk consists of (b/2+1) FiConn k-1s.

BCube is a server-centric network structure. There are two
types of devices which forms the BCube structure - servers
with multiple network ports and mini-switches which connect
servers at different layers. A BCubek is constructed recursively
from n BCubek-1s and nk-1 n-port switches. In a BCube structure,
switches never directly connect to other switches and they just
do forwarding. The BCube uses a lot of wires and switches and
has high cabling complexity that prohibits it from being scaled
beyond a shipping container based modular data center (MDC).

The MDCube [8] is an attempt at scaling up a BCube-based
MDC to a large number of servers, using the MDC as a
building block. In such a structure, each container is labeled
with an m-tuple. A container is connected to all the containers
that have only one different digit in their labels.

The PortLand architecture is designed on a multi-rooted
network topology which is referred to Fat-Tree [15]. It is
known to have performance bottlenecks, and has poor fault-
tolerance topological properties. For example, if the centralized
fabric manager fails the whole PortLand scheme will fail.

B. DCIs Evolving from Internet Switches and Routers

Many proposals for data center networking architectures are
based on architectures originally designed for Internet switches
and routers. These include VL2 [1] and DOS [16].

A VL2 network is built from multiple switches arranged
into a Clos topology to support large path diversity. Using
valiant load balancing to spread destination independent traffic
among multiple servers, VL2 provides uniform high capacity
between any two servers. However, its scalability, that is the
number of servers, is restricted by the maximum port count of
an intermediate switch.

DOS uses wavelength routing characteristics based on an
array waveguide grating router to design a scalable optical
switch for data centers. They take advantage of having multiple
wavelengths to demonstrate that their architecture outperforms
electronic switches.

III. HYPER-BCUBE

A. Motivation

In general, data center network architectures can be
benchmarked by using scalability, availability and complexity
together to achieve a comprehensive evaluation. In practice,
these three requirements usually appear to be in conflict with
each other. The design of data center network architecture itself
contains a series of tradeoffs. In particular, scalability has
significant influence on the performance and the cost of entire
data center network, and therefore is highlighted. Despite of
some differences, previous architectures/algorithms can be
classified into three categories according to their scalabilities
(i.e. the number of servers under certain configuration) : O(nc)
[1][2][11][15], O(nk)[4] and O(n(2^k)) [3][6], where c refers to a
constant; n is the port-count of switches/routers and k denotes
the node/server degree or the number of network layers.

Scalable data center network architecture must be capable
of hosting millions of servers by using minimal costs in terms
of interface cards, intermediate switches and etc. Moreover, it
must yield gradual performance in a fault-tolerant environment.
Many traditional data center network architectures although
provide excellent scalability (e.g. O(n(2^k)) [3][6]), fail to yield
a gradually scalable performance. In practice, it is common to
leave part of the data center network empty to ease future
extension. Such partially equipped data center is usually highly
inefficient, especially for those double-exponentially-scaled
data center networks. E.g. one step further from 1K-server data
center turns to be 1M-server scale.

On the other hand, O(nk) and O(nc) – scaled speed are
inadequate in practice as well, given the following practical
observations:

 The maximum-allowed node degree (i.e. k) is typically
less than 6. This matches the physical restriction for
servers in practice having less than six interface cards.

 The port count of a switch (i.e. n) is strictly restricted
and small value (e.g., 4 to 8) is preferred. Because the
price of a switch typically increases much faster than
its number of ports [9]. A small-port-count switch is
always more cost-effective than larger size switches.

With the above observations in mind, an exponentially
scaled data center network like BCube can have a scalability
problem. For example, with n = 4, it requires 6 layers to
construct a data center with 46=4096 servers which falls far
behind the need of today’s data center network.

In this paper, we intend to investigate the scalability
problem from a different angle – what kind of scalability is
favorable given small-port-count of intermediate switches and
restricted node/server degree? How about O((an)k)? Here “a”
is a constant comparable to “n”.

2952

B. Hyper-BCube

As the first attempt to explore the advantage of an O((an)k)-
class DCI, we start from one special case where a = n. In this
paper, we propose a new interconnection network architecture
called Hyper-BCube which scales at a speed of O(n2k).

The first layer of the Hyper-BCube contains n nodes and
one n-port switch. It is the same as that of a DCell0. Starting
from the second layer, a k-layer (k≥2) Hyper-BCube consists of
n2 (k-1)-layer Hyper-BCubes. In particular, a k-layer (k≥2)
Hyper-BCube can simply be regarded as an n2 *n2k-3 matrix,
where each row is a (k-1)-layer Hyper-BCube which consists of
n2k-3 nodes. Alternatively, it can be considered as having n2k-3
columns and each column contains exactly n2 nodes which
belong to n2 (k-1)-layer Hyper-BCubes respectively. Column-
based connection is introduced here to connect the n2 nodes
located at the same column by using exactly n n-port switches.
The connection patterns of these n switches are listed as shown
in Table I. There are only two different kinds of connection
patterns. And they always interleave with each other. Fig. 1
demonstrates the connection pattern of the first two columns in
a k-layer (k≥2) Hyper-BCube with 4-port switches.

C. Routing and Fault-tolerance

The local re-routing algorithm adopted by DCell and others
has been proved to be inefficient [5]. A fault-free routing path
could transit through a specific layer of network repeatedly
leading to a path length of O(2k). In contrast, routing in Hyper-
BCube is more efficient as a fault-free routing path typically
transits through a k-layer (k>1) Hyper-Cube for only once.

A node in a k-layer Hyper-BCube can be labeled using k
coordinates, (Ck, Ck-1, …., C1), where “Cj” denotes that this node
is located at the Cj-th row of a j-layer Hyper-BCube. We use a
hierarchical row-based routing for a Hyper-BCube. So given a
pair of nodes, a path between the source (Sk, Sk-1, …., S1) and the
destination (Dk, Dk-1, …., D1) can be established through the
following k steps, where only one coordinate is used in each
step: (Sk, Sk-1, …., S1) →(Dk, ?, …., ?) → (Dk, Dk-1, …., ?) →…→
(Dk, Dk-1, …., D2,?) → (Dk, Dk-1, …., D2, D1). The “?” denotes
unknown/don’t care value.

Each step may further require multiple transitions. Taking
one single step routing that from (…., Sj, ….) to (…., Dj, ….) as an
example, we demonstrate how to find a fault-free routing path
from the Sj-th row to the Dj-th row. First, Sj and Dj can be
represented as follows.

 {

 ⌈

⌉

 ⌈

⌉

Thus, the distance between the Sj-th row and the Dj-th row
can be represented as following.

 (⌈

⌉ ⌈

⌉) [()]

Without link failure, according to the values of [

] and ⌈ ⌉ ⌈ ⌉ , a fault-free path from the Sj-th row

to the Dj-th row can be established through zero to three

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

(k-1)-layer HyperBCube

(k-1)-layer HyperBCube

(k-1)-layer HyperBCube

(k-1)-layer HyperBCube

…
…

…

…

(k-1)-layer HyperBCube

n
2k-3

nodes

n
2
subsystems

Figure 1. The connection pattern of the first two columns of a k-layer

(k≥2) Hyper-BCube with 4-port switches. Please note that only the k-th

layer’s switches are illustrated here.

TABLE I. THE DESTINATION ROW NUMBER OF THE

CORRESPONDING SWITCH FOR THE I -TH COLUMN

 j-th port, (i mod 2)=1 j-th port, (i mod 2)=0

x-th switch (x-1)n+j (j-1)n+x
* (1≤x≤n); (1≤j≤n); (1≤i≤n2k-1) k≥1

Column No: 1 2 3 4

Row:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1,1) (2,1) (10,2)(2,2)

(1,3) (3,3)

(5,4) (9,4)

Dj =10=3*4-2, Sj =1=1*4-3, (Dj-Sj)= 2*4 + 1

+ 1 + (2*4)

Dj =14=4*4-2, Sj =12=3*4-0, (Dj-Sj)= 1*4 - 2

(12,2) (16,2) (16,3) (14,3)

+ (1*4) - 2

Dj =15=4*4-1, Sj =11=3*4-1, (Dj-Sj)= 1*4 - 0

(11,3) (11,4) (15,4)

+ (1*4)

Dj =3=1*4-1, Sj =1=1*4-3, (Dj-Sj)= 0*4 + 2

+ 2

Dj =9=3*4-3, Sj =5=2*4-3, (Dj-Sj)= 1*4 - 0

+ (1*4)

Figure 2. Fault-Free routing in a 2-layer Hyper-BCube with 4-port

switches. There are 64 nodes in total.

Single-Step-Routing(Sj, Dj, j, RetryTimes){
 if (RetryTimes==0) return null;

if (Sj==Dj) return a 0-hop path;
else{

Try 1-hop paths in sequence through a directly connected j-
layer switch, if succeed, return a 1-hop path;

Try 2-hop paths in sequence, first through a directly connected
1-layer switch, further through a j-layer switch, if succeed,
return a 2-hop path;

Using 1-hop and 2-hop reachable nodes as intermediates, try
Single-Step-Routing (intermediate, Dj, j, RetryTimes-1), if
succeed, return a combined path;

if all fail, return null;
}

}

Routing(Src, Dest, k, RetryTimes){

Call Single-Step-Routing (Sj, Dj, j, RetryTimes) for k times;

For each single step routing, gradually increase the value of
RetryTimes, so as to guarantee shortest length of feasible paths.

}

Figure 3. The routing algorithm of Hyper-BCube.

2953

transition(s) in two adjacent columns. For example, when ⌈

 ⌉ ⌈ ⌉ , one transition through the i-th column is

required, where (i mod 2) = 0. Similarly, when []

 one transition through the i-th column is required, where (i
mod 2) = 1. Moreover, when both of the above two transitions
are required, one more transition through the i-th column to the
(i -th column is required. Therefore, at most three
transitions at the j-th (j>1) layer of a Hyper-BCube are required
in order to secure one coordinate. We present several examples
in Fig. 2 where paths between five pairs of nodes are
established. As shown in Fig.2, the required number of
transitions varies from one to three. Given the time complexity
of one step routing is O(1), the total time complexity of fault-
free routing in k-layer Hyper-BCube is O(k).

In Hyper-BCube architecture, fault-tolerant routing can be
implemented by using alternative paths that can be found by
conducting routing through various layers of the network. In
Hyper-BCube, there are only two different column-based
connection patterns which interleave with each other.
Accordingly, in a k-layer (k≥2) Hyper-BCube network with n2

*n2k-3 nodes, there are least (n2k-3/2) identical and parallel paths
between any pair of rows. In other words, there must be an
alternative path located at 2m columns away from current
column. The value of m determines which layer of network has
been selected to conducting such bypass.

Fig.3 gives the fault-tolerant routing algorithm of Hyper-
BCube, which consists of k steps single-step-routing. Each
single-step-routing is recursively defined. It returns a feasible
path with maximal 2RetryTimes hops. Given multiple feasible
paths, it chooses the first available path in sequence. For
instance, it always starts from the next port of current switch.
For each single-step-routing, the value of RetryTimes is
increased gradually to guarantee the shortest length of feasible
paths. The entire routing algorithm of Hyper-BCube can be
regards as a restricted breadth first search (BFS). Unlike
conventional BFS adopted by BCube which entails O(|V|+|E|)
= O((k’+1)|V|) complexity, the complexity of the fault-tolerant
routing algorithm of Hyper-BCube is at most O(k*n2RetryTimes) =
O(|V|*kn2(RetryTimes-k)+1)(k’=2k-1), due to its non-rollback routing
scheme. (i.e., the previous successfully routed single-step-
routing will not be started over again so as to find an alternative
path.) Given small values of n and RetryTimes (e.g. <<k), such
complexity in practice is trivial and outperforms previous
algorithms, such as DCell and BCube.

D. Key Features of Hyper-BCube

Our preliminary investigation reveals that the Hyper-BCube
topology exhibits some good properties that strike a good
compromise between the excessive scalability of DCell and
high-cost of BCube as it is show in Table II.

a) Diameter: The shortest distance between any nodes.

The diameter of a Hyper-BCube network is at most (3k-2).
Because the number of transitions for each step (i.e. the
procedure of securing one coordinate) is at most three. Thus,
the total number of transitions above the k-th layer of a Hyper-
BCube is at most 3(k-1). With additional one transitions in a 1-
layer Hyper-BCube, the diameter of a Hyper-BCube is at most
(3k-2). Given an appropriate value of k, Hyper-BCube is
superior to DCell in terms of routing path length and diameter.

b) Bisection Bandwidth: the minimum number of links

cut when a network is partitioned into two equal halves over

all partitions.

The bisection bandwidth of a k-layer Hyper-BCube
network is (n2k-1/4). It is attractive, as the bisection bandwidth
of the Hyper-BCube network grows exceptionally and matches
the increasing speed of node number. In contrast, the bisection
bandwidth of DCell increases sub-linearly to the increasing
speed of node number.

c) Incremental construction: a Hyper-BCube DCI can be

built partially so as to support incremental construction. The

architecture of Hyper-BCube is highly symmetric. Missing

entire rows/columns will not reduce the system performance

significantly. For example, given absence of 1/n rows (e.g.

those mod n=1), the entire network can be still regards as a

complete Hyper-BCube which is constructed by using (n-1)-

port switches. Similarly, the repetitive column-based

connections always provide us with multiple alternative paths.

d) Speedup of the 1st layer: Hyper-BCube tries to allocate

most of the traffic to its bottom layer. The routing algorithm of

Hyper-BCube requires multiple transitions through 1st layer

network. In the most extreme cases, the traffic intensity of the

1st layer network could be k times that of in the other layers.

In practice, the speedup factor of the 1st layer network is
typically less than 3 for a data center with millions of servers as
will be demonstrated latter. Moreover, since the size of 1st layer
network is extremely small (e.g. n nodes) and these nodes are
always directly connected; such speedup requirement can be
easily satisfied by using dedicated high-speed short-distance
interface cards (e.g. InfiniBand) or virtual machine technology.

IV. SIMULATION

In this section, we use simulations to evaluate the
performance of Hyper-BCube and make it compare with that of
DCell and BCube.

A. Average Path Length under Different Configurations

First, we study their practical average path length (APL)
between any random pair of nodes/servers under different
configurations. Table III summarizes the APLs of Hyper-
BCube, DCell and BCube under various configurations. Both
BCube and Hyper-BCube outperform DCell by yielding a
much shorter average path length (APL). To build a data center
with 176820 nodes, APL of DCell is 11.29. In contrast, the
APL of a larger data center with 279936 nodes using BCube/
Hyper-BCube is only 5.83/8.33. Besides, the APLs for both
BCube and Hyper-BCube are increased linearly. For example,
the APL of Hyper-BCube increases linearly to the node degree

TABLE II. PROPERTIES OF DIFFERENT NETWORK ARCHITECTURES

 DCell BCube Hyper-BCube

Number of nodes a1 = n (k=1)

ak =ak-1*(ak-1+1) (k≥2)

nk n2k-1

Node degree k k k

Number of Links (k+1)*ak/2 knk kn2k-1

Number of Switches ak /n knk-1 kn2k-2

Diameter 2k-1 k ≤(3k-2)

Bisection Bandwidth ak /(4lognak) nk/2 n2k-1/4 (k≥2)

 The number of ports of a switch is n, and there are k layers networks.

2954

k as show in Fig. 5(a), where the port-count of switches only
affects the gradient slightly. Thus, BCube and Hyper-BCube
actually entail better scalability in terms of average path length.

B. ABT under Fault-free

Hyper-BCube is a symmetric structure that each node has
exactly one link to the j-th layer Hyper-BCube, making the
total link number of different layers the same. In this way,
Hyper-BCube avoids the bottleneck effect.

Due to the routing scheme that has been adopted, Hyper-
BCube usually has a heavily loaded 1st layer. Fig. 5(b) presents
the required speedup factor of the 1st layer of a Hyper-BCube
under all-to-all traffic pattern. The required speedup does not
affect by the port-count of intermediate switches but increases
linearly with the node degree at a speed of k/2. For a million-
server data center, such value is typically less than 3. For
example, with 6-port switches and k=5, the number of servers
is 10 million, the required speedup factor of the 1st layer Hyper-
BCube is only 2.5.

Given just-enough speedup (i.e.⌈ ⌉) to the 1st layer of a
Hyper-BCube, we test the Aggregation-Bottleneck-Throughput
(ABT) [4] of three DCIs under various configurations. Both all-

to-all and some-to-all communication patterns are generated
here for the sake of comprehensive evaluations.

ABT measures the maximal sustainable throughput over the
entire DCI. Given multiple flows over a link, the bandwidth of
this link is shared by these flows uniformly. And the maximal
throughput between any pair of nodes is restricted to the
bottleneck throughput of the corresponding routing path. As
shown in Table III, both BCube and Hyper-BCube provide
much higher ABT than DCell. For example, the ABT1 of a
BCube / Hyper-BCube with 262144 servers is 349520 / 174767,
which is roughly 10 / 5 times that of a 176820-server DCell (i.e.
33589). On the other hand, with smaller node degree, Hyper-
BCube still provides equivalent scalability and ABT per link
performance, leading to a more cost-effective architecture for
large-scale data center. In particular, the ABTs of Hyper-
BCube and BCube are very close to each other under some-to-
all traffic patterns. For example, for a data center with 279936

servers, the ABT2 of Hyper-BCube is (29411/34514≈85.2%)

that of BCube, while requiring (1119744/1959552≈57.1%) of

the connection cost. In practice, the some-to-all traffic pattern
matches the mapping and reducing phases of a map-reduce
application, and therefore is usually highlighted.

TABLE III. THE CHARICTISTICS UNDER DIFFERENT NETWORK CONFIGURATIONS (FAULT-FREE)
 DCell BCube Hyper-BCube
 Nodes Links APL ABT1 ABT2 Nodes Links APL ABT1 ABT2 Nodes Links APL ABT1 ABT2

n=4, k=2 20 30 2.26 14.6 4 16 32 1.6 20 4 64 128 3.05 60 26.8
n=4, k=3 420 840 5.16 161 65.7 64 192 2.29 84 20 1024 3072 5.26 693 234
n=4, k=4 176820 442050 11.29 33589 16353.5 256 1024 3.01 340 66 16384 65536 7.5 10930 3514
n=4, k=5 ≈3.1e10 ≈9.4e10 1024 5120 3.75 1364 277 262144 1310720 9.75 174768 55832
n=4, k=6 4096 24576 4.5 5460 1153 4194304 25165824 12
n=4, k=7 16384 114688 5.25 21844 4515
n=4, k=8 65536 524288 6 87380 18068
n=4, k=9 262144 2359296 6.75 349520 72046
n=6, k=2 42 63 2.46 27 4 36 72 1.71 42 4 216 432 3.35 156 35.9
n=6, k=3 1806 3612 5.73 592 138.6 216 648 2.51 258 30 7776 23328 5.83 4682 827
n=6, k=4 ≈3.3e6 ≈8.2e6 1296 5184 3.34 1554 155 279936 1119744 8.33 167972 29411
n=6, k=5 7776 38880 4.17 9330 975 10077696 50388480 10.83
n=6, k=6 46656 279936 5 55980 5798
n=6, k=7 279936 1959552 5.83 335880 34514

^ All the links are capable of two-way communication. The bandwidth of a link in one-way communication is “1” by default. Identical links are used for all

DCIs, except that the bandwidth of a 1st layer link in a Hyper-BCube is⌈ ⌉.
The traffic pattern for ABT1 and ABT2 are all-to-all and some-to-all respectively. In all-to-all communication, all nodes are active. Each node communicates

with all nodes (except itself) in two-way communication [4]. In some-to-all communication, only 1/x nodes are selected randomly. They communicate with all

nodes (except itself) in two-way communication. By default, x=n2 for BCube and Hyper-BCube; x=ε for DCell, where ε refers to the number of servers in a

DCell1. E.g. DCell1=20 for n=4.

 (a) (b) (c) (d)

Figure 5. Key features of Hyper-BCube under different configurations.

(a) (b) (c) (d)

Figure 6. Performance comparisons under faulty environment.

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

14

16

18

20

22

24

A
ve

ra
g

e
 P

a
th

 L
e

n
g

th

Node Degree (k)

 4-port Switch

 6-port Switch

 8-port Switch

 16-port Switch

 3k-2

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

70

C
on

ne
ct

io
n

F
ai

lu
re

s
R

at
e

(%
)

Link Failures Rate (%)

 RetryTimes=2

 RetryTimes=3

 RetryTimes=4

 RetryTimes=5

 RetryTimes=6

0 2 4 6 8 10 12 14 16 18 20

8.0

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

11.0

 RetryTimes=2

 RetryTimes=3

 RetryTimes=4

 RetryTimes=5

 RetryTimes=6

A
ve

ra
g

e
 P

a
th

 L
e

n
g

th

Link Failures Rate (%)

0 2 4 6 8 10 12 14 16 18 20

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

 Hyper-BCube (n=6,k=3)

 BCube (n=6,k=5)

 DCell (n=6,k=3)

all-to-all traffic pattern

A
B

T

Link Failures Rate (%)
0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85
 Hyper-BCube (n=6,k=3)

 BCube (n=6,k=5)

 DCell (n=6,k=3)

all-to-all traffic pattern

C
o

n
n

e
ct

io
n

 F
a

ilu
re

s
R

a
te

 (
%

)

Link Failures Rate (%)
0 2 4 6 8 10 12 14 16 18 20

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 Hyper-BCube (n=6,k=3)

 BCube (n=6,k=5)

 DCell (n=6,k=3)

some-to-all traffic pattern

A
B

T

Link Failures Rate (%)
0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85 Hyper-BCube (n=6,k=3)

 BCube (n=6,k=5)

 DCell (n=6,k=3)

some-to-all traffic pattern

C
o

n
n

e
ct

io
n

 F
a

ilu
re

s
R

a
te

 (
%

)
Link Failures Rate (%)

2955

C. Fault-tolerant Routing Complexity

One merit of Hyper-BCube lies in its low time complexity
of fault-tolerant routing (i.e. O(|V|*kn2(RetryTimes-k)+1)). In order to
understand the influence of RetryTimes, we choose a fixed
configuration of Hyper-BCube where n=6, k=4 and with all-to-
all traffic pattern. We increase the link failure rate gradually to
check the impact on the connectivity and APL. Fig. 5 (c) and (d)
illustrate the corresponding results. Although the results do not
show perfect monotonicity due to the sampling scheme, the
tendency is quite clear that the Hyper-BCube suffers from
linearly decayed performance under faulty condition. And a
larger value of RetryTimes only improves the performance
slightly. Set RetryTimes to 3 could achieve a perfect balance
between the capability of fault-tolerance and the complexity of
routing algorithm. Accordingly, the time complexity of fault-
tolerant routing in a Hyper-BCube is only 1/[2*n^(2k-7)] that
of in a BCube. For k>3, Hyper-BCube outperforms BCube in
terms of routing complexity. E.g. the routing complexity of a
Hyper-BCube (n=4, k=5) is only 1/128 that of a BCube (n=4,
k=9), while both of them hosting 262144 servers.

D. ABT and connectivity under Faulty

ABT and the connectivity of DCIs under faulty condition
are extremely important. We examine these two features of
different DCIs in this part.

Given the exponentially increasing complexity of BCube’s
fault-tolerant routing, we can only study its ABT under faulty
condition in small scale. E.g. a BCube (n=6, k=5) with 7776
servers reaches the limit of computation complexity.

In this specific simulation, DCell (6, 3), BCube (6, 5) and
Hyper-BCube (6, 3) are chosen to compare against each other,
which host 1806, 7776 and 7776 servers respectively. It is not
a fair comparison in terms of the number of servers; however
the closest one that is available to us.

As illustrated in Fig. 6, for both all-to-all and some-to-all
(i.e. 1/n - to - all) traffic partners, BCube outperforms its
competitors by providing a higher ABT and lower connection
failure rate. In particular, we observe in Fig. 6 (c) that the ABT
of the BCube under some-to-all traffic pattern actually rises up
a little before dropping down. The explanation of this
phenomenon lies in the BFS algorithm that BCube has adopted
for its fault-tolerant routing. The BFS algorithm always
chooses the shortest feasible path which differs from that of
BCube under fault-free condition. This phenomenon also
reveals that excellent performance of BCube under faulty
condition actually represents the optimal scenario of
“exhaustive searching in a graphic” which is impractical in
large scale data center, due to the high time complexity.

In contrast, with scalable and low complexity fault-tolerant
routing algorithm, the Hyper-BCube still yields a comprised
performance between the BCube and the DCell.

V. CONCLUSION

In this paper, we have presented the design, implementation,
and evaluation of novel network architecture named Hyper-
BCube, to scale data center to mega level with only small-port-

count switches and small node degree. Hyper-BCube strikes a
compromise between the excessive scalability of DCell and
high cost of BCube. Given an equal sized data center, the cost
of Hyper-BCube in terms of number of links and switches is
roughly 1/2 that of BCube, while still providing comparable
overall performances. Hyper-BCube is also fault-tolerant and
load-balancing in nature due to its special structure design and
the low-time-complexity routing protocol on top of its network
topology.

REFERENCES

[1] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.
A. Maltz, P. Pat., “VL2: A Scalable and Flexible Data Center Network,”
In SIGCOMM 2009 on Data communication, Pages: 51-62, August 16-
21, 2009, Barcelona, Spain.

[2] A. Greenberg, J. R. Hamilton, D. A. Maltz, P. Patel. “The cost of a cloud:
research problems in data center networks”, ACM SIGCOMM Computer
Communication Review, Vol. 39, No. 1, Jan. 2009.

[3] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, S. Luz, “DCell: A Scalable
and Fault Tolerant Network Structure for Data Centers,” In SIGCOMM
2008 on Data communication, Pages: 75-86, August 17-22, 2008, Seattle,
WA, USA.

[4] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, C. Tian, Y. Zhang, and S. Lu,
“BCube: A High Performance, Server-centric Network Architecture for
Modular Data Centers,” In SIGCOMM 2009 on Data communication,
Pages: 63-74, August 16-21, 2009, Barcelona, Spain.

[5] Chayan Sarkar, "Seminar Report on Data Center Network Design",
Technical Report, 2010,
http://www.cse.iitb.ac.in/~chayan/seminar/final_report_dcn.pdf.

[6] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu "FiConn: Using
Backup Port for Server Interconnection in Data Centers", IEEE
INFOCOM 2009, April 19-25, 2009, Rio de Janeiro, Brazil.

[7] Green (low carbon) Data Center Blog, 2010,
http://www.greenm3.com/2010/02/taiwans-cloud-computing-data-
center-31-mil-usd-investment.html

[8] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: A High
Performance Network Structure for Modular Data Center
Interconnection”, in ACM SIGCOMM CoNEXT, December 2009.

[9] IT247,http://www.it247.com/category/Network-Storage-Comms-
Routers-Switches-Security-Routers-Switches.html

[10] L. Bhuyan and D. Agrawal, “Generalized Hypercube and Hyperbus
Structures for a Computer Network,” IEEE trans. Computers, April
1984.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable Commodity
Data Center Network Architecture,” In SIGCOMM 2008 on Data
communication, Pages: 63-74, August 17-22, 2008, Seattle, WA, USA.

[12] M. Hamdi and R. W. Hall, “RCC-FULL: An Effective Network For
Parallel Computations,” Journal of Parallel and Distributed Computing,
Vol. 41, no. 2, March 1997, pp. 139-155.

[13] M. Hamdi, “Recursive Interconnection Networks: Architectural
Characteristics and Hardware Cost,” IEEE Transactions on Circuits and
Systems, Vol. 41, No. 12, pp. 805-816, Dec. 1994.

[14] M. Hamdi and R. W. Hall, “Image Processing on Augmented Mesh-
Connected Parallel Computers,” Journal of Computer and Software
Engineering, Vol. 2, No. 3, pp. 329-348, 1994.

[15] R. N. Mysore, A. Pamporis, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A Scalable,
Fault-Tolerant Layer 2 Data Center Network Fabric,” In SIGCOMM
2009 on Data communication, Pages: 39-50, August 16-21, 2009,
Barcelona, Spain.

[16] X. Ye, Y. Yin, S.J.B.Yoo, P. Mejia, R.Proietti and V. Akella, “DOS – A
Scalable Optical Swtich for Datacenters”, ACM ANCS’10, October 25-
26, 2010, La Jolla, CA, USA.

2956

