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ABSTRACT
To relieve the pain of manually selecting machine learning
algorithms and tuning hyperparameters, automated machine
learning (AutoML) methods have been developed to automat-
ically search for good models. Due to the huge model search
space, it is impossible to try all models. Users tend to distrust
automatic results and increase the search budget as much as
they can, thereby undermining the efficiency of AutoML. To
address these issues, we design and implement ATMSeer, an
interactive visualization tool that supports users in refining
the search space of AutoML and analyzing the results. To
guide the design of ATMSeer, we derive a workflow of using
AutoML based on interviews with machine learning experts.
A multi-granularity visualization is proposed to enable users
to monitor the AutoML process, analyze the searched models,
and refine the search space in real time. We demonstrate the
utility and usability of ATMSeer through two case studies,
expert interviews, and a user study with 13 end users.
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•Human-centered computing→Visualization systems
and tools; Information visualization;
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1 INTRODUCTION
To ease the difficulty of developing machine learning (ML)
models, automated machine learning (AutoML) methods
have been proposed [12, 27, 39]. Instead of searching al-
gorithms and tuning hyperparameters manually, AutoML
automatically iterates through various machine learning al-
gorithms and optimizes hyperparameters in a predefined
search space (i.e., a set of feasible machine learning mod-
els). AutoML has received considerable research attention
and gained widespread popularity. A plethora of systems for
AutoML, such as ATM [33], SigOpt [30], and Google Cloud
AutoML [10] have been developed in recent years.

Unfortunately, these AutoML systems usually work as
black boxes. Due to the lack of transparency in AutoML (e.g.,
what models have been searched?), users tend to question
the automatic results. Did the AutoML sufficiently explore
the search space? Did the AutoML run long enough? Did the
AutoML miss some suitable models? Concerns like these may
make users reluctant to apply the results of AutoML in crit-
ical applications [17], such as disease diagnosis and stock
market prediction. Meanwhile, when AutoML returns unsat-
isfying results, users are unable to reason and thus improve
the results. They can only increase the computational budget
(e.g., running time) as much as possible, which undermines
the efficiency of AutoML.
These issues can be alleviated by involving end users in

AutoML, enabling them to reason the AutoML results and
to modify the AutoML configurations. However, two chal-
lenges need to be addressed. First, it can be difficult for users
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to analyze AutoML results. An AutoML process generates
a series of (usually a few hundred) models selected based
on a specific search strategy. These models have different al-
gorithms, hyperparameter configurations, and performance
scores. It is non-trivial to organize and present this data in
an intuitive way so that users can easily understand and
analyze it. Second, it can be challenging for users to modify
the search space of an AutoML process. AutoML can return
unsatisfying models due to various reasons, such as insuffi-
cient budget, large search space, and limitations of AutoML
algorithms [24, 27, 33]. At the same time, the search space
usually has a complicated hierarchical structure. Effective
interactions are required to help users modify an AutoML
process by combining their observation of the current pro-
cess with their prior knowledge.
In this paper, we present ATMSeer 1, an interactive visu-

alization tool that helps users analyze the searched models
and refine the search space. Instead of opening the black box
of AutoML and explaining the search decisions, ATMSeer
offers a visual summary of the searched models to increase
the transparency of AutoML. Users are allowed to explore
the models searched by an AutoML process at three levels
of detail (i.e., the algorithm level, the hyperpartition level,
and the hyperparameter level) based on the breadth (e.g.,
has it searched all machine learning algorithms) and the
depth (e.g., has it extensively searched algorithms that can
lead to good performance) . Meanwhile, ATMSeer enables
users to interactively modify the search space in real time to
increase the controllability of AutoML. Through the visual
summary of the searched models from three levels, users are
able to understand the behavior of different models, which
helps them propose alternative models andmodify the search
space. An in-situ search space configuration is embedded in
the three-level visualization to facilitate the switch between
analysis of the results and modification of the search space.

In this work, we integrate ATMSeer with the ATMAutoML
framework proposed by Swearingen et al. [33]. However,
ATMSeer is not algorithm specific and can integrate with a
variety of AutoML frameworks.

The main contributions of this paper are as follows:
• A summary of the workflow for using AutoML tools and
the requirements for analyzing an automated model search
process.

• An interactive visualization tool that enables users to mon-
itor, analyze, and refine an AutoML process.

• An evaluation of ATMSeer through two case studies, in-
terviews with two AutoML experts, and a user study with
13 end users.

1https://github.com/HDI-Project/ATMSeer

2 RELATEDWORK
Choosing Machine Learning Models
There is no one machine learning model that works the best
for every problem [6, 35]. To achieve high performance for a
particular problem, users typically choose models based on
their understanding of the algorithms, their observation of
the data, and a time-consuming trial-and-error process.
Many efforts have been made to provide guidance for

choosing models. On the one hand, some research provides
theoretical guidance by summarizing the pros and cons of
different machine learning algorithms [3, 11]. For example,
Kotsiantis et al. [11] conclude that support vector machines
have a high tolerance for irrelevant features but require
a large sample size. On the other hand, experiments on a
large number of datasets also provide empirical guidance for
choosing models [1, 4, 6, 7]. For example, by evaluating 179
classifiers on 121 datasets, Fernández-Delgado et al. [6] find
that random forests are most likely to be a good classifier,
followed by support vector machines and neural networks.
While these work provides useful guidance, they fail to

provide detailed instruction for a particular problem (e.g., the
exact model for a dataset). ATMSeer aims to provide guid-
ance to solve particular problems. Given a dataset, ATMSeer
automatically tries different models and allow users to easily
observe and analyze these models through an interactive
visualization.

Visualizing Automated Machine Learning
Visualization has long been used to facilitate human interac-
tion in the model tuning process [19, 20]. Recently, efforts
have been taken to visualize automated machine learning.
For example, MLJar [22] enables users to easily define a

search space and analyze searched models with no coding
required. Google Vizer [9] provides parallel coordinates to
support the analysis of searched models. For one algorithm,
users can observe the range of each hyperparameters, the
correlation between hyperparameters, and the relationship
between performance and hyperparameters. SigOpt [30] pro-
vides an interface that enables users to join in the optimiza-
tion loop of a model. Users repeatedly observe suggested
hyperparameter values, experiment with these values with
their own model, analyze the experiment results, and finally
report results back to SigOpt.
However, these works only support the analysis of one

type of model (e.g., neural networks) at a time. In contrast,
ATMSeer supports the analysis of machine learning mod-
els generated with various algorithms (14 machine learning
algorithms are supported in ATMSeer). Moreover, we pro-
vide a multi-granularity visualization of searched models to
facilitate the analysis of the AutoML process.
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Figure 1: A workflow of using AutoML.

Visualizing Machine Learning Models
In recent years, there is a trend for combining visualization
with machine learning to help people understand, diagnose,
improve, and apply machine learning models.
Various visual analytics tools have been developed for

opening the black box of different machine learning models,
including generative models [14, 34], reinforcement learn-
ing [36], convolutional neural networks [13, 15, 37], and
recurrent neural networks [21, 32]. These tools provide guid-
ance for model developers to understand, diagnose, and re-
fine machine learning models. However, in these tools, the
requirements of model users are not thoughtfully consid-
ered.

To assist in applyingmachine learningmodels, some visual
analytics tools analyze model behavior on the data instance
level without opening up the algorithm black box [2, 28, 38].
For example, Squares [28] reveals the model mistakes at the
instance level and connects summary statistics (e.g., accu-
racy) with individual data instances, thereby helping prac-
titioners analyze model performance. However, these tools
focus on performance analysis and cannot be directly ap-
plied to AutoML, in which the configurations (i.e., algorihtm,
hyperpartition, hyperparameter) of many searched models
need to be analyzed.

3 SYSTEM REQUIREMENTS AND DESIGN
Goals & Target Users
Themain goal of ATMSeer is to help people efficiently search,
analyze, and choose machine learning models for their own
tasks. The target users of ATMSeer have a certain level of
expertise in machine learning, but previously suffered from
a time-consuming and error-prone manual search when de-
veloping machine learning models.
Data Abstraction
An AutoML process can be regarded as training a sequence
of models on a given dataset. At each step, given the perfor-
mance of previous models, the AutoML algorithm selects a

new model to train and evaluate. Each model in an AutoML
process can be treated as a multivariate data point with four
types of attributes: algorithm (categorical variable), hyper-
partition (set of categorical variables), hyperparameter (set of
numerical variables), and performance (numerical variable).
User Interview
We conducted semi-structured interviews with six partici-
pants to understand how they choose machine learning mod-
els and what opportunities exist to improve the experience.
We recruited participants through reaching out to personal
contacts. Three participants were from diverse backgrounds
(i.e., biology, urban planning, finance) with experience in de-
veloping machine learning models for their domain problems
and three participants were machine learning experts.

The interview consisted of three parts and lasted approxi-
mately 45 minutes for each participant. First, the participants
were asked to describe their experience in developing ma-
chine learning models. Second, we introduced and discussed
AutoML with them, and asked for their expectations of and
concerns about AutoML. Third, the participants were asked
to use a pilot system to solve a classification problem and
comment on their experiences. Three participants used their
own data and the other three used example data provided
by us. Details of the pilot system are provided in the supple-
mentary material.
The Workflow
Based on the interview, we identify three factors that the par-
ticipants most care about: search space (e.g., “Howmany algo-
rithms will be searched?” ), computational budget (e.g., “How
long will the process run?” ), and model choice (e.g., “Which
model is the best among the searched models?” ). The three
factors correspond to the three key decisions (D1−D3) dur-
ing the use of AutoML and demonstrate the necessity of
human involvement. We connect the three decisions accord-
ing to how the participants use the pilot system and their
current practice of developing models, thereby summarizing
a workflow of using AutoML, as shown in Figure 1.
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Figure 2: The Interface of ATMSeer. The user creates/resumeAutoMLprocess using the control panel (a), observe the high-level
statistics of an AutoML process in the overview panel (b), and analyze the process in different granularities with the AutoML
profiler (c).

D1. Modify Search Space. To incorporate human knowl-
edge and improve the search efficiency, AutoML systems
usually allow users to configure settings [7, 23, 33]. Partic-
ipants stated that they modified the search space based on
their prior knowledge (e.g., “the k-nearest neighbors algorithm
usually has a good performance onmy protein structure dataset
and I want to try this algorithm first” ) or their observations
of the ongoing search (e.g., “the random forest algorithm is
performing well and is more stable than other algorithms” ).
D2. Adjust Computational Budget. AutoML tries to find
a suitable model by searching through a large set of avail-
able machine learning models with limited computational
budget (e.g., running time). There exists a trade-off between
the model performance and the computational budget of
AutoML. The participants decided whether to continue an
AutoML process based on the performance of the searched
models, the potential for subsequent performance improve-
ment, and their acceptable expenses for the AutoML services.
D3. Reason Model Choice. By default, AutoML returns
themodel with the best performance score. However, instead
of directly using the model with the highest performance
score, participants expressed the need to reason the model
choice according to the search space (e.g., “maybe a good
algorithm/hyperparameter hasn’t been searched” ) or some

domain-specific requirements (e.g., “I prefer models that are
robust to the change of hyperparameters” ).
Design Requirements
We then distilled the following design requirements to assist
in making decisions (D1−D3).
R1.Offer an overviewof theAutoMLprocess.An overview
of all searched models can help users learn basic information
about the process, such as the number of searched models
and how the best performance changes over time [D2].
R2. Connectmodels with the search space.Users should
be able to analyze models in the context of the search space.
This enables users to reasone the model choice [D3] and to
modify the search space [D1].
R3. Offer guidance formodification.Guidance should be
provided to assist users in modifying the search space [D1].
R4. Allow in-situ search space configuration. The con-
figuration of search space is usually complex and difficult
to memorize. Users should be allowed to switch seamlessly
between the observation of the current process and the mod-
ification of the search space [D1].
R5. Supportmulti-granularity analysis.The search space
usually has a hierarchical structure (i.e., algorithms, hyper-
partitions, hyperparameters). A multi-granularity analysis of
searched models should be supported to help users monitor
and analyze the searched models [D3].
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4 ATMSEER
This section describes the design and implementation choices
of ATMSeer, an interactive visualization tool that enables
users to refine the search space of AutoML and analyze
automatically-generated results.

System Overview
ATMSeer is implemented as a client-server application. The
server coordinates three components: AutoML, data storage
and model storage. The server provides the client with var-
ious APIs to create, configure, start, and pause an AutoML
process, and to summarize the recorded data in AutoML pro-
cesses. As the client, the visual interface provides graphical
controls for AutoML processes and maps the summary data
to visualization.

Interface
The interface of ATMSeer consists of three parts (Figure 2):
• the control panel (a), which allows users to upload a new
dataset or select an existing dataset and create or resume
an AutoML process.

• the overview panel (b), which shows high-level statistics
of the dataset and the AutoML process.

• the three-level AutoML Profiler (c) for analyzing the Au-
toML process at different granularities.
AutoML Overview. The overview panel (Figure 2(b)) sum-

marizes high-level information (R1) of an AutoML process
in two aspects: general summary (b1) and top models (b2).
In addition to the best performance score and the total num-
ber of models, two coverage metrics show the percentage of
searched algorithms and hyperpartitions. Next, the perfor-
mance distribution summarizes the performance of all tried
models in a histogram. The top k models are listed for the
users to compare and choose. Users can focus their analysis
on the top models by enabling the “focus mode”, which high-
lights the corresponding algorithms and hyperpartitions in
the detail views.
AutoML Profiler. After an AutoML process exhausts its

budget, the user must carefully decide whether to resume
the process with an increased budget (D2) and/or a refined
search space (D1). It can also be challenging for users to de-
cide which model to choose and if the chosen model is really
the best (D3). How well does each type of algorithm per-
form? Howmanymodels have been tried for each algorithm?
Can AutoML find better models with an increased budget
and better configuration? Are some highly-ranked models
likely to achieve better generalization performance than oth-
ers? The AutoML Profiler summarizes an AutoML process at
three levels of granularity to help users answer these ques-
tions. From macro to micro, these include algorithm-level,
hyperpartition-level, and hyperparameter-level. The latter
two levels, which are only shown on demand, are designed
for advanced users who need to evaluate or configure an
AutoML process at a finer granularity.

Algorithm-level View (Figure 2(c1)) visualizes the per-
formance distribution of each machine learning algorithm as
a histogram. As shown in (Figure 3(c)), important statistics of
the algorithms, such as best performance and hyperpartition
coverage, are displayed with each histogram. The algorithms
are sorted according to their best performance in descending
order. The algorithm-level view enables users to compare
different algorithms (R5) with respect to performance distri-
bution and the number of tried models. Users can evaluate
the robustness and performance of each algorithm and gain
intuition for modification (R3).

Hyperpartition-level View (Figure 2(c2)) summarizes
different hyperpartitions of selected algorithms. A hyper-
partition is a configuration of an algorithm with fixed non-
tunable hyperparameters (only numeric hyperparameters
can be tuned). Different hyperpartitions of an algorithm can
have very different properties (e.g., SVM with linear kernel
vs. polynomial kernel). The hyperpartition-level view is de-
signed to help advanced users to analyze the search space
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(R2) and compare hyperpartitions (R5). For a selected algo-
rithm, its hyperpartitions are visualized as a list of progress
bars. Models are pushed into their corresponding progress
bars according to their hyperpartitions as small boxes, whose
height denotes the performance of the model (Figure 3(b)).

Hyperparameter-level View (Figure 2(c3)) shows the
relation between performance and hyperparameters of a se-
lected algorithm. For each tunable hyperparameter, a scatter
plot is presented to compare hyperparameter values and per-
formance scores. Each model is visualized as a point in each
of the scatter plots. We also include an area plot showing
the distribution of the hyperparameter below each scatter
plot to help users evaluate the coverage of the hyperparame-
ter space (i.e., which values have been extensively tried and
which have not) (R2). It also helps users learn how each
hyperparameter influences the performance: at what values
a model gets a generally good performance and where it
does not. This information can be used as important hints
for improving the configuration of the search space (R3).
During the development of ATMSeer, we experimented

with two common multivariate visualization techniques as
design alternatives (Figure 4): principal component analysis
(PCA) mapping and parallel coordinates. We gathered prelim-
inary feedback from three target users that we interviewed
(Section 3). The PCAmapping was rejected by all users, since
it loses the detail of hyperparameter values, which are im-
portant for analyzing and comparing models. Parallel coordi-
nates visualize each hyperparameter in the high-dimensional
coordinate space as a vertical line and were well-accepted by
the users. However, we found that users needed to perform
intensive interactions with the parallel coordinates during
the analysis. We also noticed that most users are only inter-
ested in investigating the relationship between performance
and a single hyperparameter at a time, possibly resulting
from the fact that high-dimensional relationships are per-
ceptually challenging for humans. Compared with parallel
coordinates, multiple scatter plots are intuitive, simple, and
preferred by all users. As a result, we adopt scatter plots as
the final design for the hyperparameter-level view.
Interaction Design
Real-time Control. The ATMSeer interface is updated dy-

namically, which allows users to monitor and analyze Au-
toML processes in real-time. The users can also perform a
“run-reconfigure-run” workflow – they can pause and re-
configure an AutoML process and then restart it from its
previous state.

In-Situ Search Space Configuration. A well-chosen search
space could improve the search efficiency of AutoML. Con-
figuring the search space also helps integrate a user’s prior
knowledge into the AutoML algorithm. However, configur-
ing the search space can be a challenging task due to its

0.83
b c

a

Figure 5: The use case of ATMSeer to select and understand
models. (a): The top 4 algorithms have similar best per-
formances but KNN has a more stable performance distri-
bution. (b): There is no obvious relationship between the
choice of KNN hyperpartition and the model performance.
(c): A small value of n_neighbors leads to low performance.

complex hierarchical structure (i.e., different algorithms, cat-
egorical and numeric hyperparameters). As shown in Fig-
ure 3(a), ATMSeer provides an in-situ configuration which
embeds in the three-level Profiler. It allows users to easily
modify the search space at the same place they observe and
analyze the search models (R4).

5 CASE STUDY
The case studies are conducted in collaboration with two
ML experts (denoted as E1 and E2) that we interviewed in
Section 3.We use F1-score with 10-fold cross validation as the
performance metric. The machine learning algorithms used
in the case studies include support vector machine (SVM),
extra-trees (ET), linear models with SGD training (SGD), k-
nearest neighbors (KNN), random forest (RF), multi-layer
perceptron (MLP), and Gaussian process (GP).

Select and analyze models (D2, D3)
In this case, we illustrate how ATMSeer helps users select
and analyze the searched models. E1 wants to find a model
for the arsenic-female-bladder dataset [25] using ATM-
Seer. This dataset classifies 559 female patient records as
positive (bladder cancer) or negative (healthy). ATMSeer
first searched 250 models for this dataset. Observing that the
best performance score is 0.939 and the algorithm coverage is
100% in the overview panel (Figure 2(b2)), E1 is satisfied with
the AutoML results. E1 then decides to stop the search (D2)
and to choose a model from the already searched models.
E1 first examines the top 10 models in the leaderboard.

The top 10 models have similar performance scores (from
0.936 to 0.939) and belong to four different algorithms (i.e.,
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Figure 6: Using ATMSeer to modify the search space of an
AutoML process. (a): Only ET algorithm is selected. (b): The
best performance of the two ET hyperpartitions increases
to 0.906 and 0.905. (c): The range of the max_feature is set to
[0.7, 1.0] and the best performance increases to 0.922.

MLP, KNN, GP, SGD). Since these models have similar per-
formance scores, E1 thinks it would be better to choose a
model by comparing the characteristics of the algorithms. E1
then compares these four algorithms in the algorithm-level
visualization. He finds that the performance distribution of
KNN is concentrated on the top, implying that KNNs have
generally good performance on this dataset. He decides that
KNN should be a good choice (D3).

E1 also wants to learn why some KNNs have less satisfying
performance (i.e., F1-score < 0.9) to increase his confidence
in using the model. He clicks KNN in the algorithm-level
view to reveal more information in the hyperpartition-level
view (Figure 5(b)). He notices that the difference between the
best performance of each hyperpartition is not significant.
Meanwhile, one hyperpartition can have both strongly per-
forming models and poorly performing models (e.g., a model
in the first hyperpartition has a performance of 0.83). E1
then clicks the hyperparameter-level view to observe more
detailed information and finds that the choice of hyperpa-
rameter directly influences the performance. As shown in
Figure 5(c), most poorly-performing models have a small
“number of neighbors”.
Refine Search Space (D1, D2)
Next, we illustrate how ATMSeer helps users modify an Au-
toML process and improve the performance. E2 wants to
find a model for the Friedman Dataset fri_c3_1000_10 [8],
a synthetic binary classification problem with 1000 instances
and 10 features. With strong domain knowledge, E2 wants
to have more control over the AutoML process. He first
tries all algorithms to analyze which one is better for this
dataset. After searching 150 models, the algorithm coverage

F-
sc

o
re

The number of models tried when reach a performance

Figure 7: The performance of 20 AutoML processes. X-axis
represents the number of models tried when a process first
reaches a certain performances. Among 20 processes, all 20
processes achieves a best performance of over 0.89, 17 over
0.90, 6 over 0.91, and none over 0.92.

reaches 100% and he suspends the process. After observ-
ing the algorithm-level view (Figure 6(a)), E2 expresses a
preference for the second best algorithm, ET. ET is tried
for only three times and its performances is comparable to
the best algorithm, MLP. In addition, ET has a concentrated
performance distribution between 0.8 and 0.9. Thus, E2 mod-
ifies the algorithm-level configuration to focus on searching
ET to see if further improvements could be achieved. After
searching another 30 models, the best performance increases
from 0.887 to 0.906. Opening the hyperpartition-level view
(Figure 6(b)), E2 finds the performance distributions of ET-
Entropy and ET-Gini are similar. This is consistent with his
prior knowledge that ETs with Gini or Entropy measure have
similar performance in general [26].

E2 then checks the hyperparameter-level view (Figure 6(c))
and finds that the value of max_features2 directly influ-
ences the performance. Based on his observation of the
hyperparameter-level view, he concludes that choosing max_
features between 0.7 to 1 leads to higher performance,
which, however, conflicts with his experience: “The empirical
good value of max_ features is around

√
n
n [n is the number of

features] [16], which means I would set it to around 0.3 for this
dataset.” E2 comments that “this makes sense since empirical
values are usually not optimal.” E2 then modifies the range
of max_features to [0.7, 1.0] (Figure 6(c)) and searches an-
other 50 models. The best performance score increases to
0.922. Since no further performance improvement occurs in
the last 20 searched models, E2 stops the search process and
chooses the best ET model.
Interested in assessing how the involvement of humans

improves an AutoML process, we run 20 AutoML processes
without human interference for comparison. We let each Au-
toML process independently search 250 models. As shown
in Figure 7, among 20 processes, 17 reach a performance
score of over 0.90 and 6 reach 0.91, but none reaches 0.92.
In comparison, the expert achieves the best performance
of 0.922 within the 210th model, which shows that human
2In ET, max_features is a node splitting criterion given by the ratio of the
size of random feature subsets to the total number of features.
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involvement has the potential of improving both the per-
formance and the efficiency of AutoML. This improvement
might be caused by the fact that the human could modify
the search space in a more aggressive way (i.e., only choose
one algorithm and reduce the range of a hyperparameter to
30% of its original range).

6 EXPERT INTERVIEW
To evaluate ATMSeer, we conduct interviewswith two closely
collaborating experts (E1 and E2, the same experts we collab-
orated with in Section 5) with particular expertise in AutoML.
E1 is a co-author of an AutoML framework [33]. We collected
their feedback about ATMSeer throughweeklymeetings over
more than two months. Based the discussion, we summarize
three main usage scenarios of ATMSeer.
Knowledge Distillation from AutoML
ATMSeer can help people better understand and apply ma-
chine learning algorithms. AutoML enables quick experimen-
tation with a large number of models, whose results could
provide useful knowledge to ML researchers and practition-
ers. As shown in Figure 8(a), ATMSeer shows that some algo-
rithms (e.g., ET, RF, KNN) tend to have a stable performance
distribution while other algorithms (e.g., SGD, MLP, SVM)
are more prone to generating poorly-performing models. For
the same algorithm, the strongly-performing hyperpartitions
(Figure 8(c)) and hyperparameters (Figure 8(b)) vary from
dataset to dataset. These findings can inform users of the
importance of hyperparameter tuning for certain algorithms.

E2 commented that being able to match prior knowledge
about machine learning to the visualizations produced by
ATMSeer creates confidence in the underlying AutoML pro-
cess and increases the likelihood of adopting AutoML. He
also believed that ATMSeer could function as an educational
tool for machine learning, which helps people better under-
stand the behavior of unfamiliar algorithms.
Human-Machine Interaction in AutoML
Both experts appreciated the human-machine interaction
introduced in ATMSeer. They believed such interaction can
improve an AutoML process and enhance user experience.
They commented that “human observation and prior knowl-
edge sometimes can be more efficient than AutoML algorithms,
especially when there is a large search space and limited com-
putational budget.” E1 said that “users with more domain
knowledge, such as myself, are usually critical of automated
methods and like to be in control. I don’t like getting a score
back and hearing ‘trust me.’ ”

Diagnosis of AutoML
Even though ATMSeer is initially developed for AutoML end
users, our expert interviews suggest that ATMSeer can also
help AutoML developers diagnose AutoML algorithms.
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Figure 8: (a): Some algorithms have more stable perfor-
mance distributions than other algorithms (using Fried-
man Dataset fri_c3_500_10 [8]). (b): The suitable range of
n_neighbors in KNN varies from dataset to dataset (top:
Quake Dataset [31]; bottom: Machine CPU Dataset from
UIC[5]). (c): The suitable SVM hyperpartition for different
datasets varies (top: Arsenic Female Bladder Dataset [25],
bottom: Ringnorm Dataset [29]).

For example, using ATMSeer, the experts identified that
the AutoML method proposed by Swearingen et al. [33]
seems to be biased in favor of certain algorithms. As shown
in Figure 8(a), MLP was searched many more times than
ET even though their best performance was similar and the
mode of the performance distribution of MLP was much
lower than that of ET. E1 quickly identified the reason for
this phenomenon using ATMSeer. In the ATM framework,
each hyperpartition is modeled as separate arm in a multi-
armed bandit framework and competes with others for the
opportunity to be searched. In this case, algorithms with
a small number of hyperpartitions (e.g., RF, ET) tend to be
searched less, motivating a hierarchical extension.
Another issue the experts identified was that the search

frequencies of strongly-performing and poorly-performing
hyperpartitions were sometimes similar. As shown in Fig-
ure 8(b), SVM with RBF kernel, having a higher best perfor-
mance score and a more stable performance distribution, is
likely better for the given dataset compared with SVM with
Sigmoid kernel. However, SVM-RBF wasn’t tried notably
more times than SVM-Sigmoid (27 vs. 26). E2 thought this
reflected an inappropriate reward function in the underlying
AutoML algorithm: the search frequency of a hyperpartition
(i.e., the reward) was determined by the average performance
of its best k models (k = 5 in this case). The search frequen-
cies of SVM-RBF and SVM-Sigmoid were similar because
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their best k models were similar. E2 thought this made him
reconsider the design of the reward function.

7 USER STUDY
The visual analysis of AutoML processes is a relatively new
problem. To the best of our knowledge, there are no simi-
lar tools for comparison. At the same time, we found that
comparison with a baseline system3 was unfair. Since the
baseline system failed to provide detailed information about
the AutoML results, users are unable to make informative
decisions and modify the search process. Therefore, instead
of an unfair benchmarking, we believe it more interesting
and important to investigate user behavior under the char-
acterized workflow with ATMSeer.

Participants and Apparatus
We recruited 13 graduate students by email (11 male and 2
female, age 22–30, µ = 24.46, σ = 2.66), denoted as P1-P13.
All participants had experience in machine learning or data
science but none of them had prior experience with AutoML.
Each participant was rewarded with a gift card worth $10. All
studies were conducted with a 24-inch 1920 × 1200 monitor,
a mouse, and a keyboard.

Datasets & Tasks
The participants were asked to perform two tasks that mimic
the workflow described in Section 3.
• T1: try their best to find a model with good performance
for an given dataset using AutoML.

• T2: analyze a given AutoML process and answer 13 ques-
tions related to D1-D3.
For T1, we use the German Credit Dataset [5], which clas-

sifies 1000 loan applicants as good or bad credit risks based
on 20 features. For T2, to ensure a fair comparison across
participants, we pre-run an AutoML process for 200 mod-
els on the artificially-generated Friedman fri_c3_500_10
dataset [8]. In our 13 question survey, Q1-Q8 are objec-
tive questions that investigate users’ understanding of the
three-level profiler (Table 1); Q9-Q13 are subjective ques-
tions that investigate the information users refer to when
making decisions about increasing the computational bud-
get, modifying the search space of algorithms, modifying the
search space of hyperpartitions, modifying the search space
of hyperparameters, and choosing a model, respectively.

Procedure
The study began with a tutorial session, in which the tasks
and the usage of ATMSeer were introduced to the partici-
pants. When performing the tasks, participants were free
to ask questions and were encouraged to think-aloud. We
deemed T1 as complete when the participant was satisfied
with the AutoML results and chose a model for the given
3https://github.com/HDI-Project/ATMSeer/tree/dev-zhihua-baseline

dataset. In T2, users were allowed to skip questions that
they did not know. The click activities of participants were
automatically recorded. Finally, participants completed four
usability questions using a 5-point Likert scale (1 for strongly
disagree and 5 for strongly agree). A post-study interview
was conducted to collect more detailed feedback from the
participants. Each user study session lasted about 40 minutes.

Usability
The result of the usability questionnaire is summarized in
Figure 9. Overall, most participants agreed that ATMSeer was
easy to learn and easy to use. Most participants (strongly)
agreed that they were confident in their selected model
(84.6%) and were willing to use ATMSeer in the future (92.3%).
P11 disagreed that ATMSeer was easy to use, commenting
that “I cannot remember the meaning of every hyperparame-
ter and am not familiar with every algorithm.” P11 and P13
disagreed that they were confident in the selected model and
desired additional validation using their familiar tools.

For the objective questions (Q1−Q8) inT2, participants an-
swered fluently and correctly most of the time (99/104). This
indicated the usability of ATMSeer in enabling users to ana-
lyze the searched models. Among the five errors/missing re-
sponses, one was a careless mistake (the participant mistook
SVM as SGD). The other four came from the hyperparameter-
level questions, which we found to have been caused by a low
familiarity with the ML models, according to the post-study
interview. For example, two participants skipped Q8 because
that they were unfamiliar with SGD classifiers and were not
confident about the correctness of their observations.

Revisiting the Workflow
The analysis of user behavior helps us to reflect on the work-
flow in Section 3.
D1: Modify Search Space. Among 13 participants, 10 fol-
low a coarse-to-fine strategy to refine the search space. Specif-
ically, after searching some models, participants first refined
the search space at a coarse level (e.g., choose 2 to 3 algo-
rithms) based on their observation and continued the search.
After searching more models, participants then refined the
search space at a finer level (e.g., modified the range of a hy-
perparameter). Participants expressed different preferences
for refining the different levels of the search space and were
less interested in fine modifications (Table 1).
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Figure 9: Results of the usability questionnaire.
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Algorithm Hyperpartition Hyperparameter
Clicks 51% (13/13) 28% (10/13) 21% (7/13)

Questions
Q1.find the best performed
algorithm: 13/13

Q4.find the algorithm with most hy-
perpartitions: 13/13

Q7.find the suitable range of “n neigh-
bors” in KNN: 11/13

Q2.find the most stable algo-
rithm: 13/13

Q5.find the worst performed hyper-
partition in MLP: 12/13

Q8.find the hyperparameter that influ-
ences the performance of SGD: 11/13

Q3.find the most frequently
searched algorithm: 13/13

Q6.find the best performed hyper-
partition in SVM: 13/13

Table 1: Results on the interaction with and the understanding of three levels of information.

D2: Adjust Computational Budget. According to the in-
terview, whether to continue the search with an increased
budget is a decision made based on multiple reasons, includ-
ing the performance histogram (considered by 9 participants),
the number of searched models (by 5), the algorithm coverage
(by 9), and the best performance (by 5).

We also found that people with strong domain knowledge
(i.e., self-reported as expert or advanced) were more willing
to increase the computational budget so that they could
further modify the search space. Six advanced participants
searched on average 117 models (σ = 62.24) while seven
novice participants searched 97.5 models (σ = 62.49).
D3: ReasonModel Choice.While all participants preferred
the models with good performance, nine participants also
expressed preferences for familiar models. Three participants
commented that ATMSeer helped them understand machine
learning models, thereby improving their familiarity with a
model and their willingness to use it.

8 DISCUSSION & FUTUREWORK
General Applicability
ATMSeer is initially designed for machine learning experts.
However, based on our expert interviews and user studies,
we identify other potential usage scenarios of ATMSeer, in-
cluding learningmachine learningmodels and debugging Au-
toML algorithms. For beginners in machine learning, ATM-
Seer enables them to observe how the choice of algorithms,
hyperpartitions, and hyperparameters influences model per-
formance. For AutoML designers, ATMSeer enables them
to analyze the results of an AutoML process and identify
possible bugs and opportunities for improvement. We will
conduct further investigation in future work.

Limited Evaluation
One limitation of this work is that the user studies are only
conducted with 13 participants — predominantly graduate
students. Further investigation would help validate whether
the insights and results can be applied more generally. Nev-
ertheless, we are encouraged by the fact that ATMSeer was
appreciated by these users and got positive feedback.
Scalability of the Visualization
Existing AutoML systems support 8–15 algorithms in gen-
eral [7, 22]. A typical AutoML process would search 100

to 400 models in total [7, 22, 33]. ATMSeer uses a categori-
cal color scheme to encode different machine learning algo-
rithms, whichmost users could distinguish. The visualization
can fluently support the analysis an AutoML process with
over 1000 models. Thus, the effectiveness of ATMSeer is
guaranteed for most real-world machine learning tasks.
Future Work
We envision improving ATMSeer in several directions. First,
we plan to further validate ATMSeer in real-world applica-
tions with a larger andmore diverse group of users. ATMSeer
is open-sourced. We will further evaluate it and improve it
based on the future feedback. Second, we intend to support
intelligent control of AutoML processes. One possible direc-
tion is to combine ATMSeer with human-in-the-loop rein-
forcement learning [18] and automatically detect the critical
points (e.g., stuck in a local optimum) in an AutoML process
where human involvement is needed.

9 CONCLUSION
In this work, we presented ATMSeer, an interactive visualiza-
tion tool that supports machine learning experts in analyzing
the automatic results and in refining the search space of Au-
toML. A workflow of using AutoML was proposed based
on the interview with machine learning experts. Three key
decisions in this workflow — updating the search space, mod-
ifying the computational budget, and reasoning the model
choice — were identified to guide the design and implemen-
tation of ATMSeer. We next proposed a multi-granularity
visualization with in-situ configuration to enable users to
examine an AutoML process in real time at the algorithm
level, hyperpartition level, and hyperparameter level. A se-
ries of evaluations demonstrated the utility and usability of
ATMSeer. The user study suggested that users followed a
coarse-to-fine strategy when using ATMSeer and that users
with a higher level of expertise in machine learning were
more willing to interact with ATMSeer.
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