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Abstract—Mega data centers are being built around the world to 

provide various cloud computing services. As a result, data center 

networking has recently been a hot research topic in both 

academia and industry. A fundamental challenge in this research 

is the design of the data center network that interconnects the 

massive number of servers, and provides efficient and fault-

tolerant routing service to upper-layer applications. In response 

to this challenge, the research community have begun exploring 

novel interconnect topologies including Fat-Tree, DCell, and 

BCube and etc. Understandably, this research is still in its 

infancy. The proposed solutions either scale too fast (i.e., double 

exponentially) or too slow, suffer from performance bottlenecks, 

or can be quite costly in both routing and construction. In this 

paper, we propose a cost-effective and gracefully scalable data 

center interconnect termed Hyper-BCube that combines the 

advantages of both DCell and BCube architectures while 

avoiding their limitations. We then propose fault-tolerant and 

routing mechanisms for Hyper-BCube. Finally, we propose a 

comprehensive benchmarking environment that can be used for 

accurately and practically evaluating and testing the proposed 

data center architecture. 

Keywords-Data center, Network topology, Throughput, Fault 

tolerance 

I.  INTRODUCTION 

Data center infrastructure design has recently been 
receiving significant research interest both from academia and 
industry, in no small part due to the growing importance of data 
centers in supporting and sustaining the rapidly growing 
Internet-based applications including search (e.g. Google), 
online video (e.g. YouTube), social networking (e.g. Facebook), 
and large-scale computations (e.g. data mining, bioinformatics).  

In particular, Cloud computing (e.g. Amazon EC2, Google 
App Engine, and Microsoft Azure) is touted as the culmination 
of the integration of computing and data infrastructures to 
provide a scalable, agile and cost-effective approach to support 
the ever-growing IT needs of both enterprises and the general 
public [2][11]. Massive data centers providing the core support 
infrastructure for the cloud, amounting up to 45% of the total 
cost [2]. It is thus imperative that we get the data center 
infrastructure, including the data center networking right so 
that both the deployment and maintenance of the infrastructure 
is cost-effective. 

With data availability and security at stake, the role of the 
data center is more critical than ever. This is seen in the 
increase of data center expenditures, new standards being 

established, and the increased role of the data center. 
According to industry estimates, the US data center market 
reached almost US$39 billion in 2009, growing from US$16.2 
billion in 2005. This market trend is seen all over the world. 
For example, Taiwan is planning to create a complete supply 
chain incorporating a cloud computing-based Internet data 
center. The entire supply chain will be sold to overseas markets 
and is expected to gain sales and business opportunities of 
US$10 billion by 2014 [7]. 

Traditionally data center networking was based around top 
of rack (ToR) switches interconnected through end of rack 
(EoR) switches, and these in turn being connected through core 
switches. This approach, besides being very costly, leads to 
significant bandwidth oversubscription towards the network 
core. This prompted several researchers to suggest alternate 
approaches for scalable cost-effective network infrastructures, 
based on topologies including Fat-Tree [2][11][15], DCell[3], 
BCube[4], MDCube[8], and Clos networks[1].  

While these initial research efforts are a step in the right 
direction, there are still many outstanding and challenging 
issues that need to be addressed. For example, the proposed 
solutions either scale too fast (i.e. double exponentially) or too 
slow, have performance bottlenecks, or can be quite costly. 

The motivation in this paper is to provide solutions to these 
challenges where the ultimate goal is to build a scalable cost-
effective data center networking infrastructure. In particular, 
we propose a data center interconnect, termed Hyper-BCube, 
which scales in a flexible way using small commodity switches. 
It combines the advantages of both DCell and BCube 
architectures while avoiding their drawbacks. 

The rest of the paper is organized as follows. In Section II, 
we briefly review the related work from the literature. In 
Section III, we describe the structure of Hyper-BCube. We then 
propose routing, load-balancing, and fault-tolerant mechanisms 
for this new architecture. In Section IV, we provide a 
comprehensive benchmarking environment to evaluate the 
proposed data center infrastructure. Finally, we conclude our 
work in Section V. 

II. RELATED WORK 

Numerous proposals for identifying suitable network 
architectures for massive data centers have been investigated 
and implemented in both academia and industry. These Data 
Center Interconnects (DCIs) can be classified based on 
whether they evolved from the field of parallel computing or 
whether they evolved based on Internet switches and routers. This research has been supported by a grant from Huawei Technologies Co. 

LTD. (Project code: HUAW10B15Z002.09/10PN). 
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A. DCIs Evolving from Parallel Computing 

Several recently proposed scalable and fault-tolerant data 
center networking architectures such as DCell [3], FiConn [6], 
BCube [4] and MDCube [8] build upon the rich research 
literature on the interconnection networks derived for parallel 
computations [10] including some earlier research [12][13][14].  

DCell is a recursively defined architecture. Servers in DCell 
have multiple ports. Each server is connected with a single 
mini-switch and with many other servers via communication 
links. DCell0 is the basic building block to construct a larger 
DCell. It consists of n servers and they are connected to a n-
port switch. DCellk is formed using ak-1+1 DCellk-1s, where ak-1 

denotes the number of servers in a DCellk-1. As a result, the 
DCell architecture scales double exponentially.  

FiConn is another example of a recursive structure. It 
requires at most 2 ports on computers, while still can scale up 
to millions of computers. The basic element of FiConn, the 
FiConn0, is the same as DCell0. Each computer in FiConn has a 
port connected to the switch in its FiConn0, which is called 
level-0 port. The backup port on the computer is left to connect 
to other computers. Assume that there are b available backup 
ports inside a FiConnk-1, to construct a FiConnk, one needs to 
connect b/2 available ports to b/2 other FiConnk-1s.  As a result, 
a FiConnk consists of (b/2+1) FiConn k-1s.  

BCube is a server-centric network structure. There are two 
types of devices which forms the BCube structure - servers 
with multiple network ports and mini-switches which connect 
servers at different layers. A BCubek is constructed recursively 
from n BCubek-1s and nk-1 n-port switches. In a BCube structure, 
switches never directly connect to other switches and they just 
do forwarding. The BCube uses a lot of wires and switches and 
has high cabling complexity that prohibits it from being scaled 
beyond a shipping container based modular data center (MDC).  

The MDCube [8] is an attempt at scaling up a BCube-based 
MDC to a large number of servers, using the MDC as a 
building block. In such a structure, each container is labeled 
with an m-tuple. A container is connected to all the containers 
that have only one different digit in their labels. 

The PortLand architecture is designed on a multi-rooted 
network topology which is referred to Fat-Tree [15]. It is 
known to have performance bottlenecks, and has poor fault-
tolerance topological properties. For example, if the centralized 
fabric manager fails the whole PortLand scheme will fail. 

B. DCIs Evolving from Internet Switches and Routers 

Many proposals for data center networking architectures are 
based on architectures originally designed for Internet switches 
and routers. These include VL2 [1] and DOS [16]. 

A VL2 network is built from multiple switches arranged 
into a Clos topology to support large path diversity. Using 
valiant load balancing to spread destination independent traffic 
among multiple servers, VL2 provides uniform high capacity 
between any two servers. However, its scalability, that is the 
number of servers, is restricted by the maximum port count of 
an intermediate switch.  

DOS uses wavelength routing characteristics based on an 
array waveguide grating router to design a scalable optical 
switch for data centers. They take advantage of having multiple 
wavelengths to demonstrate that their architecture outperforms 
electronic switches. 

III. HYPER-BCUBE 

A. Motivation 

In general, data center network architectures can be 
benchmarked by using scalability, availability and complexity 
together to achieve a comprehensive evaluation. In practice, 
these three requirements usually appear to be in conflict with 
each other. The design of data center network architecture itself 
contains a series of tradeoffs. In particular, scalability has 
significant influence on the performance and the cost of entire 
data center network, and therefore is highlighted. Despite of 
some differences, previous architectures/algorithms can be 
classified into three categories according to their scalabilities 
(i.e. the number of servers under certain configuration) : O(nc) 
[1][2][11][15], O(nk)[4] and O(n(2^k)) [3][6], where c refers to a 
constant; n is the port-count of switches/routers and k denotes 
the node/server degree or the number of network layers. 

Scalable data center network architecture must be capable 
of hosting millions of servers by using minimal costs in terms 
of interface cards, intermediate switches and etc. Moreover, it 
must yield gradual performance in a fault-tolerant environment. 
Many traditional data center network architectures although 
provide excellent scalability (e.g. O(n(2^k)) [3][6]),  fail to yield 
a gradually scalable performance. In practice, it is common to 
leave part of the data center network empty to ease future 
extension. Such partially equipped data center is usually highly 
inefficient, especially for those double-exponentially-scaled 
data center networks. E.g. one step further from 1K-server data 
center turns to be 1M-server scale.  

On the other hand, O(nk) and O(nc) – scaled speed are 
inadequate in practice as well, given the following practical 
observations: 

 The maximum-allowed node degree (i.e. k) is typically 
less than 6. This matches the physical restriction for 
servers in practice having less than six interface cards.  

 The port count of a switch (i.e. n) is strictly restricted 
and small value (e.g., 4 to 8) is preferred. Because the 
price of a switch typically increases much faster than 
its number of ports [9]. A small-port-count switch is 
always more cost-effective than larger size switches. 

With the above observations in mind, an exponentially 
scaled data center network like BCube can have a scalability 
problem. For example, with n = 4, it requires 6 layers to 
construct a data center with 46=4096 servers which falls far 
behind the need of today’s data center network.   

In this paper, we intend to investigate the scalability 
problem from a different angle – what kind of scalability is 
favorable given small-port-count of intermediate switches and 
restricted node/server degree? How about O((an)k)? Here “a” 
is a constant comparable to “n”.  
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B. Hyper-BCube 

As the first attempt to explore the advantage of an O((an)k)-
class DCI, we start from one special case where a = n. In this 
paper, we propose a new interconnection network architecture 
called Hyper-BCube which scales at a speed of O(n2k).   

The first layer of the Hyper-BCube contains n nodes and 
one n-port switch. It is the same as that of a DCell0. Starting 
from the second layer, a k-layer (k≥2) Hyper-BCube consists of 
n2 (k-1)-layer Hyper-BCubes. In particular, a k-layer (k≥2) 
Hyper-BCube can simply be regarded as an n2 *n2k-3 matrix, 
where each row is a (k-1)-layer Hyper-BCube which consists of 
n2k-3 nodes. Alternatively, it can be considered as having n2k-3 
columns and each column contains exactly n2 nodes which 
belong to n2 (k-1)-layer Hyper-BCubes respectively. Column-
based connection is introduced here to connect the n2 nodes 
located at the same column by using exactly n n-port switches. 
The connection patterns of these n switches are listed as shown 
in Table I. There are only two different kinds of connection 
patterns. And they always interleave with each other. Fig. 1 
demonstrates the connection pattern of the first two columns in 
a k-layer (k≥2) Hyper-BCube with 4-port switches.  

C. Routing and Fault-tolerance 

The local re-routing algorithm adopted by DCell and others 
has been proved to be inefficient [5]. A fault-free routing path 
could transit through a specific layer of network repeatedly 
leading to a path length of O(2k). In contrast, routing in Hyper-
BCube is more efficient as a fault-free routing path typically 
transits through a k-layer (k>1) Hyper-Cube for only once. 

A node in a k-layer Hyper-BCube can be labeled using k 
coordinates, (Ck, Ck-1, …., C1), where “Cj” denotes that this node 
is located at the Cj-th row of a j-layer Hyper-BCube. We use a 
hierarchical row-based routing for a Hyper-BCube. So given a 
pair of nodes, a path between the source (Sk, Sk-1, …., S1) and the 
destination (Dk, Dk-1, …., D1) can be established through the 
following k steps, where only one coordinate is used in each 
step: (Sk, Sk-1, …., S1) →(Dk, ?, …., ?) → (Dk, Dk-1, …., ?) →…→ 
(Dk, Dk-1, …., D2,?) → (Dk, Dk-1, …., D2, D1). The “?” denotes 
unknown/don’t care value.  

Each step may further require multiple transitions. Taking 
one single step routing that from (…., Sj, ….) to (…., Dj, ….) as an 
example, we demonstrate how to find a fault-free routing path 
from the Sj-th row to the Dj-th row. First, Sj and Dj can be 
represented as follows. 
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Figure 1.  The connection pattern of the first two columns of a k-layer 

(k≥2) Hyper-BCube with 4-port switches. Please note that only the k-th 

layer’s switches are illustrated here. 

TABLE I.  THE DESTINATION ROW NUMBER OF THE 

CORRESPONDING SWITCH FOR THE I -TH COLUMN 

 j-th port, (i mod 2)=1 j-th port, (i mod 2)=0 

x-th switch (x-1)n+j (j-1)n+x 
* (1≤x≤n); (1≤j≤n); (1≤i≤n2k-1) k≥1   

Column No:   1   2  3   4    

Row:1    2   3   4   5   6   7    8   9   10  11   12  13  14   15  16

(1,1) (2,1) (10,2)(2,2)

(1,3) (3,3)

(5,4) (9,4)

Dj =10=3*4-2, Sj =1=1*4-3, (Dj-Sj)= 2*4 + 1

+ 1 + (2*4)

Dj =14=4*4-2, Sj =12=3*4-0, (Dj-Sj)= 1*4 - 2

(12,2) (16,2) (16,3) (14,3)

+ (1*4) - 2

Dj =15=4*4-1, Sj =11=3*4-1, (Dj-Sj)= 1*4 - 0

(11,3) (11,4) (15,4)

+ (1*4)

Dj =3=1*4-1, Sj =1=1*4-3, (Dj-Sj)= 0*4 + 2

+ 2

Dj =9=3*4-3, Sj =5=2*4-3, (Dj-Sj)= 1*4 - 0

+ (1*4)

 
Figure 2.  Fault-Free routing in a 2-layer Hyper-BCube with 4-port 

switches. There are 64 nodes in total. 

Single-Step-Routing(Sj,  Dj,  j,  RetryTimes){ 
     if (RetryTimes==0)  return null; 

if (Sj==Dj)    return a 0-hop path;  
else{ 

Try 1-hop paths in sequence through a directly connected j-
layer switch, if succeed, return a 1-hop path; 

Try 2-hop paths in sequence, first through a directly connected 
1-layer switch, further through a j-layer switch, if succeed, 
return a 2-hop path; 

Using 1-hop and 2-hop reachable nodes as intermediates, try 
Single-Step-Routing (intermediate, Dj, j, RetryTimes-1), if 
succeed, return a combined path; 

if all fail, return null; 
} 

} 
 
Routing(Src, Dest, k, RetryTimes){ 

Call Single-Step-Routing (Sj, Dj, j, RetryTimes) for k times;  

For each single step routing, gradually increase the value of 
RetryTimes, so as to guarantee shortest length of feasible paths. 

} 

Figure 3.  The routing algorithm of Hyper-BCube. 
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transition(s) in two adjacent columns. For example, when ⌈   

 ⌉  ⌈    ⌉   , one transition through the i-th column is 

required, where (i mod 2) = 0. Similarly, when [           ]  

   one transition through the i-th column is required, where (i 
mod 2) = 1.  Moreover, when both of the above two transitions 
are required, one more transition through the i-th column to the 
(i    -th column is required. Therefore, at most three 
transitions at the j-th (j>1) layer of a Hyper-BCube are required 
in order to secure one coordinate. We present several examples 
in Fig. 2 where paths between five pairs of nodes are 
established. As shown in Fig.2, the required number of 
transitions varies from one to three. Given the time complexity 
of one step routing is O(1), the total time complexity of fault-
free routing in k-layer Hyper-BCube is O(k). 

In Hyper-BCube architecture, fault-tolerant routing can be 
implemented by using alternative paths that can be found by 
conducting routing through various layers of the network. In 
Hyper-BCube, there are only two different column-based 
connection patterns which interleave with each other. 
Accordingly, in a k-layer (k≥2) Hyper-BCube network with n2 

*n2k-3 nodes, there are least (n2k-3/2) identical and parallel paths 
between any pair of rows. In other words, there must be an 
alternative path located at 2m columns away from current 
column. The value of m determines which layer of network has 
been selected to conducting such bypass.  

Fig.3 gives the fault-tolerant routing algorithm of Hyper-
BCube, which consists of k steps single-step-routing. Each 
single-step-routing is recursively defined. It returns a feasible 
path with maximal 2RetryTimes hops. Given multiple feasible 
paths, it chooses the first available path in sequence. For 
instance, it always starts from the next port of current switch. 
For each single-step-routing, the value of RetryTimes is 
increased gradually to guarantee the shortest length of feasible 
paths. The entire routing algorithm of Hyper-BCube can be 
regards as a restricted breadth first search (BFS). Unlike 
conventional BFS adopted by BCube which entails O(|V|+|E|) 
= O((k’+1)|V|) complexity, the complexity of the fault-tolerant 
routing algorithm of Hyper-BCube is at most O(k*n2RetryTimes) = 
O(|V|*kn2(RetryTimes-k)+1)(k’=2k-1), due to its non-rollback routing 
scheme. (i.e., the previous successfully routed single-step-
routing will not be started over again so as to find an alternative 
path.) Given small values of n and RetryTimes (e.g. <<k), such 
complexity in practice is trivial and outperforms previous 
algorithms, such as DCell and BCube. 

D. Key Features of Hyper-BCube 

Our preliminary investigation reveals that the Hyper-BCube 
topology exhibits some good properties that strike a good 
compromise between the excessive scalability of DCell and 
high-cost of BCube as it is show in Table II. 

a) Diameter: The shortest distance between any nodes.  

The diameter of a Hyper-BCube network is at most (3k-2). 
Because the number of transitions for each step (i.e. the 
procedure of securing one coordinate) is at most three. Thus, 
the total number of transitions above the k-th layer of a Hyper-
BCube is at most 3(k-1). With additional one transitions in a 1-
layer Hyper-BCube, the diameter of a Hyper-BCube is at most 
(3k-2). Given an appropriate value of k, Hyper-BCube is 
superior to DCell in terms of routing path length and diameter.  

b) Bisection Bandwidth: the minimum number of links 

cut when a network is partitioned into two equal halves over 

all partitions.  

The bisection bandwidth of a k-layer Hyper-BCube 
network is (n2k-1/4). It is attractive, as the bisection bandwidth 
of the Hyper-BCube network grows exceptionally and matches 
the increasing speed of node number. In contrast, the bisection 
bandwidth of DCell increases sub-linearly to the increasing 
speed of node number. 

c) Incremental construction: a Hyper-BCube DCI can be 

built partially so as to support incremental construction. The 

architecture of Hyper-BCube is highly symmetric. Missing 

entire rows/columns will not reduce the system performance 

significantly. For example, given absence of 1/n rows (e.g. 

those mod n=1), the entire network can be still regards as a 

complete Hyper-BCube which is constructed by using (n-1)-

port switches. Similarly, the repetitive column-based 

connections always provide us with multiple alternative paths.  

d) Speedup of the 1st layer: Hyper-BCube tries to allocate 

most of the traffic to its bottom layer. The routing algorithm of 

Hyper-BCube requires multiple transitions through 1st layer 

network. In the most extreme cases, the traffic intensity of the 

1st layer network could be k times that of in the other layers.  

In practice, the speedup factor of the 1st layer network is 
typically less than 3 for a data center with millions of servers as 
will be demonstrated latter. Moreover, since the size of 1st layer 
network is extremely small (e.g. n nodes) and these nodes are 
always directly connected; such speedup requirement can be 
easily satisfied by using dedicated high-speed short-distance 
interface cards (e.g. InfiniBand) or virtual machine technology. 

IV. SIMULATION 

In this section, we use simulations to evaluate the 
performance of Hyper-BCube and make it compare with that of 
DCell and BCube.  

A. Average Path Length under Different Configurations 

First, we study their practical average path length (APL) 
between any random pair of nodes/servers under different 
configurations. Table III summarizes the APLs of Hyper-
BCube, DCell and BCube under various configurations. Both 
BCube and Hyper-BCube outperform DCell by yielding a 
much shorter average path length (APL). To build a data center 
with 176820 nodes, APL of DCell is 11.29. In contrast, the 
APL of a larger data center with 279936 nodes using BCube/ 
Hyper-BCube is only 5.83/8.33. Besides, the APLs for both 
BCube and Hyper-BCube are increased linearly. For example, 
the APL of Hyper-BCube increases linearly to the node degree 

TABLE II.  PROPERTIES OF DIFFERENT NETWORK ARCHITECTURES  

 DCell BCube Hyper-BCube 

Number of nodes a1 = n                 (k=1) 

ak =ak-1*(ak-1+1) (k≥2) 

nk n2k-1 

Node degree k k k 

Number of Links (k+1)*ak/2 knk kn2k-1 

Number of Switches ak /n knk-1 kn2k-2  

Diameter 2k-1 k ≤(3k-2) 

Bisection Bandwidth ak /(4lognak) nk/2 n2k-1/4  (k≥2) 

  The number of ports of a switch is n, and there are k layers networks. 
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k as show in Fig. 5(a), where the port-count of switches only 
affects the gradient slightly. Thus, BCube and Hyper-BCube 
actually entail better scalability in terms of average path length. 

B. ABT under Fault-free 

Hyper-BCube is a symmetric structure that each node has 
exactly one link to the j-th layer Hyper-BCube, making the 
total link number of different layers the same. In this way, 
Hyper-BCube avoids the bottleneck effect. 

Due to the routing scheme that has been adopted, Hyper-
BCube usually has a heavily loaded 1st layer. Fig. 5(b) presents 
the required speedup factor of the 1st layer of a Hyper-BCube 
under all-to-all traffic pattern. The required speedup does not 
affect by the port-count of intermediate switches but increases 
linearly with the node degree at a speed of k/2.  For a million-
server data center, such value is typically less than 3. For 
example, with 6-port switches and k=5, the number of servers 
is 10 million, the required speedup factor of the 1st layer Hyper-
BCube is only 2.5. 

Given just-enough speedup (i.e.⌈   ⌉) to the 1st layer of a 
Hyper-BCube, we test the Aggregation-Bottleneck-Throughput 
(ABT) [4] of three DCIs under various configurations. Both all-

to-all and some-to-all communication patterns are generated 
here for the sake of comprehensive evaluations.  

ABT measures the maximal sustainable throughput over the 
entire DCI. Given multiple flows over a link, the bandwidth of 
this link is shared by these flows uniformly. And the maximal 
throughput between any pair of nodes is restricted to the 
bottleneck throughput of the corresponding routing path. As 
shown in Table III, both BCube and Hyper-BCube provide 
much higher ABT than DCell. For example, the ABT1 of a 
BCube / Hyper-BCube with 262144 servers is 349520 / 174767, 
which is roughly 10 / 5 times that of a 176820-server DCell (i.e. 
33589). On the other hand, with smaller node degree, Hyper-
BCube still provides equivalent scalability and ABT per link 
performance, leading to a more cost-effective architecture for 
large-scale data center. In particular, the ABTs of Hyper-
BCube and BCube are very close to each other under some-to-
all traffic patterns. For example, for a data center with 279936 

servers, the ABT2 of Hyper-BCube is  (29411/34514≈85.2%) 

that of BCube, while requiring (1119744/1959552≈57.1%) of 

the connection cost. In practice, the some-to-all traffic pattern 
matches the mapping and reducing phases of a map-reduce 
application, and therefore is usually highlighted. 

TABLE III.  THE CHARICTISTICS UNDER DIFFERENT NETWORK CONFIGURATIONS (FAULT-FREE) 
 DCell BCube Hyper-BCube 
 Nodes Links APL ABT1 ABT2 Nodes Links APL ABT1 ABT2 Nodes Links APL ABT1 ABT2 

n=4, k=2 20 30 2.26 14.6 4 16 32 1.6 20 4 64 128 3.05 60 26.8 
n=4, k=3 420 840 5.16 161 65.7 64 192 2.29 84 20 1024 3072 5.26 693 234 
n=4, k=4 176820 442050 11.29 33589 16353.5 256 1024 3.01 340 66 16384 65536 7.5 10930 3514 
n=4, k=5 ≈3.1e10 ≈9.4e10  1024 5120 3.75 1364 277 262144 1310720 9.75 174768 55832 
n=4, k=6  4096 24576 4.5 5460 1153 4194304 25165824 12  
n=4, k=7 16384 114688 5.25 21844 4515  
n=4, k=8 65536 524288 6 87380 18068 
n=4, k=9 262144 2359296 6.75 349520 72046 
n=6, k=2 42 63 2.46 27 4 36 72 1.71 42 4 216 432 3.35 156 35.9 
n=6, k=3 1806 3612 5.73 592 138.6 216 648 2.51 258 30 7776 23328 5.83 4682 827 
n=6, k=4 ≈3.3e6 ≈8.2e6  1296 5184 3.34 1554 155 279936 1119744 8.33 167972 29411 
n=6, k=5  7776 38880 4.17 9330 975 10077696 50388480 10.83  
n=6, k=6 46656 279936 5 55980 5798  
n=6, k=7 279936 1959552 5.83 335880 34514 

^ All the links are capable of two-way communication. The bandwidth of a link in one-way communication is “1” by default. Identical links are used for all 

DCIs, except that the bandwidth of a 1st layer link in a Hyper-BCube is⌈   ⌉. 
# The traffic pattern for ABT1 and ABT2 are all-to-all and some-to-all respectively. In all-to-all communication, all nodes are active. Each node communicates 

with all nodes (except itself) in two-way communication [4]. In some-to-all communication, only 1/x nodes are selected randomly. They communicate with all 

nodes (except itself) in two-way communication. By default, x=n2 for BCube and Hyper-BCube; x=ε for DCell, where ε refers to the number of servers in a 

DCell1. E.g. DCell1=20 for n=4. 

     
                         (a)                                                           (b)                                                                (c)                                                                (d) 

Figure 5.  Key features of Hyper-BCube under different configurations. 
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Figure 6.  Performance comparisons under faulty environment. 
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C. Fault-tolerant Routing Complexity 

One merit of Hyper-BCube lies in its low time complexity 
of fault-tolerant routing (i.e. O(|V|*kn2(RetryTimes-k)+1)). In order to 
understand the influence of RetryTimes, we choose a fixed 
configuration of Hyper-BCube where n=6, k=4 and with all-to-
all traffic pattern. We increase the link failure rate gradually to 
check the impact on the connectivity and APL. Fig. 5 (c) and (d) 
illustrate the corresponding results. Although the results do not 
show perfect monotonicity due to the sampling scheme, the 
tendency is quite clear that the Hyper-BCube suffers from 
linearly decayed performance under faulty condition. And a 
larger value of RetryTimes only improves the performance 
slightly. Set RetryTimes to 3 could achieve a perfect balance 
between the capability of fault-tolerance and the complexity of 
routing algorithm. Accordingly, the time complexity of fault-
tolerant routing in a Hyper-BCube is only 1/[2*n^(2k-7)] that 
of in a BCube. For k>3, Hyper-BCube outperforms BCube in 
terms of routing complexity. E.g. the routing complexity of a 
Hyper-BCube (n=4, k=5) is only 1/128 that of a BCube (n=4, 
k=9), while both of them hosting 262144 servers. 

D. ABT and connectivity under Faulty 

ABT and the connectivity of DCIs under faulty condition 
are extremely important. We examine these two features of 
different DCIs in this part. 

Given the exponentially increasing complexity of BCube’s 
fault-tolerant routing, we can only study its ABT under faulty 
condition in small scale. E.g. a BCube (n=6, k=5) with 7776 
servers reaches the limit of computation complexity. 

In this specific simulation, DCell (6, 3), BCube (6, 5) and 
Hyper-BCube (6, 3) are chosen to compare against each other, 
which host 1806, 7776 and 7776 servers respectively.  It is not 
a fair comparison in terms of the number of servers; however 
the closest one that is available to us. 

As illustrated in Fig. 6, for both all-to-all and some-to-all 
(i.e. 1/n - to - all) traffic partners, BCube outperforms its 
competitors by providing a higher ABT and lower connection 
failure rate. In particular, we observe in Fig. 6 (c) that the ABT 
of the BCube under some-to-all traffic pattern actually rises up 
a little before dropping down. The explanation of this 
phenomenon lies in the BFS algorithm that BCube has adopted 
for its fault-tolerant routing. The BFS algorithm always 
chooses the shortest feasible path which differs from that of 
BCube under fault-free condition. This phenomenon also 
reveals that excellent performance of BCube under faulty 
condition actually represents the optimal scenario of 
“exhaustive searching in a graphic” which is impractical in 
large scale data center, due to the high time complexity. 

In contrast, with scalable and low complexity fault-tolerant 
routing algorithm, the Hyper-BCube still yields a comprised 
performance between the BCube and the DCell.  

V. CONCLUSION 

In this paper, we have presented the design, implementation, 
and evaluation of novel network architecture named Hyper-
BCube, to scale data center to mega level with only small-port-

count switches and small node degree. Hyper-BCube strikes a 
compromise between the excessive scalability of DCell and 
high cost of BCube. Given an equal sized data center, the cost 
of Hyper-BCube in terms of number of links and switches is 
roughly 1/2 that of BCube, while still providing comparable 
overall performances. Hyper-BCube is also fault-tolerant and 
load-balancing in nature due to its special structure design and 
the low-time-complexity routing protocol on top of its network 
topology. 
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