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Abstract—This paper presents an efficient visualization and exploration approach for modeling and characterizing the relationships
and uncertainties in the context of a multidimensional ensemble dataset. Its core is a novel dissimilarity-preserving projection technique
that characterizes not only the relationships among the mean values of the ensemble data objects but also the relationships among the
distributions of ensemble members. This uncertainty-aware projection scheme leads to an improved understanding of the intrinsic
structure in an ensemble dataset. The analysis of the ensemble dataset is further augmented by a suite of visual encoding and
exploration tools. Experimental results on both artificial and real-world datasets demonstrate the effectiveness of our approach.

Index Terms—Ensemble visualization, uncertainty quantification, uncertainty visualization, multidimensional data visualization

1 INTRODUCTION

ECENT developments in scientific simulation research

have resulted in an increased role for scientific simula-
tions and analysis. One common way to study uncertainty
is the ensemble simulation, which employs stochastic ini-
tial conditions or multiple parameterizations to produce
an ensemble of simulation outcome. For example, in the
numerical weather simulation, both initial conditions and
simulation parameters (e.g., cumulus schemes and micro-
physics schemes) can be perturbed in an ensemble forecast
simulation. The number of ensemble runs ranges from
dozens to thousands. In this paper, all ensemble members
of a single data entry are called an ensemble data object,
e.g., the ensemble numerical weather forecast at a geospa-
tial location. The ensemble members of an ensemble data
object may be averaged to obtain the ensemble mean,
which is regarded as a representative of the ensemble
members. Unfortunately, important information is lost in
the averaging process. It is highly beneficial to characterize
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the uncertainty of an ensemble dataset during the entire
analysis process.

In most scientific applications, the resulting simulation
output is a multivariate field. For instance, the output of a
typical weather research and forecasting (WRF) simulation
[1] includes more than 100 variables such as temperature,
pressure, and wind direction. Therefore, challenges for ana-
lyzing an ensemble dataset include both the uncertainty
with respect to each output variable and the high dimension-
ality of the dataset.

There have been a large number of uncertainty visualiza-
tion and analysis methods [2] that go beyond traditional
summary statistics [3] and depict ensemble data in more
detail. Conventional visualization solutions exploit glyphs
[4], [5], [6] and visual variables [7], [8] to encode uncertain-
ties. However, most of them are only designed for 1D or 2D
datasets and have limited capabilities to reveal the intrinsic
structures in the ensemble dataset. Recent methods can
effectively characterize and analyze the uncertainty struc-
tures [9], [10] and forms [11], [12] but are designed for data
objects with one variable.

To address the second challenge, high dimensionality,
multidimensional projection techniques [13], [14] are widely
used to build a low-dimensional layout that respects the dis-
tances among data objects in the high-dimensional space. In
this low-dimensional layout, closely positioned points indi-
cate similar data objects in the high-dimensional space.
However, most conventional projection methods are devel-
oped for datasets in which a data object has only one
instance. Simply using the ensemble mean as an instance to
represent a data object for projection suffers from heavy
information loss, because the shape of distribution for each
ensemble data object is lost during the averaging process. A
conceptual example is shown in Figs. 1a and 1b, where four
ensemble data objects with similar ensemble means but dif-
ferent ensemble distributions are lumped together by a con-
ventional multidimensional projection method to the
ensemble means. This can cause misleading perceptions
from users. For example, users might advocate that these
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Fig. 1. Projecting an example 1D ensemble dataset (a) which consists of
four ensemble data objects with similar mean values but different distri-
butions. (b) The result of a conventional multidimensional projection
algorithm to the ensemble means. (c) The result of our method.

four data objects are almost the same as they are located
close to each other.

It remains a challenging task to visually explore the
intrinsic structures of a high dimensional ensemble dataset
as well as the uncertainty of each individual ensemble data
object. The key contribution of this paper is a novel uncer-
tainty-aware multidimensional projection approach that
generalizes the conventional projection methods for ensem-
ble datasets. Its core is a new dissimilarity measure of the
ensemble data objects and an enhanced Laplacian-based
projection scheme. Compared with the conventional projec-
tion methods that can solely respect the distances among
ensemble means, our dissimilarity measure preserves the
relationships among the ensemble distributions as well as
the ensemble means. By setting the distributional difference
weight to zero (see Equation (7)), our approach regresses to
a conventional projection scheme. The enhanced Laplacian-
based projection scheme achieves a balance between the
local and global point layout by imposing global constraints
in constructing the Laplacian system.

Fig. 1c illustrates the effectiveness of our uncertainty-
aware projection approach, with which four data objects are
positioned in the 2D visual plane. In this projection, U, and
Uj; are located close to each other due to their similar ensem-
ble means and distributions. As U; and U, follow different
distributions from U, and Us, they are positioned far away
from Us and Us even though all of them have similar ensem-
ble means.

We note that as with any projection method, our method
will not preserve the high-dimensional structures with
100 percent accuracy. Our goal is to provide users with a
projection method to visualize not only the differences
between the means of ensemble data objects, but also the
differences between the shapes of the ensemble distribu-
tions. As demonstrated in Section 6 (see Fig. 6 and Fig. 11), a
better separation of data objects with different ensemble dis-
tributions can be achieved with our method, but not with
previous projection methods using ensemble means.

In addition, we augment users’ abilities to visually study
an ensemble dataset with a suite of visual exploration widg-
ets: 1) an uncertainty histogram that allows for selecting the
interesting range of uncertainty values in the visualized
data; 2) an ensemble bar that embodies key information in
an ensemble data object; 3) a parallel coordinates view that
shows the details of the ensemble distribution for a particu-
lar ensemble data object; and 4) an optional geo-location
view that depicts the uncertainty patterns identified in the
projection view. Experimental results on a synthetic dataset
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and numerical weather simulations alike show that ensem-
ble data objects with similar ensemble means but different
ensemble distributions can be clearly distinguished with
our approach.

In summary, the main contributions of this work
include:

e A novel uncertainty-aware multidimensional projec-
tion technique for ensemble datasets.

e A multi-view interactive visualization system for
effective exploration of intrinsic structures and
uncertainties in ensemble datasets.

2 RELATED WORK

Our work relates to multiple topics of visualization includ-
ing uncertainty visualization, ensemble data visualization,
and multidimensional /multivariate data visualization.

Uncertainty spreads throughout the entire data analysis
pipeline including acquisition, transformation, and visuali-
zation [15], [16]. Depicting uncertainty can significantly
help analysts make better decisions [17]. Thomson et al. [18]
proposed a typology for uncertainty visualization in intelli-
gence analysis. Potter et al. [19] presented a comprehensive
survey for uncertainty quantification and visualization of
scientific data. In the past decade, a large number of uncer-
tainty visualization techniques have been developed. They
can be roughly classified into four categories: glyph based,
visual variable based, geometry based, and animation
based. Glyph based methods encode uncertainties into
well-designed glyphs (e.g., the flow radar glyph [4], the cir-
cular glyph [20], the summary plot [5], and the uncertain
ODF glyph [21]) and place them into the original data field.
Similarly, visual variables such as color [10], [22], brightness
[8], [23], blurriness [24], and texture [7], [25] can also be
employed to encode uncertainty. The geometry based
approaches are a family of techniques that adapt the basic
geometry to represent uncertainty, including point [22], line
[26], cube [27], and surrounding volume [10], [28]. Coninx
etal. [29] and Lundstrom et al. [30] demonstrate that anima-
tion can be used to express uncertainty as well. In general,
most of these techniques focus on 1D or 2D datasets and
cannot be readily extended to multidimensional datasets.
Wu et al. [31] introduced the standard error ellipsoid to
characterize uncertainty arising in any stage of a visual ana-
lytic process for multidimensional datasets. In addition,
evaluations of different uncertainty visualization techniques
have attracted much attention recently. Deitrick and Edsall
[17] conducted an empirical evaluation to explore the influ-
ence of uncertainty visualization on decision making.
Sanyal et al. [32] compared four commonly used techniques
for 1D and 2D datasets. They identified that the glyph repre-
sentations are good options generally.

Ensemble data is common in many scientific fields such as
meteorology, hydrology, and chemistry. Ensembles effec-
tively represent multiple simulations of a model with varied
initial or boundary conditions, yielding slightly different
results. They can be regarded as a type of uncertainty data.
A convenient visualization method for ensemble data is the
small-multiple method [33], [34] associated with linking
and brushing operations. Spaghetti plots [35] is another
approach to visualize ensemble dataset. Potter et al. [34]
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introduced a framework, Ensemble-Vis, to visualize and
explore ensemble dataset by leveraging multiple coordi-
nated views. Sanyal et al. [6] developed a tool named Noo-
dles to visualize ensemble uncertainty modeled with
standard deviation. Unfortunately, Noodles is only applica-
ble for single variable ensemble data. Recent work in this
area has progressed from simple visualization to formal
analysis of the results. Hollt et al. [36] presented an interac-
tive system to study off-shore structures in an ensemble
ocean forecasting dataset. Gosink et al. [11] proposed a
method to characterize different types of predictive uncer-
tainty in ensemble datasets based on the Bayesian model
averaging. Mathias et al. [12] developed a Lagrangian
framework for ensemble flow field analysis.

The differences between the terms multidimensional and
multivariate are subtle. The term multidimensional refers
to independent dimensions, while the term multivariate
refers to that of dependent variables [37]. Nevertheless,
multivariate data can be treated as multidimensional
because the relationships among dimensions are typically
unknown in advance. Conventional approaches to visual-
izing multidimensional data employ scatter plot matrix,
parallel coordinates, star coordinates, etc. Among these
approaches, multidimensional projection has gained
much attention due to its ability to characterize similari-
ties among data points in a visual space (2D or 3D), and
has been proven to be a useful tool in many applications.
Daniels et al. [38] employed a LSP-like projection tech-
nique for interactive vector field analysis. Chen et al. [39]
proposed to embed high-dimensional DTI fibers to a 2D
space with MDS for interactive exploration. Joia et al. [14]
introduced an advanced projection technique called local
affine multidimensional projection (LAMP) to interac-
tively correlate similar data instances. Anand et al. [40]
used random projection to find interesting substructures
in a high-dimensional dataset. Although these approaches
are capable of visualizing data by their low-dimensional
layout, they are designed for data without uncertainty.
Our approach advances the multidimensional projection
scheme by taking uncertainty into account.

3 UNCERTAINTY-AWARE MULTIDIMENSIONAL
PROJECTION

Multidimensional projection is emerging as an effective
visual exploration technique for high-dimensional datasets.
It projects a set of data points in the d-dimensional space
into an [-dimensional visual space, typically € {2,3}. Con-
ventional techniques assume that the value of each data
object is deterministic. Many recent scientific simulations
produce a collection of values at each data object due to the
perturbed initial condition or parameterization. This type of
data is called ensemble data.

The conceptual model of our data consists of n ensemble
data objects U = {U;,Us,...,U,}. Each object has m
d-dimensional ensemble members, U; = {U},UZ,...,U™"|
U! € R’}. The goal of our uncertainty-aware projection
scheme is to build an [-dimensional representation V =
Vi, Va, ...,V Vi € R! } to preserve the relationships among
data objects in terms of both the ensemble means and the
ensemble distributions.
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3.1 Approach Overview

To strike a balance between projection efficiency and
accuracy, we employ a two-step multidimensional projec-
tion: first, a small set of control points are selected from
U based on the ensemble means and projected to a 2D
space with the conventional multidimensional scaling
method [13]; then all other objects in U are projected to
the 2D space with an enhanced Laplacian system that
combines the influences from both control points and
other data points.

One distinctive feature of our approach is that we take
both the ensemble mean differences and the ensemble
distribution differences into account to measure the dis-
similarity D(U;,U;) of any pair of ensemble data objects
U; and Uj. The former is described by the euclidean dis-
tance between the ensemble means E(U;,U,), and the lat-
ter is captured by a difference measure between ensemble
distributions .J(U;||U;) based on relative entropy [41]. To
reconstruct the continuous ensemble distribution for each
data object, a multidimensional kernel density estimation
(KDE) method that considers the dimensional correlations
is employed.

3.2 Ensemble Data Object and Probability
Distribution

For simplicity, we suppose that the data objects are inde-
pendent. Currently, many uncertainty modeling and visual-
ization methods [9], [10] assume that the ensemble
members for a given data object are drawn from a known
parametric distribution such as Gaussian. In practice, the
ensemble distribution is often not Gaussian and can vary
from data object to data object.

KDE is a non-parametric approach to approximate the
underlying continuous distribution by using a sum of ker-
nels centered at each sample. Specifically, the multidimen-
sional KDE [42] for data object U; is defined as

Ui(x) = > wiKu(z-U}), (1)

t=1

where H is a bandwidth matrix, w, is a weight factor which
can be determined by prior knowledge, and > ", w; = 1.
Ky is the multidimensional kernel function satisfying that
Ku(z) >0 in the entire domain and [ Ku(z)dz =1. As
such, the estimated density function can be interpreted as
the probability density function.

A range of kernels can be adopted for KDE including
uniform, Gaussian, and Epanechnikov kernels. We employ
the widely used normal kernel [43], [44], because the kernel
type is less important than the bandwidth parameter in
terms of influences on the estimation [45] .

In general, there are three choices for H: the scaled
identity matrix H = %1, the diagonal matrix H = diag(h?,
h3,...,h%), and the general symmetric positive definite
matrix. The scaled identity matrix implies that the vari-
ance in all dimensions are identical. The diagonal matrix
implies that each dimension has its own bandwidth and
no correlation exists between any two dimensions. In
practice, a variety of automatic data-driven bandwidth
selection methods can be used to estimate the bandwidth
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hi on the kth dimension, e.g., the Silverman’s rule of
thumb [45]

4 15 1/5
hi, = <i) ~ 1.060k7rfl/57 (2
3m

where o, is the standard deviation of samples on the kth
dimension, m is the number of samples. More sophisticated
approaches like cross-validation exist in [46]. The general
symmetric positive definite matrix encodes the individual
bandwidth for each dimension and the linear relationship
between any two dimensions.

Each type of bandwidth matrix has its own advantages
and limitations. The scaled identity matrix is prone to
under-fitting and has a large fitting error. The general
matrix, which requires that H is symmetric and positive def-
inite, is the most accurate one but needs more parameters
and is prone to over-fitting. The diagonal matrix strikes a
balance between them.

To take the advantage of simplicity by the diagonal
matrix while preserving correlations among dimensions,
we choose to perform KDE in a space defined by the
principal component transformation [42]. Specifically, a
mean centering process is first applied to each data
object before estimation so that the distributional differ-
ences (to be detailed in Section 3.3) are not influenced by
ensemble means

Ut =ut-T,. ®)

We then apply principal component analysis to U, = {[7}5 \
t=1,2,...,m} that yields a transformation matrix ®. & is
composed by the eigenvectors of the covariance matrix of

ﬁi. Lastly, we transform each ensemble member Uf into a
new set Uf = {U* |t =1,2,...,m} by

U =o', 4)

Consequently, the probability U;(z) at location = is com-
puted by Uf(z*) on U/ instead, where z* = ®'(z — U,).
Because the bases of the new space are eigenvectors that are
orthogonal to each other, the diagonal bandwidth matrix
H* for estimating U;(z*) can be quickly estimated with
Equation (2) on U;.

3.3 Dissimilarity Estimation

The dissimilarity measure between pairs of data objects
plays an essential role in most multidimensional projection
techniques. Geometric distances such as the euclidean dis-
tance, the cosine distance, and the geodesic distance have
prevailed in the multidimensional projection literature for
years. However, these measures cannot be directly applied
to ensemble datasets.

A naive way to deal with ensemble datasets is to use the
summary statistics like the ensemble means to represent the
data objects and calculate the dissimilarities among them.
Unfortunately, this simple scheme results in a large amount
of information loss. The Anscombe’s quartet dataset [47]
shows that four data objects with the same means and var-
iances have very different ensemble distributions. Clearly, it
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is impossible to distinguish them from each other with the
ensemble means.

Therefore, it is natural to extend the definition of dissimi-
larities among ensemble data objects by considering their
probability distributions. Jensen-Shannon divergence (JSD)
[41] or relative entropy is a dissimilarity measure of distri-
butions based on the Kullback-Leibler divergence. JSD is sym-
metric, non-negative, and bounded. It is widely used in the
community of uncertain data mining [48]. The distribution
difference J(U;||U;) between the data object U; and U; is
defined as

AU = [ viwtos (U(sc2>U+(xU)<>) N
+;A@@m4@éﬁﬁ&@)w

where Uj(z) and Uj(z) are the reconstructed probability
density functions for U; and U; respectively, D denotes the
high-dimensional space where all the ensemble members
U! reside. Typically, we set the base of the log function as 2
so that J(U;||U;) is bounded by 1. Only when U; and U;
have the same distributions does .J(U;||U;) reach 0. By con-
vention, 0 log 0 is defined as 0.

In most cases, it is impossible to obtain the analytical
solution of Equation (5). Therefore we compute its numeri-
cal solution with sampling. In our implementation, the
Metropolis-Hastings (MH) [49] algorithm, a Markov Chain
Monte Carlo method, is employed, because it can generate a
sequence of samples from a function proportional to the tar-
get probability density distribution when direct sampling is
difficult. As more and more samples are produced, the dis-
tribution of samples more closely approximates the target
distribution. Consequently, by the law of large numbers, we
can rewrite Equation (5) as

(5)

1 & 2U; 1’5
Iy = %Zlg(w)irf)(w)

t=1

1< 2U;(xt)
_ 1 S —
+zs§;°gqup+44up

where {z}|t=1,2,...,5} ~U(r) and {z}|t =1,2,...,5} ~
Uj(x) are S samples generated by MH.

Therefore, we define the dissimilarity between U; and U;
as a weighted sum of the euclidian distance between their
ensemble means and the distributional difference between
their probability density functions

(6)

where « € [0,1], B € [0,1] are two parameters adjustable by
users, and o + 8 > 0. When « # 0, 8 = 0, the distributional
differences are missed by our dissimilarity measure. In such
a case, our approach will regress to the conventional projec-
tion methods because only the dissimilarities among ensem-
ble means are captured.

In summary, the proposed dissimilarity measure is
endowed with the following properties:

o  Symmetry (D(U;,U;) = D(U;,U;)). The dissimilarities
between any pair of data objects are symmetric.
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The Near Set of U, :
N,={U, U, U, U,}

The Random Set U :
R~ (U U}

Fig. 2. The neighborhood graph for U; with a near set of size 4 and a ran-
dom set of size 2.

Therefore, it can be seamlessly incorporated into
many state-of-the-art multidimensional projection
techniques.

o  Uncertainty-awareness. The dissimilarity considers the
differences in ensemble distributions therefore dif-
ferentiating data objects indistinguishable by sum-
mary statistics.

3.4 The Enhanced Laplacian-Based Projection

Our scheme of projecting ensemble data objects to the visual
space is inspired by the least square projection (LSP) tech-
nique [50]. Generally, it is a two-step local technique. In the
first step, a subset of data objects are projected to the visual
space. In the second step, the rest of the data objects are
interpolated according to the K-nearest neighborhood
graph. However, this method inherits the drawbacks of
local methods. It may bias the data objects projected in the
second step in favor of control points projected in the first
step [51] (see Fig. 3a). Thus, instead of directly using the
Laplacian system originally proposed in [50], we propose to
add global constraints into the equations. In other words,
our method associates each data object with two small sets:
a near set and a random set, instead of only one K-nearest
set. Both sets are used for constructing the neighborhood
graph for interpolation. The random set plays the role of the
global constraints. This simple scheme strikes a balance
between the locality maintained by the near set and the
global layout preserved by the random set.

A large number of samples from the ensemble distri-
butions may be needed to obtain an accurate estimation
of the relative entropy (Equation (6)), especially when the
ensemble distribution is complicated. To avoid pair-wise
distributional difference calculations, we select control
points and construct the neighborhood graph only based
on the ensemble means U = {U,,Us,...,U,}. Control
points C = {C;| C; € U,i =1,2,..., K} are selected with a
K-center algorithm [52]. If we do not have any priori
knowledge about the dataset, the number of control
points is set as K = \/n [53]. The near set N; for each
ensemble object U; is then defined as the ensemble objects
whose means are the K-nearest neighbors of U;. Appar-
ently, N; might not be the true K-nearest neighbors of U;
because only the ensemble mean information is utilized.
However, in practice the K-nearest neighbors in N; can be
guaranteed by enlarging the near set. In such a case, all
other objects in N; that are not true K-nearest neighbors
of U; can be deemed as objects in the random set R,.
Fig. 2 shows an example to build the neighborhood graph
for the ensemble data object U;.

In our implementation, an iterative majorization algo-
rithm called scaling by majorizing a convex function
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Fig. 3. The influence of different sizes of the random set in our approach.
(a) |R;| =0, which is the LSP technique. (b) Our method with |R;| = 4.
(c) Our method with |R;| = 8. (d) MDS projection. (e) The stress plot. (f)
The time plot.

(SMACOF) [13] is employed to build a low-dimensional
representation {V¢|VfeR?i=1,2,...,K} for control
points. V is the 2D projection of the control point C;.

Technically, the Laplacian-based projection scheme
rests on the theory of convex combination. That is, the
low dimensional representation for each high-dimen-
sional data object can be regarded as a linear combination
of its neighborhoods in the visual space. Mathematically,
let V; € R? be the projection of ensemble data object U,
according to the convex combination theory, V; can be
written as

%:

>

UjE{NZ‘URZ}

iV, ®)

where 7;; > 0, ) 7;; = 1. Typically, the inverse of dissimilar-
ity Din,(Us,U;) = 1/D(U;,U;) between the ensemble data
object U; and Uj is used to define the weight

Di7w(Ui7 UJ)

- : ©)
ZUjE{NZ-URi} Dim;(Ui U])

Tij

By reorganizing Equation (8) for all ensemble data
objects into a matrix representation, a sparse linear system
constrained by the control points can be derived [50] which
can then be solved in a least square sense. The solution of
this system is the low-dimensional representation of the
ensemble dataset U.

Fig. 3 demonstrates the effect of using a random set. A
synthetic dataset consisting of 500 data objects in five clus-
ters is employed. Each ensemble data object has 80 mem-
bers. Fig. 3a displays the projection result without the
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random set. In this case, our method regresses to the Least
Square Projection technique. Figs. 3b and 3c show the
results with the size of the random set tested at 4 and 8
respectively. It is reasonable that a large random set pre-
serves more global relationships among points, leading to
low stress. This is empirically verified by the plot of stan-
dard normalized stress over the size of the random set (see
Fig. 3e). For comparison, the projection result of MDS imple-
mented with SMACOF [13], which optimizes the global
relationships among points, is shown in Fig. 3d. MDS pro-
vides the smallest stress but requires the pairwise dissimi-
larity matrix that it is usually not feasible in projecting large
datasets. Fig. 3f shows the time of our method with different
sizes of the random set. From this plot, we can see that the
consuming time is closely linear to the sum of |V;| and |R;|,
|N;| = 20 in this example. This is because the distributional
difference estimation is much more time-consuming com-
pared to building and solving the linear system. In sum-
mary, the addition of a random set provides a balance
between the fast but inaccurate local methods (e.g., Lapla-
cian-based projection methods) and the accurate but slow
global methods (e.g., MDS).

4 UNCERTAINTY QUANTIFICATION AND
VISUALIZATION FOR INDIVIDUAL ENSEMBLE
DATA OBJECT

The uncertainty-aware 2D projection of the multidimen-
sional ensemble data objects helps users understand the
relationships among data objects in a simple 2D layout. It is
equally important to allow users to further examine the
uncertainty of each ensemble data object. This section
describes our solutions for quantifying and visualizing
uncertainty of the ith ensemble data object U;.

4.1 Uncertainty Quantification

Quantifying uncertainty plays an important role in the pipe-
line of uncertainty visualization [15]. It offers the variables
for visual encoding. In this section, we describe two meas-
ures for quantifying the overall uncertainty of an ensemble
data object and the detailed deviation for each ensemble
member. We also discuss the limitations and application
scenarios of each measure.

In the 1D case, the standard deviation is a widely used
metric to quantify uncertainty of a random variable.
Inspired by this rule, our first measure models the overall
uncertainty O; of the ensemble data object U; as a sum of the
standard deviations in all dimensions

d
0, =) of, (10)
k=1

here of represents the standard deviation on the kth

dimension. The deviation 8! of the {th ensemble member

of U; is defined as its euclidean distance to the ensemble
mean

§=1U;-Uil. (11)

The first measure is simple and can be used for most

applications. However, it does not take the correlations
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among dimensions into account. The second measure
employs the covariance matrix to quantify uncertainty for
each ensemble data object. The covariance matrix can be
considered as a generalization of variance to multiple
dimensions. It measures the dispersion of an ensemble data
object with respect to the ensemble mean. A geometrical
representation of a covariance matrix is the hyper ellipsoid
[31], [54], whose axes correspond to the eigenvectors and
square roots of eigenvalues of the covariance matrix. Similar
to [31], we use the volume of the hyper ellipsoid to repre-
sent the overall uncertainty of an ensemble data object

d
2

g d
Oi = L H \/X;a
k=1

(12)
rg+1)
where I'(-) indicates the Gamma function, \; represents the
eigenvalues of the covariance matrix ) ,. Once established,
the deviation of an ensemble member is defined as the
Mahalanobis distance [55] to the ensemble mean

=\ - vy - 1),

The second measure requires more computation than the
first one due to a matrix inversion. In addition, a sufficient
number of ensemble members are demanded in the second
measure to correctly represent correlations among dimen-
sions. Thus, the second measure is not a good option when
the number of ensemble members is much smaller than the
dimensionality of the dataset.

(13)

4.2 From Quantification to Visualization
Following the basic principles identified by Sanyal et al. [32]
that the glyph size and color are two effective variables to
display uncertainty in a 2D space, we design a color bar
based representation called ensemble bar to depict the overall
uncertainty and the distribution of ensemble members. Our
goal is to provide users a quick preview of uncertainty pat-
terns in an ensemble data object rather than complete
details, which will be displayed in the parallel coordinates
view. The height of the ensemble bar encodes the overall
uncertainty: a higher bar implies an ensemble data object of
larger overall uncertainty. The pattern shown in the bar
depicts the distribution of all ensemble member deviations.
To help users easily explore the distribution differences of
different ensemble data objects, all ensemble bars have an
identical width.
Let §; = {8},82,...,8"} be the deviations of the m ensem-
ble members from the ensemble mean U,. The height of the
ensemble bar is given by

HL' - (1 - Oi)Hmz’n + OiHmaza (14)

where H,,;,, and H,,,, represent the minimum and maxi-
mum heights of all ensemble bars, respectively. O; € [0, 1] is
the normalized overall uncertainty of U;.

In order to convey the distribution of ensemble member
deviations in the bar, we first set the left and right edges of
the bar to correspond to the minimum deviation min(é;)
and the maximum deviation maz(§;), respectively. Then,
we equally discretize the entire bar into a set of bins and
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Fig. 4. Various types of ensemble bars show different types of ensemble
data objects, each of which consists of 100 members. The overall uncer-
tainty increases from (a) to (f). In each case, a bar in dark green indi-
cates the peak of the distribution of ensemble member deviations. The
ensemble member deviations approximately follow: (a-b) the positively
skewed distribution; (c-d) the normal distribution; (e) the negatively
skewed distribution; (f) the uniform distribution.

count the number of ensemble members in each bin. Each
bin is drawn as a rectangle with a linearly varied sequential
color map (e.g., from white to green in this paper).

The number of bins has a great impact on the pattern
shown in an ensemble bar. In practice, various useful guide-
lines and rules of thumb can be employed. In our imple-
mentation, we take the square root of the number of
ensemble members as the number of bins. This scheme is
simple and has been widely used in many applications such
as Excel. Users are allowed to interactively adjust the num-
ber of bins to discretize the ensemble bar.

In general, the ensemble bar allows users to compare
overall uncertainties of different ensemble data objects
through the heights of the ensemble bars (see Fig. 4). In
addition, the patterns of bins enable users to identify differ-
ent types of distributions. Taking the uniform distribution
as an example, an approximately monochromatic ensemble
bar is produced with our method (see Fig. 4f). This indicates
that all bins in the ensemble bar almost have the same num-
ber of ensemble members. Similarly, for positively skewed
distribution of which more ensemble members are close to
the ensemble mean, an ensemble bar with the dark-green
bin on the left is generated (see Figs. 4a and 4b).

5 VISUAL EXPLORATION AND INTERACTIONS

This section describes an integrated system with a suite of
visualization and interaction tools for visually exploring a
multidimensional ensemble dataset.

5.1 The Exploration Workflow

The exploration process starts with an uncertainty histo-
gram, on which users can select target uncertainty intervals
(e.g., intervals with high levels of uncertainty). Then, users
can interactively investigate the low-dimensional layout of
the ensemble data objects in the 2D projection view
equipped with a set of interactions such as zoom in/out,
and pointer/lasso selection. Once points of interest are spec-
ified, the geospatial locations associated with each data
object will be highlighted in the Geo-Location view. Mean-
while, the ensemble bar view shows all selected data
objects. Users can further drill down to a specific ensemble
bar to explore the high-level distribution and the overall
uncertainty of a data object. Afterwards, users can select
bins of interest in the ensemble bar to examine the selected
ensemble members in an animated continuous parallel
coordinates view. The parallel coordinates view allows
users to study the distribution of ensemble members on
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Points of Interest |

Fig. 5. The main interface of our visual exploration system. (a) The
uncertainty histogram. (b) The 2D projection view. (c) The ensemble bar
view. (d) The continuous parallel coordinates view. (e) The parameters
view. (f) The Geo-Location view.

each dimension. To investigate the source of uncertainty
(e.g., parameter perturbations in this paper), a radial plot is
provided to display the parameter configurations that gen-
erate these ensemble members.

5.2 Exploration Tools

The main user interface is composed of a set of linked widg-
ets and views to enhance interactivity. Fig. 5 shows an over-
view of our system.

Uncertainty histogram. At the top left corner, an uncer-
tainty histogram widget allows users to select data points
with overall uncertainty in a desired range.

Projection view. This view displays the intrinsic struc-
tures of an ensemble dataset in the 2D plane. The distances
among 2D data points encode the similarities of the corre-
sponding ensemble data objects with regard to both
ensemble means and ensemble distributions. Users can
either select a point or a group of points for further analy-
sis. A set of operations are provided in this view to assist
exploration including zooming, panning, hovering,
pointer selection, lasso selection, and multi-selection with
the control key pressed.

Ensemble bar view. To facilitate comparison of overall
uncertainties for different data objects, the ensemble bar
view is displayed at the right side of the main interface. The
overall uncertainties are perceived by the heights of the
bars, and the ensemble distributions are depicted by differ-
ent types of patterns in the ensemble bars. Following inter-
actions are provided in this view:

Choosing a color map and the bin number;

Dragging bars together for detailed comparison;
Reordering bars according to the shown patterns;
Selecting bins of interest to further examine ensem-
ble members in the parallel coordinates view.

Parallel coordinates view. A continuous representation is
employed to convey uncertainty at each dimension. Bright
areas on each dimension indicate high certainty. Users can
detect outliers with line dyeing, brushing, local zooming,
and axis reordering. To ensure a smooth interaction, ani-
mated transitions are implemented in this view.

Parameters view. Studying the effect of parameters in an
ensemble simulation (that is, ensemble members are gener-
ated by different parameterizations) is an important task.
For this purpose, we employ a radial plot where each
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Fig. 6. The projections produced with different dissimilarity weights on
the ensemble mean difference and the ensemble distribution difference
in the dissimilarity measure. (a) « = 1.0, 8 =0.0. (b) « = 0.5, g = 1.0.
(c)a=10.25,8=1.0.(d)a = 0.0, = 1.0.

parameter corresponds to one of the equiangular axes.
Initially, all parameter configurations are shown as a con-
text. Once users select a set of ensemble members, the cor-
responding parameter configurations are highlighted in
this view.

Geo-Location view. For geolocation-related applications, a
geo-location view is employed. Uncertainty features identi-
fied in the projection view may be easily understood and
verified by the domain experts in this view.

6 EXPERIMENTS AND DISCUSSION

We conducted three experiments to demonstrate the effec-
tiveness and usefulness of our uncertainty-aware projection
method and the exploration system. The system was imple-
mented with the standard C++ and Qt 5.0. The experiments
were performed on a PC equipped with an Intel Core 2 Duo
3.0 GHz CPU, 4 GB host memory and an NVIDIA Quadro
4000 video card with 1.5 GB video memory.

6.1 The Synthetic Dataset

We generated a synthetic 5D dataset consisting of 300
ensemble data objects to demonstrate the effectiveness and
the influence of dissimilarity weights. We first randomly
chose three anchor points that constitute an equilateral tri-
angle as cluster centers in a 5D space. Then, we generated
100 ensemble data objects in each cluster. Each data object
had 250 ensemble members following either a uniform or a
normal distribution. The ensemble mean of a data object in
a cluster was set as the cluster center with a small random
bias, and the correlation matrix was set as a fixed scaled
identity matrix. This process generated a dataset with three
clusters. The euclidean distances between any two cluster
centers are equal. The geometrical differences of data
objects in the same cluster are subtle but the distributional
differences are significant. The equilateral triangle structure
in this dataset is designed to demonstrate capability of our
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method to preserve the high-dimensional features in a
visual space.

Fig. 6 shows the effect of the dissimilarity weights « and
(see Equation (7)) in our uncertainty-aware multidimen-
sional projection method. Without considering the distribu-
tional differences (8 =0), all data objects with similar
ensemble means are projected close to each other (see
Fig. 6a) even though data objects within a cluster have
distinct distributions. This is consistent with the result of
the conventional multidimensional projection methods
designed for certain datasets. When the distributional differ-
ences are incorporated (8 > 0), data objects within a cluster
are gradually separated (see Figs. 6b and 6¢). For demonstra-
tion, we color the uniformly distributed data objects with
green and normally distributed data objects with purple.
From Figs. 6b and 6c, we can observe that there are three
clusters. In each cluster, we can further identify two sub-
clusters, each of which corresponds to a particular type of
distribution. However, these structures cannot be observed
in Fig. 6a, as data objects within a cluster become distinguish-
able only when ensemble distributions are considered.

In general, our method not only preserves the global
structure of the three clusters but also distinguishes data
objects between the two types of ensemble distributions
within each cluster. The degree of separation of the data
objects within a cluster depends on the relative value of «
and B. When the ensemble mean is not considered (¢ = 0),
all data objects are separated into two clusters solely based
on the two types of ensemble distributions (see Fig. 6d).

6.2 The NBA Players’ Statistics Dataset

We applied our method to a dataset consisting of 933 NBA
players’ career statistics' since 1981. In this dataset, we
treat each player as an ensemble data object, and the statis-
tics in a season as an ensemble member. Each ensemble
member is a 16-dimensional vector that describes the sta-
tistics in a season including: Games Played, Minutes
Played, Field Goals, Field Goal Attempted, three-Point
Field Goals, three-Point Field Goal Attempted, Free
Throws, Free Throw Attempted, Offensive Rebounds,
Defensive Rebounds, Assists, Steals, Blocks, Turnovers,
Personal Fouls, and Points. Each ensemble data object has
at least five ensemble members. Because the number of the
ensemble members for most ensemble data objects is
smaller than the dataset dimensionality of 16, we chose the
first uncertainty quantification measure to evaluate the
overall uncertainty (Equation (10)) and the ensemble mem-
ber deviations from mean (Equation (11)). The overall
uncertainty in this case reflects the fluctuation of a player’s
performance over years, or a player’s inconsistency.

Fig. 7 shows the results of the uncertainty-aware projec-
tion with different parameters. The color encodes the posi-
tion of a player. We can see a triangular structure in Figs. 7a
and 7b. The points in the upper part mainly represent play-
ers who play center (C) and players who play both center
and forward (C-F). The points in the lower part primarily
represent players who play guard (G) and players who play

1. The statistics of a player who has career over five seasons are col-
lected from a professional basketball statistics website (http://www.
basketball-reference.com)
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Fig. 7. Results for the NBA players’ statistics dataset. (a) The result that
considers only the geometrical differences, « = 1.0, g =0.0. (b) The
result of our method with « = 0.55, 8 = 0.45. (c) The result that considers
only the distributional difference, « = 0.0, = 1.0. In this example,
|R;| = 8and|N;| = 2.

both forward and guard (F-G). In addition, it is easy to find
that yellow points are distributed in both the upper and the
lower part. This is because players of forward (F) usually
are versatile. For demonstration, we annotated a set of play-
ers with their names. The results in Figs. 7a and 7b show
that points on the left side are role players and the points on
the right side are key players. More specifically, the points
in the upper right corner represent excellent players of C or
C-F, and the points in the lower right corner represent excel-
lent players of G or F-G.

Fig. 7c shows the result of projection using only distribu-
tional differences. This result indicates that the seasonal fluc-
tuation patterns of the players in C and C-F positions are
quite different from those of players in F-G and G positions.
Furthermore, if we only use the geometrical differences
among players to model their dissimilarities, the consistency
of a player will be hidden. For example, without considering
the distributional differences, the points in a region indicated
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Joe Barry Carroll Shareef Abdur-Rahim Josh Smith

Fig. 8. The ensemble bars and parallel coordinates representation for
the three selected players.

by the magenta circle in Fig. 7a are lumped together. This
implies that their ensemble means are similar. However,
Fig. 7c reveals that their ensemble distributions are distinct.
This explains why points inside the magenta circle in Fig. 7b
are much more dispersed. And this dispersion may help a
general manager identify consistent players from a pool of
players who are similar in mean performance.

To further inspect the difference between the results with
and without considering distributional differences, we
highlight a group of points in a region indicated by the
black circle in Fig. 7a. The same group of points are also
highlighted in black in Fig. 7b for comparison. Because
Fig. 7a only considers the geometrical difference among
ensemble means, the highlighted points close to each other
have subtle differences among ensemble means. Take Josh
Smith and Joe Barry Carroll as an example, they are located
close to each other in Fig. 7a. However, they are dispersed
when taking the distributional difference into account in
Fig. 7b. This is because their distributional differences are
significant, which can be clearly verified in Fig. 7c (notice
the annotations in blue). The ensemble bars and the parallel
coordinates views shown in Fig. 8 further verify this obser-
vation. On the other hand, Joe Barry Carroll and Shareef
Abdur-Rahim are positioned closer to each other when con-
sidering the distributional difference because their ensem-
ble distributions are quite similar, which is evident in their
ensemble bars and the parallel coordinates representations
in Fig. 8.

From the heights of the ensemble bars in Fig. 8, we can
conclude that the consistency of Josh Smith is higher than
those of Joe Barry Carroll and Shareef Abdur-Rahim. Fur-
ther examining the details, we can see that the high overall
uncertainties of Joe Barry Carroll and Shareef Abdur-Rahim
are partly caused by some flat and close-to-zero outlier
ensemble members (highlighted in purple). This was caused
by seasons in which they may have injuries.

6.3 The Numerical Weather Simulation Dataset

The dataset used in this experiment is an ensemble WRF
simulation of the 1993 superstorm at 6:00 PM, Mar. 13th,
1993. We select a region with latitude from 30°N to 40°N,
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Fig. 9. The result of our projection method with « =0.4, 8= 0.6,
|R;| =24 and |N;| = 4. The color of a point is indexed from a 2D linear
map (from violet to orange) with the geo-coordinates.

and longitude from 85°W to 75°W. The dataset consists of
7,050 geospatial grid points. Each grid point contains
8 variables, including wind speed in the zonal (E-W) and
meridional (N-S) directions respectively, temperature, soil
temperature, water temperature, relative humidity, specific
humidity, and mean sea level pressure. Forty runs of the
WRF simulation with different cumulative schemes and
microphysics schemes generated the ensemble members. In
other words, our simulation produced an 8-dimensional
ensemble dataset with 7,050 ensemble data objects, each of
which has 40 ensemble members. As the number of ensem-
ble members is much larger than the dimensionality of the
dataset, the second uncertainty quantification measure was
employed in this case.

Fig. 9 presents our results. To help users easily associate
the geospatial locations in the projection view, we use color
to encode the geospatial locations. Specifically, we synthe-
size a 2D texture that covers the entire simulation region,
i.e., latitude from 30°N to 40°N, and longitude from 85°W to
75°W. For simplicity, a linear gradient fill mode from violet
to orange along the diagonal for this texture is adopted. In
this way, the points sampled from the sea area will be
encoded with color close to violet and the points sampled
from the land area will be encoded with color close to
orange (see Fig. 9). For clarity, the map is drawn as a back-
ground. From the projection result, we can easily find that
points in the right part are closer to the sea area and points
in the left part are closer to the land area.

Our system can help users explore the dataset from mul-
tiple perspectives and levels-of-detail. We present two
exploration scenarios below.

Visual cluster analysis. Identifying highly correlated data
objects is a crucial data exploration task to gain insights into
an ensemble dataset because highly correlated data objects
(i.e., the clusters) constitute the major structure of a dataset.

Fig. 10 shows the result of our uncertainty-aware projec-
tion method colored by the overall uncertainty. In this
result, a color set from purple (low uncertainty) to yellow
(high uncertainty) is employed. Because the overall uncer-
tainty varies significantly, we employ a log transformation
and scale the overall uncertainty to [0,1].

From the resulting 2D manifold, we can easily find that
the entire dataset can be roughly grouped into three clusters
C1, C2, and C3. With the lasso tool, we can further select the
points in these clusters and show the geospatial locations
associated with each data object in the Geo-Location view.
The results show that C1 contains data objects located in the
Chesapeake bay and Delaware bay area, C2 contains data
objects located in the sea area, and C3 contains data objects
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Fig. 10. Cluster identification and analysis based on our uncertainty-
aware projection method. Three preliminary clusters are clearly shown
with our method. The geospatial locations encoded with overall uncer-
tainties are displayed on the map. In this example, « = 0.3, 8§ =0.7,
|R;| =24, and |N;| = 4.

located over the land. This separation of data points based
on land types is particularly interesting given that the geo-
spatial location is not part of the data used in projection.
From the results in the Geo-Location view, we can further
find that data objects over the sea have lower uncertainties
than those over the land.

For comparison, we also projected this dataset by only
considering the geometrical differences and the distribu-
tional differences respectively. The near set, the random set,
the neighborhood graph, and the control points used in
each projection were identical, while « and g were different.
Fig. 11a shows the result that only takes geometrical differ-
ences into account, i.e., « = 1.0 and g = 0.0. Fig. 11c displays
the result that only considers distributional differences, i.e.,
a = 0.0 and g = 1.0. Fig. 11b presents the result that consid-
ers both geometrical and distributional differences with
a=0.3and B=0.7.

From Fig. 11a, we can see that the major structure shown
in this result is similar to that in the result produced by our
uncertainty-aware projection method in Fig. 11b. However,
the difference between the data objects over the sea and the
land is captured much more clearly by taking both the geo-
metrical and distributional differences into account. Notic-
ing the red points in C1 highlighted in Fig. 11a, many of
them are lumped with points in C3. This is because the geo-
metrical differences of ensemble means among these points
are subtle. On the other hand, from Fig. 11c we know that
the distributional differences between data objects in C1
and C3 are significant because C1 and C3 are clearly sepa-
rated in this projection.

Furthermore, more points outside the three main clusters
(e.g., points in the orange circle) are produced by the
method without considering distributional differences in
Fig. 11a. To investigate the reason why our method can
avoid these outliers, three groups (G1, G2, and G3) of
points are highlighted in different colors. For inspection, the
points of G1, G2, and G3 are also highlighted in Figs. 11b
and 11c. We calculate the average pairwise geometrical dif-
ference between two groups by

ZUiEP,U]-eQ E(U;,U;)
|P||Q

Similarly, the average pairwise distributional difference
between two groups is calculated by

E(P,Q) = (15)
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Fig. 11. (a) The result that considers only geometrical differences, « = 1.0, 8 = 0.0, i.e., the projection method applied to the ensemble means. (b)
The result of our uncertainty-aware projection, @ = 0.3, 8 = 0.7. (c) The result that considers only the distributional differences, « = 0.0 and g = 1.0.

In this example, |R;| =24 and |N;| = 4.

> vervjeq (Ui Uj)

(16)
1PlIQ

J(P.Q) =

In this case, E(G1,G2) =029, E(G1,G3)=0.27. It
means that the average geometrical dissimilarity of G1 to
G2 and G3 are almost the same. This faithfully explains
why points in G1 are located between G2 and G3 in
Fig. 11a. However, J(G1,G2) = 0.82, J(G1,G3) = 0.44. This
means that the ensemble distributions of points in G1 have
higher dissimilarities to those points in G2. The resulting
projection in Fig. 11c visually verifies this observation. From
the result presented in Fig. 11b, we conclude that our
method strikes a balance between methods that only con-
sider geometrical differences or distributional differences.

Another interesting observation is that there are two
points located between G1 and G2 in Fig. 11b (the region
indicated by the black circle). We highlight their geospatial
locations in the Geo-Location view. From the magnified
map, we can see that they are sampled from the Florida
shore of the Gulf of Mexico. For demonstration, we also
highlight these two points both in Figs. 11a and 11c (the
black points in the black circles). From Fig. 11a, we can infer
that the ensemble means of these two points are similar to
points over the land. From Fig. 11c, we can infer that their
ensemble distributions are much more similar to points
over the sea. These observations further prove the necessity
of modeling the dissimilarities among ensembles with both
geometrical and distributional differences.

Ensemble distribution investigation. Our system can also be
employed to investigate the patterns of uncertainty in dif-
ferent areas and study the reason for the uncertainty of a
single data object. For simplicity, we selected a set of repre-
sentative points (P1, P2, P3, and P4 in Fig. 11b) in different
areas for analysis. Fig. 12 shows the ensemble bars and par-
allel coordinate representations for the selected points.
From the heights of the ensemble bars, we can see that P1 or
P2 has a higher overall uncertainty than those of P3 and P4.
From the patterns depicted in the ensemble bars of P1 and
P2, we can infer that their ensemble member deviations fol-
low an approximately uniform distribution. By examining
their parallel coordinates representations, we can visually
verify this observation. From the ensemble bars of P3 and
P4, we may conclude that their ensemble member

deviations approximately follow a positively skewed distri-
bution which is further confirmed by their parallel coordi-
nates representations. Another interesting observation
about the ensemble bars of P3 and P4 is that the color of the
last bin varies greatly (see the magnified bins on the right
side). This suggests that P4 has more outlier members. By
selecting the last bin in the ensemble bars of P3 and P4,
more ensemble members are highlighted in the parallel
coordinates representation of P4.

6.4 Discussion

Parameter configuration. Figs. 3e and 3f reveal that the near
set | V;| and the random set |R;| have a great impact on pro-
jection efficiency and accuracy. A large near set and random
set require more computation time and resource, while a
high projection accuracy (i.e., low stress) can be obtained.
Because the dissimilarity estimation process relates to the

na J I
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Fig. 12. The ensemble bars and parallel coordinates representations for
four selected data objects. The selected bins are magnified on the right
side. All selected ensemble members are highlighted in purple.
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number of ensemble members and the dimensionality of the
dataset, it is intractable to find an optimal size for the near
set and the random set. In our implementation, a good bal-
ance between efficiency and accuracy is achieved by setting
|N;| close to /n/3 and | R;| no larger than 4.

The experiment in Section 6.1 demonstrates the influence
of the dissimilarity weights o and B. Empirically, if users
need to put more emphasis on geometrical differences, a
large o should be assigned. On the other hand, if users want
to highlight the distributional differences among data
objects, a large B needs to be assigned. Without any prior
knowledge, « and B are both set as 0.5 for a preliminary
study of an ensemble data set.

Projection performance. The overall projection complexity
of our method is determined by three steps: building the
neighborhood graph, estimating dissimilarities, and solving
the sparse linear system.

Building the neighborhood graph involves defining a
near set and a random set for each data object. A standard
procedure to find the nearest neighbors is prohibitive
O(n?). By reorganizing the input data objects into \/n clus-

ters [50], the complexity can be reduced to O(n%)

A core component of our method is to estimate the distri-
butional differences among data objects in the neighbor-
hood graph. The complexity is O(n(|N;| + |R;|)mdS). Here
| N;| is the size of the near set, |R;| is the size of the random
set, m is the number of ensemble members, d is the
dimensionality of the dataset, and S is the number of sam-
ples. In our implementation |N;| = +/n/3, both |R;| and S

are constants, thus the complexity becomes O(n?md).

As the derived linear system is sparse, symmetric, and
positive definite, the conjugated gradient method is
employed. In this case, the complexity is O(nvk) [50],
where Fk is the condition number of the matrix LT L. (L rep-
resents the coefficient matrix of the linear system.) ,

In general, the complexity of our method is O(maz(n2md,
nvk)). In practice, dissimilarity estimation dominates the
projection time in our experiments. For example, several
hours are required to compute the dissimilarities in the
numerical weather simulation dataset on our computer. A
parallel implementation of the entire system would alleviate
this problem. The computation consumption can be further
decreased by employing a fast KDE algorithm, e.g., the KD-
tree based KDE. This is an avenue for future work. In addi-
tion, from Equation (7), we know that changing the value of
o and/or B for exploration does not need to re-estimate the
geometrical and distributional differences. Accordingly, we
can obtain a new projection in seconds by solving a new
linear system.

Strengths and limitations. By considering both geometri-
cal and distributional differences, data objects with simi-
lar summary statistics can be distinguished with our
approach. Our enhanced Laplacian-based projection
scheme strikes a balance between the computation time
and accuracy, which can be easily verified in Figs. 3e and
3f. Currently, both the probability reconstruction and the
dissimilarity estimation processes in our approach are
limited to numerical data objects. In the future, we will
seek to adapt our approach for categorical multivariate
ensemble data visualization and exploration.
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7 EVALUATION

We evaluated the exploration system with a meteorologist
collaborator to analyze the ensemble simulation of the 1993
superstorm. We examined the ensemble data at the 44th
hour of the simulation out of the entire 49-hour simulation.
We intentionally chose a time point towards the end of the
simulation when there are more diversities among the
ensemble distributions. According to the findings in
Section 6.3, the dissimilarity weights were specified as
a = 0.3, B = 0.7 so that data objects from different land types
were clearly separated. The meteorologist can interactively
adjust these weights to compare projection patterns. The
observations and feedback are summarized in this section.

7.1 The Uncertainty-Aware Projection Method

The meteorologist observed that, without considering the
distributional differences among data objects, the Chesa-
peake bay/Delaware bay and the surrounding land are
overlapped in the projection view (see Fig. 11a). When con-
sidering both geometrical and distributional differences,
these two types of land covers are clearly separated (see
Figs. 11b and 11c). The meteorologist hypothesized that this
separation is caused by the more precise ensemble simula-
tions over the sea than over the land. This hypothesis came
from the past experience with WRF simulations and was
validated by examining the parallel coordinates of data
objects over the land and the sea.

The meteorologist also observed that the warm sector
and the cold sector (see Fig. 11c) are much better separated
in the projection view when considering distributional dif-
ferences rather than considering geometrical differences
only. This is because the uncertainty between the ensemble
members significantly increased in the warm sector located
closer to the center of storm at that time point. The reason
for larger uncertainty is the uncertain timing of the cold
front associated with the storm. The different ensemble
members timed the cold frontal passage differently, which
affects when each point in the warm sector leaves the warm
sector and enters the cold sector.

Based on these observations, the meteorologist agreed
that projecting the data objects according to both geometri-
cal and distributional information provides a novel and use-
ful perspective on the data.

7.2 The Uncertainty Visualization

The meteorologist stated that it is a routine but an effective
means to use color for showing uncertainty on a geospatial
map. The color map provided a useful overview of the
uncertainty of data objects in regions of high or low uncer-
tainty. The meteorologist further confirmed that the high
uncertainty region (i.e., the yellow region) in Fig. 10 coin-
cides with the path of the super storm center.

Besides color mapping, the ensemble bar representation
provides a supplementary visualization for the ensemble
uncertainty. The meteorologist asserted that this representa-
tion was intuitive and helped him study the consensus of
ensemble members and compare different data objects. The
meteorologist concluded that the ensemble bars can be used
to characterize and identify different types of uncertainty.
For example, the ensemble bars with dark green color to the
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left indicate positive skew distributions where most ensem-
ble members are grouped together with few outliers (e.g.,
data objects located in the sea surface). Ensemble bars with
dark green color in the middle or right represent little to no
agreement among ensemble members (e.g., data objects
located in the warm sector).

7.3 The Linked Multi-View Interface

The meteorologist found the linked interaction mode help-
ful. A cluster of points in the projection view can be easily
selected and their ensemble distributions can then be
reviewed in the ensemble bar view immediately. The selec-
tion of bins in an ensemble bar allows a group of ensemble
members to be quickly selected and reviewed in the parallel
coordinates view and the parameter view. In particular, the
last several bins in an ensemble bar usually contain the out-
lier ensemble members that require further analysis.

The parallel coordinates view helps the meteorologist
examine the distribution of individual variables of a data
object. The meteorologist prefers the continuous parallel
coordinates plot for a more intuitive presentation of the dis-
tribution. The ability to reorder the axes in the parallel coor-
dinates view helps organize the similarly distributed
variables close to each other for comparison.

The meteorologist pointed out that the soil tempera-
ture variable was not simulated, but inherited from the
input NARR dataset. Thus, it contributed no uncertainty
in the ensembles. The meteorologist expressed the desire
to interactively select a group of variables for analysis.
Currently, this feature is not supported in our system due
to the time-consuming dissimilarity computation. How-
ever, a parallel computing system can help achieve this
goal in the future.

8 CONCLUSION

We present a visualization and exploration system for a
multidimensional ensemble dataset whose kernel is a novel
uncertainty-aware multidimensional projection method.
This new method considers not only the ensemble means
but also the ensemble distributions. Experiments on an arti-
ficial dataset demonstrate the ability of the uncertainty-
aware projection to distinguish between ensemble data
objects with similar means but different ensemble distribu-
tions. Results on both real-world and simulation datasets
verify that 1) differences in ensemble distributions are an
important part and are crucial for proper ensemble analysis,
and 2) our uncertainty-aware projection can distinguish
ensemble distributions in real-world data.
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