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Abstract—We present an efficient stereoscopic rendering algorithm supporting interactive navigation through large-scale 3D voxel-

based environments. In this algorithm, most of the pixel values of the right image are derived from the left image by a fast 3D warping

based on a specific stereoscopic projection geometry. An accelerated volumetric ray casting then fills the remaining gaps in the warped

right image. Our algorithm has been parallelized on a multiprocessor by employing effective task partitioning schemes and achieved a

high cache coherency and load balancing. We also extend our stereoscopic rendering to include view-dependent shading and

transparency effects. We have applied our algorithm in two virtual navigation systems, flythrough over terrain and virtual colonoscopy,

and reached interactive stereoscopic rendering rates of more than 10 frames per second on a 16-processor SGI Challenge.

Index Terms—3D voxel-based environment, stereoscopic rendering, ray casting, 3D warping, splatting, antialiasing, virtual flythrough,

virtual colonoscopy.
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1 INTRODUCTION

STEREOSCOPIC displays play an important role in systems
that perform flexible navigation through 3D voxel-based

virtual environments (in short, volumetric environments),
such as an interactive virtual navigation inside CT-scanned
human organs [10]. In such a system, we often generate two
images of a scene that differ in their horizontal positions by
using stereoscopic rendering techniques so that the ob-
server can see a merged image with binocular parallax that
appears truly 3D on stereoscopic displays. Compared to the
conventional display mode employing single-image cues,
stereoscopy provides unambiguous depth information with
greater robustness [9], [16].

However, stereoscopic rendering is limited by slow
rendering rates when compared to those of single image
rendering. In the worst case, the rendering time is doubled.
Therefore, fast stereoscopic rendering approaches have
been proposed which exploit the coherence between the
two views so that the second image of the stereo image pair
can be generated in a fraction of the time of the first image.
Most of the previous work was based on traditional
geometric rendering schemes, such as ray tracing, where
the second view requires as little as 5 percent of the
computation time to fully ray trace the first view [1]. With
the increasing interest in volume-rendering techniques, a
fast stereoscopic volume-rendering technique for ray cast-
ing was proposed by Adelson and Hansen [2] and further
accelerated by He and Kaufman [8]. However, both
techniques were based on the assumption of parallel
projection. Furthermore, none of the previous work is fast

enough for interactive navigation. For example, Adelson
and Hodges [1] have generated a pair of stereoscopic
images in about 20 minutes.

In recent years, efficient image-based rendering (IBR) has
emerged. It rapidly generates a novel view from a set of
precomputed or preacquired 2D images (called reference
images) rather than from a 3D model of the scene, typically
by applying 3D warping on the reference images with
depth information (called depth images [4], [25]). To attain a
real-time performance, McMillan and Bishop [17], [18]
proposed a fast warping approach that uses an incremental
evaluation of the 3D warping equations and an occlusion-
compatible ordering algorithm without the expense of
Z-buffering. However, the warping from a single depth
image results in gaps due to visibility changes. Researchers
therefore proposed to use multiple reference images to fill
the gaps [4], [14], but the rendering cost increased
accordingly. To alleviate this, Max [15] and Shade et al.
[25] introduced a layered depth image (LDI) representation,
which contains multiple depth pixels at each discrete
location in the reference image. Because the LDI data are
represented in a single image coordinate system, McMil-
lan’s warp-ordering algorithm can be successfully applied.

There is a close relationship between IBR and stereo-
scopic rendering. For example, both speed up the rendering
process by exploiting the coherence between different views
and both generate an output image from the available
image(s). However, in an interactive navigation system, the
reference images in IBR are normally acquired during a
preprocessing stage, whereas the left-eye image (in short,
left image) in stereoscopic rendering is usually generated on
the fly. In addition, as a more general technology, IBR may
use more than one reference image to generate the output
image. Even if only a single reference image is used [17],
[18], the output view can be located at an arbitrary place
nearby rather than always horizontally to the right of the
reference image. On the other hand, in stereoscopic
rendering, although the input is a single image from the
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left eye, the 3D model of the scene is usually available for

more information. How to accelerate stereoscopic rendering

by taking advantage of both IBR techniques and the specific

features in stereoscopic projection is the focus of our work.
In this paper, we propose an interactive image-based

stereoscopic rendering approach, where most of the pixel

values of the right image are derived from the left image by

a fast 3D warping based on specific stereoscopic projection

geometry. The gaps in the warped image are then filled by

casting rays through those pixels in the gap regions (in

short, gap pixels or hole pixels). Our 3D warping includes

reprojection, a clipping test, hidden-pixel removal, and

splatting. Specifically, we adopt a simplified stereoscopic

perspective-projection geometry so that the reprojection can

be done in a scanline order. Clipping test and hidden-pixel

removal strategies are used during the reprojection to

remove those reprojected pixels that are invisible in the

right image, whereas the viable ones are splatted onto the

right image in a front-to-back order. The kernel sizes of the

splats are limited and their footprints are supersampled for

antialiasing. Although our front-to-back order is different

from McMillan’s back-to-front method, it preserves the

same correct alpha blending during splatting without explicit

sorting. More importantly, by using our hidden-pixel

removal scheme and the subsequent ray casting for hole

filling, our method successfully solves the exposure error in

McMillan’s 3D warping algorithm [18].
We have applied our stereoscopic rendering algorithm in

two case studies of virtual navigation systems: virtual

flythrough over a terrain and 3D virtual colonoscopy. The

first case study is an interactive flythrough over a voxel-

based terrain [28], where the 3D volumetric terrain model is

obtained from a 2D elevation map and a corresponding

color aerial or satellite photograph. A single terrain image

(used as the left image) is generated by taking a sequence of

equidistant resamplings along the ray cast from each pixel

until the ray hits the terrain surface or exits the volume. If a

2D color photograph is available as the terrain texture, we

calculate the terrain color at the hit point by using bilinear

interpolation; otherwise, we apply a local shading model.

The second case study is our interactive virtual colonoscopy

[10], [26]. It takes a spiral CT scan of the patient’s abdomen

and then a 3D voxel-based model of the colon is segmented

from the acquired CT data set, which is examined during

interactive endoscopic navigation searching for polyps.
The paper is organized as follows: A description of our

serial algorithm and its parallel version are given in

Sections 2 and 3, respectively, combined with its applica-

tion in the two case studies. Section 4 discusses how to

add view-dependent shading and transparency effects to

the stereoscopic rendering. Performance results are re-

ported in Section 5. A detailed comparison between our

method and McMillan’s 3D warping approach [18] is

given in Section 6. An early version of our work was

applied to terrain rendering [29], which provided a

solution to specific height-field applications without taking

advantage of IBR techniques.

2 STEREOSCOPIC RENDERING ALGORITHM

The basic steps of our serial image-based stereoscopic
rendering pipeline are as follows:

1. Generate the left image with depth information on
the fly.

2. Establish simplified perspective-stereoscopic-projec-
tion geometry so that all the pixels in a scanline of
the left image are reprojected to the same scanline in
the right image.

3. Reproject the left image pixels to the right image in a
scanline order.

4. Perform a clipping test and hidden-pixel removal to
delete invisible reprojections.

5. Splat each viable pixel onto the right image for
reconstruction and antialiasing.

6. Fill the holes (the warping gaps) in the right image
by ray casting, which can be accelerated by various
application-oriented optimizations.

2.1 Generating the Left Image

Fast rendering of the left image is not the core of a
stereoscopic rendering algorithm, but it is critical to the
interactive navigation performance. We propose using a
high-quality backward ray tracer, which was simplified to
volumetric ray casting [13] when applied in volumetric
environments. After more than a decade of effort, ray
casting has been optimized to be one of the fastest volume-
rendering approaches [21], [27].

Note that modern textured polygon rendering also
provides high rendering speed and good image quality.
However, volumetric ray casting has shown several im-
portant advantages in the stereoscopic rendering of voxel-
based objects. First, volume ray casting is a direct volume-
rendering method which directly renders object voxels,
while polygon rendering has an extra step to explicitly
extract object surfaces from their voxel-based representa-
tion, which is at least inconvenient, if not impossible.
Second, ray casting provides an efficient approach to fill
randomly distributed hole pixels in the warped image.
Third, although forward polygon projection also provides
depth information at the cost of reading the Z-buffer, the
depths in Z-buffer are not as accurate as those generated
during ray casting because the formers are nonlinear. The
further the sample point to the near plane of the Z-buffer,
the less precise its depth is.

Although we can employ any available high-perfor-
mance ray casting in our stereoscopic rendering, we prefer
to use those ray-casting optimizations that do not sacrifice
image quality. Therefore, the space leaping optimization [5],
which skips over empty voxels that have no contribution to
the final rendered image, becomes an attractive method. In
this section, we demonstrate two efficient ray-casting
optimizations used in our two case studies by exploiting
space leaping in their specific scene geometries. Those
optimizations will also be used later to accelerate hole
filling in the right image. We would like to point out that
the special geometries in our two case studies are exploited
only for more efficient space leaping during ray casting
(which could be easily replaced by a generic space-leaping
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method [5] for more general geometries). Consequently, our
stereoscopic rendering algorithm presented in this paper is
generally applicable to any geometry in a volumetric scene.

In the virtual flythrough over terrain, we use a ray
casting procedure that can be accelerated dramatically by
exploiting the special ray coherence in a terrain scene [6],
[12], [28], where a higher ray always hits the terrain at a
greater distance than that of the ray below it. Therefore,
when the image columns are vertical to the horizontal
direction, we can accelerate the traversal of a higher ray by
space leaping according to the intersection information (or
depth value) of the previous ray that emanated from a
lower neighboring pixel on the same image column.

In the 3D virtual colonoscopy, we implemented a fast ray
casting by exploiting the specific features of the human
colon [26]. Note that the human colon has a cavity structure
with a bounding thin surface and, during navigation, the
camera is always located inside the empty colonic interior.
Therefore, we skipped the empty space along each ray by
sampling the Euclidean distance field from each voxel
inside the colon to the closest colon wall and performed
sampling only in the area near the colon surface.

2.2 Stereoscopic Projection Geometry

The fundamental technique of stereoscopic rendering is the
establishment of correspondence, that is, the pairing up of
pixels in the two images such that each pixel in a pair of
points is the image of the same object point in space. In our
algorithm, we are more interested in finding the corre-
sponding right-image pixel for each nonbackground (or
nonempty) left-image pixel through which a ray intersects
an object surface. To simplify this problem, we adopt the
assumption (cf. [19]) that the two image planes (the left-eye
and right-eye image planes) are chosen to be coplanar so
that each pixel in a scanline of the left image is reprojected
to the same scanline in the right image. Usually, since the
two eyes are closer to each other than to the objects in space,
the above rectification of image planes works fine.

Fig. 1 illustrates the perspective projection geometry
used in our stereoscopic rendering algorithm. The left and
right centers of projection, named El and Er, separated by a
distance e, are placed at the same side of the projection
plane with the same distance f , where e and f have been
magnified for legibility. We define a lefthand image space
coordinate system as follows: Origin O is located at El.

Axis Z points perpendicularly to the image plane. The main
view vector or boresight of the left view is along axis Z.
Axis X is along the horizontal direction pointing right,
passing through El and Er. Axis Y is orthogonal to both
axes X and Z and points upward. In fact, any arbitrary
single coordinate system can be specified here, such as
placing the two eyes symmetrically around the origin [1].
The stereo images generated from different projection
geometries would be very similar because the angle �

between a pair of left and right rays is very small (often less
than 2 degrees [8]). The advantage of selecting our
stereoscopic projection geometry to be the same as our
single-image-rendering geometry is that we can use our fast
ray casting to generate the left image without any
modification.

2.3 Reprojecting Left-Image Pixels

We assume that every pixel in the left image is a perspective
projection of an opaque object point in the scene. (In
Section 4, we discuss a solution for translucent objects). As a
result, a left-image pixel may or may not have a
correspondence in the right image, depending on whether
the associated scene object point is visible to the right eye. If
a left-image pixel does have a reprojection on the right
image, the reprojection must be located in the same scanline
in the right image, according to our stereoscopic projection
geometry. Therefore, our reprojection procedure is per-
formed in a scanline order. Furthermore, the reprojections
of all left-image nonbackground pixels in the same scanline
are conducted in a common epipolar plane that passes
through the two eyes and the scanline. Our reprojection
computation thereby only involves x and z coordinates and
we only care about the x coordinate of the reprojection for
the right view.

Assume that the current pixel in question is at position
ðil; jÞ of the left image and its 3D location in the image space
is at Plðxl; yj; fÞ on the projection plane (see Fig. 1). We are
looking for the corresponding pixel in the right image ðir; jÞ
of the same image scanline j, whose 3D image space
coordinates are Prðxr; yj; fÞ. Assume that these two pixels
are the images of an object point P ðx; y; zÞ in the image
space, where x, y, z values can be obtained from the depth
value of dl in the left image.1 Line segments AB and CD are
the parts of the projection scanline, respectively, covered by
the left and right images. Pl and Pr, respectively, fall into
AB and CD. When the two eyes are close enough, AB and
CD can overlap.

From ðxr � eÞ=ðx� eÞ ¼ f=z, we get

xr ¼ eþ fðx� eÞ=z: ð1Þ

Then, the unknown ir of the reprojected pixel position ðir; jÞ
is computed as:

ir ¼ ðxr � cÞ=w ¼ ðeþ fðx� eÞ=z� cÞ=w; ð2Þ

where c is the x-coordinate of the left-most pixel of the right
image on the current scanline j and w is the physical width
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array to save the x, y, z coordinates of the sampled surface points during the
ray casting of the left image.

Fig. 1. Stereoscopic perspective projection geometry.



of one pixel. Since c and w are constants for each scanline,

(2) simplifies to

ir ¼ aþ bðx� eÞ=z; ð3Þ

where a ¼ ðe� cÞ=w and b ¼ f=w are constants. Therefore,

the reprojection of a point from the left image to the right

image can be computed using two additions and two

multiplications.

2.4 Resolving Visibility

An object point visible to the left eye may not be visible to

the right eye for two reasons. First, the two eyes have

different fields of view. Second, object occlusion is view-

point dependent. In this section, we focus on a viable

reprojection determination for left-image pixels in a front-to-

back order by sequentially performing a clipping test and

hidden-pixel removal. Fig. 2 illustrates the different fields of

a view from the two eyes. Scene areas I and II are only

visible to the left eye. Areas IV and V are only visible to the

right eye. Area III is visible to both eyes. Note that the small

area from the image plane toward the eyes is excluded from

the fields of a view.
We perform a clipping test on each left-image pixel Pl as

follows: If Pl is reprojected beyond the scope of ½C;D� on the

current scanline, the related object point P in space must be
located in either I or II and invisible from the right eye. So, it
is rejected. Otherwise, the reprojection of Pl is located
between C and D and its related object point P is in area III.
Although P is now in the field of view of the right eye, it
may still not be viable because scene objects located in front
of P from the right view can occlude it. Because these
occluding objects may be located either in area III or V, we
further use two different detection strategies. If the
occluding objects appear in area V, they are newly exposed
or new-incoming objects in the right image. So, we cast rays
through the right-image pixels between B and D on the
scanline to detect these objects. Because the hitting test
along these rays is performed only in the small area V, this
can be done very fast. If the occluding objects are located in
area III, we employ an effective hidden-pixel removal to
remove all potentially occluded reprojections. Specifically,
from the relative positions between the two eyes, we
observe that the reprojection of a left-image pixel P can only
be occluded by the reprojections of those left-image pixels,
say Q, located to the right of P on the same image scanline,
no matter whether pixels P and Q belong to the same
surface or not. Accordingly, we conduct the following
hidden-pixel removal during the reprojection of each pixel
in the current left-image scanline in a right-to-left order,
which guarantees that reprojected pixels arrive at the right
image in a front-to-back order.

Assume that Pl is the current pixel in the left image, Pr is
Pl’s reprojection to the right eye, Pl and Pr are the images of
an object point P located in area III, and Ps is the current
left-most reprojection of those left-image pixels located to
the right of Pl on the same scanline (see Fig. 3). Our hidden
pixel removal determines whether P is to be occluded in the
right image and, therefore, Pr is to be rejected, according to
the relative positions between Pr and Ps. Obviously, Pr is
either to the left of Ps or not. If Pr is to the left of Ps, then P
is visible to the right eye (see Fig. 3a). Therefore, Pr is viable
and we update Ps by Pr. Otherwise, Pr is located at or to the
right of Ps, which means P could be occluded by object
surfaces that are sampled by the left-image pixels to the
right of Pl. In this case, we reject Pr and keep the current Ps

untouched, no matter whether it is actually occluded (as in

18 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

Fig. 2. Different fields of a view from the two eyes.
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the case of Fig. 3b) or not (as in the case of Fig. 3c) in the
right image. Such a uniformed conservative rejection has
two important advantages. First, it simplifies the imple-
mentation of the algorithm. Second, it avoids the exposure
error in [18] because it removes the possible source (i.e.,
point Pr when it appears to the right of Ps) for the error. The
subsequent hole filling will take care of the possible gaps
caused by the rejection of actually viable points so that our
hidden-pixel removal scheme will not cause artifacts in the
final image. Hole filling will also take care of those object
points newly exposed at area IV that are visible through the
gaps in the right image.

2.5 Reconstruction and Resampling

Since the left image is represented by a 2D array of discrete
samples, reconstruction and resampling are needed to
synthesize the right image. According to the above
reprojection sequence, pixels are drawn in the right image
in a front-to-back order along each scanline without explicit
depth sorting. This makes splatting an efficient solution to
the reconstruction and resampling problems.

The splat size can be computed from the following
formula [25]:

size ¼ ðd1Þ2 cos �2res2 tanðfov1=2Þ
ðd2Þ2 cos �1res1 tanðfov2=2Þ

; ð4Þ

where di is the distance from the sampled surface point to
eye i, �i is the angle between the surface normal and the ray
from eye i to the surface point, resi and fovi are related to
the resolution and field of view of eyes i, respectively. Since
resi and fovi do not change from eye to eye in our
algorithm, we simplify the above equation as:

size ¼ ðd1Þ2 cos �2
ðd2Þ2 cos �1

: ð5Þ

By further applying the approximation principles of [25]
to our simplified geometrical situation of a stereo pair, we
conclude that a splat size of one pixel is appropriate. But, in
our implementation, we use fixed-size splats of two-pixel
width, which is larger than the one-pixel width, to cover
most of the small gaps on the warped image. However, we
still need to treat some right image pixels as holes if the
splatting weights at these pixels are below a threshold
(which means these parts are stretched too much). We later
update these pixels by ray casting.

For antialiasing, the footprints of the splats are super-
sampled in the right image. This is implemented by
reconstructing a supersampled scanline for splatting and
then filtering it back to the desired resolution. Therefore,
each pixel in a footprint is split into eight subpixels, where
each subpixel has an alpha value to approximate the
Gaussian splat kernel. This supersampling representation
of a footprint is derived from the A-buffer technique [3],
[15], [29]. However, it results in a more accurate reconstruc-
tion by a Gaussian filter rather than a linear interpolation
using the A-buffer technique. It is important to point out
that the footprints of our splats have only one dimension
along each image scanline. Therefore, our 1D splatting with
supersampling is much faster than normal 2D splatting.

In fact, similar concepts to our hidden pixel removal
and splatting have been used in IBR algorithms. For
example, “surfels” [22] uses splatting for both image
reconstruction and sample point visibility detection. If
two sample points have a depth difference of less than a
threshold, they are treated as points on the same surface;
otherwise, Z-buffer is used to resolve the visibility. Since a
surfel conducts a sufficient sampling in the object space, it
only produces small holes in the warped image, which can
be simply filled by interpolations between neighboring
splats. “WarpEngine” [24] used a different method to
detect depth discontinuities based on the surface curva-
ture. If the second derivative of a reference image sample
exceeds a threshold, the sample is marked as disconnected.
Splatting is also used for translucent objects in “surface
splatting” algorithm [31]. Surface splatting divides the
Z-buffer into buckets and then splats samples into different
buckets based on their Z depths. After blending samples of
the same bucket into one image, all images from different
buckets are composited from back to front.

Note that our hidden pixel removal is more efficient and
simpler than those visibility detection methods used in [22],
[24] because it does not detect surface connectivity.
Although it may reject some actually visible samples, our
hole filling procedure takes care of the possibly “enlarged”
holes. In fact, even if we used the continuity detection
methods [22], [24], we were unable to avoid large holes in
the right image because the left image normally cannot
sufficiently sample the volumetric scene. For the same
reason, we cannot use surface splatting [31] in our
stereoscopic rendering to generate a semitransparent right
image (see Section 4 for our solution to translucent
rendering).

2.6 Filling Holes in the Right Image

During warping of left-image pixels in the right-to-left order
along each scanline, three different kinds of gaps may
appear, depending on whether the current reprojection Pr

of the nonbackground left-image pixel Pl is the right-most,
middle, or left-most reprojection on the right-image row.
Since background pixels have no depth information, they
are not reprojected. We use C and D to represent the left
endpoint and right endpoint of the current right-image
scanline and assume Ps to be the current left-most
reprojection on the current right-image scanline.

. Right-end gap (Fig. 4a): First, we examine whether Pr

is the first viable reprojection on the current right-
image row by using our clipping test. If it is, we splat
Pl around position Pr on the current right-image
row, cast rays through hole pixels (if they exist)
between Pr and D, whose weights are below a user-
defined threshold, to fill this right-end gap, and
initialize Ps by Pr.

. Middle gaps (Fig. 4b): If Pr is to the left of the current
left-most reprojection Ps, then Pr passes our hidden-
pixel removal test. Therefore, we splat Pl around Pr

on the right-image row, blend its kernel with
previously splatted pixels (if they exist), cast rays
through hole pixels (if they exist) between Pr and Ps

to fill this middle gap, and update Ps by Pr.
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. Left-end gap (Fig. 4c): If Pr is the left-most reprojec-
tion passing our clipping test, we cast rays through
the hole pixels (if they exist) between C and Pr to fill
the left-end gap.

The pseudocode in Table 1 summarizes our serial
stereoscopic rendering algorithm.2 It indicates that all
those right-image pixels with zero or small weighs from
splatting need ray casting, including those background
pixels which do not intersect with any surface in the
scene. Therefore, accelerating ray casting during hole
filling is also critical for interactive performance. Different
applications may benefit from different ray-casting opti-
mization strategies. In the following section, we present
our implementations of fast ray casting by exploiting
different space coherences in the two case studies,
incorporated with the design of efficient image-based task
partitioning schemes toward efficient parallelization of our
serial stereoscopic rendering algorithms.

3 PARALLEL STEREOSCOPIC RENDERING

ALGORITHM

To maintain interactive rates during stereoscopic rendering,

we parallelize the generation of the left image as well as the

right image. The latter is accomplished by separating our

serial stereoscopic rendering algorithm into two passes: a

3D-warping pass (including reprojection, a clipping test,

hidden-pixel removal, and splatting) followed by a hole-

filling pass (using ray casting). In the first pass, pixels in the

left image are warped and splatted into the right image in

scanline order. When holes appear in a right-image row

(cf. Fig. 4), we simply assign a special color to those hole

pixels. When all pixels in the left image have been

processed, we enter the hole-filling pass to compute the

marked hole pixels using ray casting. There are several

advantages with this separation. First, separating warping

and hole filling passes provides the best cache coherency

because different data are accessed in different passes.

Second, since each pass has different computation complex-

ity, the separation enables the design of the most suitable

task-partitioning scheme for each pass for parallelism. In

addition, the number and distribution of hole pixels in the

right image are critical to the design of a load-balancing

partition scheme for parallel hole filling. This information

varies among different frames. By separating the two

passes, this information is available at the end of the first

pass. In this section, we demonstrate different image-based

task partitioning schemes to effectively parallelize these two

passes as well as the generation of the left image in the two

case studies.

3.1 Parallelizaton of Left Image Generation

In our flythrough system, we used a static image-based

task-partitioning strategy for parallel rendering of single

images. The image was treated as a pool of columns and

each processor processed a fixed number of image columns

in an interleaved order. Ray coherence was exploited to skip

empty space during ray casting. Since the total traversal

distance along each set of rays cast from each image column

was almost the same, each set of rays had approximately an

equal amount of work to perform during ray traversal [28].

In the 3D virtual colonoscopy system, we employed a

different image-based static task-partitioning scheme to

generate a full ray-casting image [26], [30]. Specifically, each

image was divided into equal-sized rectangular blocks,

such as four by four for 16 processors. Each pixel of the

block was allocated to one processor for ray casting using

our distance-field-assisted optimization. Because the colon

wall is very thin and the empty space inside the colon has

been skipped quickly along each ray, the rays in a local

image block have a very similar amount of work during ray

traversal. Therefore, we achieved a good load balance.

3.2 Parallelization of 3D Warping

In a 3D warping pass, the main computation comes from
reprojection and splatting. Since we use fixed-size splats, the
amount of computation does not change much at each left-
image pixel. Accordingly, the computational cost on each
scanline is proportional to the number of pixels in the left-
image row. Therefore, we can treat the left image as a pool of
image rows and assign a fixed number of image rows to
each processor in an interleaved or contiguous order.

Another factor affecting the design of the task-partition-

ing scheme for parallel 3D warping is the acceleration for

the subsequent hole filling. Although we do not perform

ray casting right now to fill holes, we may need to do some

preparation during 3D warping for fast hole filling, besides

assigning a specific color to each hole pixel. According to

our experience, for instance, having the depth information

of each hole pixel makes the ray casting much faster. A

straightforward method to determine the depth of a hole

pixel is using linear interpolation on the depths of the two

nearest nonhole pixels located on the left and right sides of

this hole pixel on the same right-image row. However, there

is no guarantee that the interpolated depth of a ray cast
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Fig. 4. Mark holes during 3D warping in a scanline order.

2. For simplicity of description, the pseudocode does not include the
occlusion detection of new incoming objects in scene area V, described in
Section 2.4.



pixel is correct except when the two neighbors are very

close to each other. Unfortunately, a hole pixel is usually

allocated between two neighboring reprojections that are so

far away that an uncertain gap appears between them. Our

solutions for the two case studies are described below.

In order to perform correct space leaping during the ray

casting through hole pixels in the flythrough case study, we

choose to exploit ray coherence in the image column order

described in Section 2.1. Thus, we can skip over most of the

empty space along a ray according to the calculated depth

of the nearest hole pixel below it. However, how about the

depth of the lowest hole pixel Pw in an image column?

There are two different situations. If Pw is the bottom-most

pixel of the column, we have to traverse along the ray from

the beginning as we did in the left view. Otherwise, Pw has

a lower nonhole neighbor, say Pn, whose depth can be used

to accelerate the ray casting through Pw. That is, the depth

of Pn is of particular importance for fast hole filling along

this image column.

For implementation, we establish a 1D array for each

processor, called a linear depth buffer. Each element of this

buffer corresponds to one column of the right image, with

several components to record the position of the lowest hole

pixel Pw, the depth of its lower neighbor Pn (if it exists), and

the number of hole pixels in that image column. Note that

the computation of the depth of a splatted pixel is needed

only when its upper neighbor is a hole pixel. Therefore, we

assign image rows to each processor in a contiguous order

and we constrain the reprojection procedure in a scanline

top-down order on each processor so that we can compute

depth values only when necessary. Each processor pro-

cesses approximately an equal number of nonbackground
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left-image pixels. After all processors have completed their

warping work, the depth buffers are combined into one and

only the lowest hole pixel survives for each column. The

hole pixels at the same column are summed up.

In our virtual colonoscopy, parallelism of 3D warping is

more general and simpler, without the above extra

preparation for fast hole filling. This is because the depth

information at each hole pixel is obtained independently

from the distance field inside the colon (cf., Section 2.1.2),

rather than from its lower neighbor as terrain rendering. We

simply employ a general task-partitioning scheme by

assigning the image rows in an interleaved order to

processors for load balancing.

3.3 Parallelization of Hole Filling

Due to the randomly scattered distribution of hole pixels in

the warped image, our previous static task-partitioning

schemes used to generate a single ray-casting image [26],

[28] cannot guarantee a good load balance in filling holes. A

dynamic partitioning scheme that considers the specific

requirements of fast ray casting in each specific application

will be a better solution.

In the flythrough case study, when we use ray casting to

fill holes, the amount of computation work may differ

dramatically among image columns due to their different

number of hole pixels. Therefore, we propose a dynamic

partitioning scheme as follows: First, a task queue is created

from those right-image columns with holes. Then, all the

image columns in the queue are sorted in order of

decreasing number of hole pixels. After that, each processor

takes and processes one column at a time from the head of

the task queue. Once a processor completes its column, it

takes another one from the head of the current queue until

all columns are exhausted.
For each column, hole filling is completed in three steps.

First, find the location of the lowest hole pixel and the

corresponding depth from the linear depth buffer generated

in the previous warping pass. Second, cast a ray from this

hole pixel and use the corresponding depth to skip the

empty space along the ray. When the hit position is found

along the ray, update the depth buffer with the new depth

value. Third, move upward along the column to the next

hole pixel with the specific color and repeat the second step

until there are no more hole pixels left along the column.
In our experimentation, we found that, except for a small

number of columns at the right of the right image, most
columns have a very small number of hole pixels (see
Fig. 6c, where hole pixels are marked in red). Our dynamic
task-partitioning scheme benefits from this fact by sorting
the task queue. When approaching the end of the parallel
hole-filling pass, all processors are dealing with small-size
work units (usually columns with a couple of hole pixels).
As a result, there is little idle time for those processors that
complete their work earlier than others. Consequently, we
have reached good load balancing.

In the virtual colonoscopy case study, a static task-

partitioning scheme does not work well when we cast rays

only through those scattered hole pixels rather than through

all the pixels in each image block. For balanced parallel hole

filling, we employ another efficient dynamic image-based

partitioning scheme proposed by Nieh and Levoy [20] and

later used by Lacroute [11] and Parker et al. [21]. Since we

do not want adaptive image sampling optimization during

rendering, which trades image quality for speed, the

partitioning scheme simplifies as follows: First, the current

right image (which contains warping gaps) is divided into

small regular blocks that form a task queue. Then, each

processor takes one image block at a time and fills holes in

this block by ray casting until the task queue is empty. Due

to the unequal distribution of hole pixels in the right image,

we sort all the image blocks in the queue according to the

number of hole pixels they contain. Therefore, image blocks

containing more hole pixels are processed earlier so that we

can minimize the idle time of those processors which

complete their work earlier than others.

4 VIEW-DEPENDENT SHADING AND

TRANSPARENCY VIEWS

During the above stereoscopic rendering, we implicitly

assume that a scene point has the same intensity in the two

images when we perform 3D warping. This assumption

holds when we render a terrain with a color photo as shown

in Fig. 7 and Fig. 8 because the intensities of the pixels in the

color photo are view independent. Yet, if a view-dependent

lighting model is used for rendering, as shown in Fig. 6 and

Fig. 9, the same scene point may have different intensities

for two eyes. Then, this assumption is no longer strictly

correct and, consequently, image error may be increased. A

solution is to recalculate the color of the scene point instead

of directly obtaining it from the left image. The color can be

computed using the lighting model depending on the

current ray direction (from the right eye to the scene point)

and the surface normal at that scene object point, which is

view independent. To speed up the calculation of the

lighting model, we could save the normals for all nonback-

ground pixels in the left image and further establish a look-

up table mapping the ray direction and surface normal to a

precalculated lighting color.

Another assumption in our algorithm excludes translu-

cent objects from the scene (cf. Section 2.3), such as a

translucent glass window in architectural walkthrough. A

typical solution in IBR is to precapture a number of images

with their centers of projection equally spaced along a

semicircle and with the view oriented toward the center of

the window (called portal [23]). Unfortunately, this is by no

means an accurate solution because the rays from the

output image are distorted at the glass window. Surface

splatting [31] provides a better solution using a layered

frame buffer. However, it is not applicable to our stereo-

scopic rendering, as discussed earlier.

Our solution is to recalculate the accurate right image by

an accelerated ray casting because its pixel values cannot be

directly obtained from the left image. First, we compute the

depths for most of the right-image pixels by reprojecting the

left-image pixels so that we can skip over the empty space

along the right-image rays according to their depths. The
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depth buffer in our right image is generated by a method

similar to but simpler than the surfels visibility splatting [22]

because we only need a conservative estimate of the pixel

depth. We avoided the expensive scan-conversion in surfels

by using the nearest distance from a splat to the image plane

as the depth of all the pixels covered by that splat. Second, for

the remaining hole pixels whose depth cannot be obtained

from splatting, we can exploit a general ray-casting optimi-

zation, such as space leaping [5]. In thisway,we guarantee an

accurate stereoscopic rendering with transparency.

Although the rendering speed of the right image may be

slower compared to the direct color splatting, it is still faster

than a full ray casting of the right image accelerated by the

general space leaping [5] because we conduct a single-step

jump based on the ray depth instead of multiple-step jumps.

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented our stereoscopic-rendering algorithm in

both case studies on a 16-processor SGI Power Challenge

(194 MHz R10000) and a Responsive Workbench. The

Workbench immerses the user within the computer-

generated virtual environment with a superior 3D interac-

tion (see Fig. 5). Interactive stereoscopic perspective views

are displayed on the fly and stereo shutter glasses are used

for several people working collaboratively, with immediate

visual feedback and high-definition photo-realistic images.

Figs. 6a and 6b show a pair of stereoscopic images of a

terrain in Southern California generated by our algorithm.

Each image size is 500� 400. Our terrain model consists of a

3D terrain volume with a resolution of 512� 512� 64 and a

corresponding registered aerial photo with a resolution of

512� 512. In Fig. 6, instead of mapping the color photo to

the terrain, we used a lighting model. Our system provides

such a rendering option considering that a color photo may

not always be available for terrain data sets. Table 2

presents rendering times for both the left and right images

of Figs. 6a and 6b generated by our algorithm on a different

number of processors. Near linear scalability has been

achieved as the number of processors increased, which was

ascribed to our effective task-partitioning schemes.

The speedup ratio between the left and right images was

affected by several factors, such as the number of nonback-

ground pixels in the left image and the number of hole

pixels in the warped right image. For an arbitrary view, as

shown in Fig. 6, the average time saving of the right image

was about 88 percent of the left image for different numbers

of processors. In Fig. 6c, we marked with red those pixels in

Fig. 6b that were filled by ray casting. The remaining

nonbackground pixels were generated by using 3D warp-

ing. The ratio between the number of hole pixels and the

warped ones was 2.6 percent. However, since the computa-

tion for ray casting was much more expensive than that of

3D warping, the hole filling took about one fourth of the

entire rendering time for the right image. That is why we

believe that speedup for the additional ray casting

procedure is important. For comparison purposes, we

measured the ray casting time for Fig. 6b without using

ray coherence and found that the hole-filling time increased

by a factor of four.

To show the accuracy of the right image in Fig. 6b, we

rendered a full ray-casting image from the same view (as

shown in Fig. 6d) and compared it with Fig. 6b pixel by

pixel. The differences were measured as Euclidean dis-

tances in RGB (256� 256� 256) space and displayed in

Fig. 6e. The differences are small because we use super-

sampled splats for antialiasing and ray casting to fill holes.

(The intensities shown in the difference map were magni-

fied by a factor of five.)

Fig. 7 gives the same stereoscopic view of the same

terrain data set as in Fig. 6. This time we rendered the

terrain with texture obtained from the registered pre-

mapped color photo. Table 2 also shows the rendering

times for both the left and right images in Fig. 7 generated

by our algorithm with different number of processors. The

average time saving was about 65 percent, which was less

than the saving of 88 percent when we rendered the image

pair in Fig. 6 with shading rather than texture mapping.

This was because bilinear interpolation for texture mapping

was less time consuming than the shading computation.

Although the time saved for the right image decreased, the

total rendering speed for the stereoscopic image pair

increased. As a result, we reached a perspective stereo-

scopic rendering rate at about 10 Hz on 16 processors.

Fig. 8 shows a pair of stereoscopic images generated by

our algorithm from a Los Angeles coast data set (image size

is 480� 340). The terrain model consists of a 3D terrain

volume with a resolution of 468� 693� 64 and a corre-

sponding registered aerial photo of size 468� 693. To create

a more realistic environment, we replaced the black back-

ground with an image of a blue sky with white clouds. The

time saved on rendering the right image was as high as

84 percent and we reached more than 10 Hz interactive

stereoscopic rendering rates.
Similar performance has also been shown on CT-scanned

colon data sets of real patients. Fig. 9 shows a pair of

stereoscopic semitransparent images during the interactive
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Fig. 5. 3D interactive user interaction on a Responsive Workbench.
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Fig. 6. Stereoscopic rendering of a shaded Southern California terrain on the Workbench. (a) Left image generated by full ray casting. (b) Right image

generated by using our method. (c) Hole pixels marked in red. (d) Right image generated by ray casting. (e) Difference map between (b) and (d).
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Fig. 9. A pair of stereoscopic images of a patient’s colon. (a) Left image generated by full ray casting. (b) Right image generated by using our

method.

Fig. 8. A pair of stereoscopic images of texture-mapped volumetric Los Angeles coast. (a) Left image generated by full ray casting. (b) Right image

generated by using our method.

Fig. 7. A pair of stereo images of a texture-mapped volumetric terrain in Southern California. (a) Left image generated by full ray casting. (b) Right

image generated by using our method.



navigation inside a 512� 512� 411 volumetric human

colon. In order to generate the correct compositing and

lighting effects in the right image, we “splat” only the depth

from the left image rather than the colors of left-image

pixels, as discussed in Section 4 for translucent views. In

these colon images, we used a high opacity of 95 percent to

simulate the nature colon lumen. The rendering times of the

left and right images are, respectively, 0.08 sec and 0.03 sec

on 16 processors.

6 COMPARISON WITH MCMILLAN’S 3D WARPING

As there are many similarities between our stereoscopic-

rendering algorithm and McMillan’s 3D warping algorithm

[18], the comparison between these two is helpful in

evaluating ours. First, both methods generate the output

image from one single reference image. Since the reference

images are precaptured by McMillan, generating such a

reference image database is both time and space consum-

ing. On the contrary, our method is more efficient by

generating the left image on the fly, providing the 3D scene

model is available and can be rendered at interactive rates.
Second, both methods conduct efficient 3D warping

whose cost is approximately determined by the number of
pixels in the reference image rather than by the 3D scene
complexity as in traditional rendering. When pixels in the
reference image are processed sequentially by McMillan,
the amount of computation is six additions and five
multiplications. In our method, by taking advantage of the
specific stereoscopic projection geometry, we introduce a
more efficient warping equation (3) with only two additions
and two multiplications.

Third, both methods resolve visibility without the

expense of Z-buffering and, therefore, both allow proper

alpha blending during splatting without explicit depth

sorting. McMillan proposed spliting the reference image

into one, two, or four sheets, depending on the projected

position of the output camera in the reference image plane.

The pixels in each sheet are then processed in a different

scanline order, which guarantees a back-to-front painting of

the output pixels. Although using such a painter’s algo-

rithm can resolve occlusions correctly, it is less efficient

because all the pixels are processed, including the occluded

ones. We resolve visibility by scanning the left image in an

opposite scanline order so that left image pixels are drawn

onto the right image in a front-to-back order rather than

back to front. As a result, occluded left-image pixels are

removed before splatting. In addition, we conduct a simple

but effective clipping test in our visibility algorithm and

further handle the occlusion from the new incoming objects

that are only visible to the right eye (see Section 2.4). These

solutions are not covered by McMillan, although he already

noticed that ignoring the new incoming objects would cause

an invisible occluder error.

Fourth, both methods use splatting for image reconstruc-

tion. However, McMillan’s splatting suffers from two

problems. First, as pointed out by Mark [14], the splat

approach leaves holes in the output image when using a

single reference image. By slightly oversizing the splats,

these holes can be reduced or eliminated, but the artifacts

associated with oversized splats appear. Second, the

splatting reconstruction method causes exposure errors when

pixels are warped in McMillan’s back-to-front order.

Exposure errors occur when a background region that

should have been occluded is visible in the output image

[18]. Our algorithm solves the first problem by limiting the

sizes of the splat kernels, supersampling the footprints of

these splats, and filling the holes by fast ray casting. To

solve the second problem, we perform hidden-pixel

removal in a front-to-back reprojection order, which rejects

all the potentially occluded left-image pixels and hence

removes the source for the exposure errors (see Section 2.4

for more details).

Fifth, both methods are effectively parallelized on

shared-memory multiprocessors. Popescu et al. [23] pro-

posed spliting each sheet into P fragments of equal area

along epipolar lines, where P is the number of processors.

Then, each processor processes pixels in one fragment in

McMillan’s warping order, except for those close to the two

boundary epipolar lines. In a second pass, the remaining

pixels are warped in parallel. In our parallel algorithm, we

complete parallel 3D warping with a more efficient one-pass

scanline-based task partitioning scheme rather than a two-

pass one because we do not need to split the left image into

multiple sheets to resolve visibility. According to our

stereoscopic projection geometry, the projection of the right

eye onto the left image (reference image) is at infinity in the

image plane. Therefore, all epipolar lines are parallel to each

other, so we can warp the left image pixels along each

scanline in the same order. Moreover, the specific feature of

a single image sheet in our stereoscopic rendering provides

much more flexibility to design effective dynamic image-

partitioning schemes which supports fast ray casting

through randomly distributed hole pixels.

7 CONCLUSIONS AND FUTURE WORK

We have presented a fast stereoscopic-rendering algorithm

for volumetric environments, providing a volumetric scene
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Stereoscopic Rendering Times (in Sec) of a Terrain in Southern California



model and a fast ray-casting algorithm are available.

Exploiting the frame coherence between the two views

vastly accelerates the generation of the right image of the

stereo image pair. Most of its pixel values are directly

obtained from the left image by a fast 3D warping based on

a specific stereoscopic projection geometry. A small number

of rays are quickly cast through the remaining pixels to fill

in holes, by employing ray-casting optimizations. High

image quality is ascribed to both the accurate ray casting

and our 3D warping with supersampled footprints of

splats. Our algorithm has shown good speedups on a

multiprocessor by employing load-balancing task-partition-

ing schemes.

Although our current algorithm has reached interactive

rates, we are exploring other antialiasing resampling

techniques that are faster than the 1D splatting method

we used. One attractive candidate is Fant’s nonaliasing

1D resampling interpolation technique [7], which provides

a fast mapping from discrete input pixels to discrete output

pixels. Such a 1D interpolation method sounds particularly

appropriate for our algorithm because the resampling in the

right image is exactly performed in a 1D image-row order.

However, we have to adapt Fant’s method because it works

on even-spaced contiguous input pixels only, while our

reprojected pixels are unevenly located on each right-image

row. One possible solution would be using nonconstant

scaling factors at reprojected pixels determined by the

varied spacing of the pixels.
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