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Fig. 1. StreetVizor system. (a) Control panel enables multi-scale navigation, ranking exploration, and feature filtering. (b) Side-by-side
map views compare the spatial distribution of human-scale urban forms in two areas-of-interest (AOIs). (c) AOI statistic view presents
the quantitative measurements, including correlation, histogram, and diversity in the AOIs shown in (b). (d) Street map views present
detailed street views along two streets. (e) Street statistic view extends parallel coordinates with street layouts.

Abstract— Urban forms at human-scale, i.e., urban environments that individuals can sense (e.g., sight, smell, and touch) in their
daily lives, can provide unprecedented insights on a variety of applications, such as urban planning and environment auditing. The
analysis of urban forms can help planners develop high-quality urban spaces through evidence-based design. However, such analysis
is complex because of the involvement of spatial, multi-scale (i.e., city, region, and street), and multivariate (e.g., greenery and sky
ratios) natures of urban forms. In addition, current methods either lack quantitative measurements or are limited to a small area.
The primary contribution of this work is the design of StreetVizor, an interactive visual analytics system that helps planners leverage
their domain knowledge in exploring human-scale urban forms based on street view images. Our system presents two-stage visual
exploration: 1) an AOI Explorer for the visual comparison of spatial distributions and quantitative measurements in two areas-of-interest
(AOIs) at city- and region-scales; 2) and a Street Explorer with a novel parallel coordinate plot for the exploration of the fine-grained
details of the urban forms at the street-scale. We integrate visualization techniques with machine learning models to facilitate the
detection of street view patterns. We illustrate the applicability of our approach with case studies on the real-world datasets of four
cities, i.e., Hong Kong, Singapore, Greater London and New York City. Interviews with domain experts demonstrate the effectiveness of
our system in facilitating various analytical tasks.

Index Terms—Urban forms, human scale, street view, visual analytics

1 INTRODUCTION

Human-scale urban form describes fine-scale characteristics of urban
environments that can be directly seen, touched, and experienced by
a city’s residents in their daily lives [27]. It is typically measured
in high-resolution by sight and hearing, i.e., from several to tens of
meters. Compared with a city’s scale, which is usually measured
in kilometers, this scale is human-oriented. As humans pay more
attention to interactive surroundings [13], understanding human-scale
urban forms is essential for urban planners in designing high-quality
urban spaces. However, traditional urbanism theories, such as small-
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scale surveys and mapping, are hard to provide in-depth guidance for
effective urban planning and design at this fine scale.

Given the advancement of various sensing technologies, e.g., cam-
eras and GPS devices, we can now quantitatively measure human-scale
urban forms by analyzing big urban data. In particular, services, such
as Google Street View (GSV) [1], provide detailed panoramic views
of urban space from different geographic positions These panoramic
views can be utilized to measure various features, including greenery
coverage and sky visibility, of human-scale urban forms visible to hu-
man eyes. Some pioneering studies have shown that neighborhood
environment [33], street-level greenery [22], and even street safety [28]
can be precisely assessed from these views.

However, GSV image exploration mainly focuses on either a partic-
ular feature (e.g., greenery coverage [22]) or a small area (e.g., neigh-
borhood [33] and street [22,28]). This deficiency limits its applicability
in urban planning, where planners need to 1) quantitatively measure
multivariate features of urban forms, including not only greenery cover-
age, but also sky visibility, and vehicle density [26]; 2) systematically
explore urban forms in areas-of-interest (AOIs) at multiple scales, i.e.,
from small (e.g., streets) to mid (e.g., districts) to large scales (e.g.,
cities) [25]. In addition, direct means for the comparison of urban
forms in two AOIs is desirable to allow planners to utilize information
for the quick identification and improvement of factors that affect the
quality of urban space.
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A visual analytics tool is necessary to fulfill these requirements be-
cause it can integrate powerful computing capabilities to quantitatively
measure multivariate features, with interactive visual interfaces to sys-
tematically explore and compare features in AOIs on demand [37].
Developing such a tool requires considerable effort because of the fol-
lowing reasons: first, as cities comprise vast amounts of street views,
an efficient feature extraction algorithm is required to automatically
uncover human-scale urban forms. Second, the development of a tool
for the visual comparison of multivariate features in two AOIs requires
an effective visual design that tackles the challenges of spatial, multi-
variate, and comparative data visualizations.

In this paper, we introduce StreetVizor, a visual analytics system
for the exploration of human-scale urban forms based on GSV im-
ages. We develop the system in an iterative design process: specific
analysis requirements are described by a collaborating urban planner,
and the designs are evaluated and refined against requirements. To
present information in concisely, StreetVizor combines a set of well-
established visualization techniques, including coordinated multiple
views (CMVs) and scatterplot matrix, with a new design of parallel
coordinates that integrate street layout information. Our system utilizes
advanced clustering models to enable the efficient exploration of street
view patterns. We apply StreetVizor in real-world datasets containing
∼1.7 million of GSV images of four cities: Singapore, Hong Kong,
Greater London, and New York City, and demonstrate its effectiveness
through interviews with domain experts.

The main contributions of this work include:

• A fully automatic approach measuring human-scale urban forms
by applying deep learning techniques on GSV images;

• A visual comparison framework for exploring human-scale urban
forms on city-, region-, and street-scales;

• A novel visual design of parallel coordinates that integrate street
layout information;

• Interesting insights revealed from case studies and expert inter-
views, such as the negative correlation between greenery and
building features, and the differences in street views of two cities.

2 RELATED WORK

This section discusses previous studies closely related to our work.

2.1 Street View Analysis
GSV system provides high quality and accurate panoramic images of
hundreds of cities [1]. In recent years, researchers studying human-
scale urban forms have utilized GSV images as a new and convenient
data source. For example, researches have shown that the analysis of
GSV images can be used to audit neighborhood environments [33],
quantify street greenery [22], and predict street safety [28]. Nonetheless,
the majority of these studies face scalability issues given their focus on
either a particular feature [22] or a small area [22, 28, 33]. Thees issues
can be addressed by incorporating deep learning techniques, which can
be used to summarize city landscapes [8] and estimate the demographic
makeup of a country [12].

In this work, we collect ∼1.7 million GSV images of four rep-
resentative mega-cities, and apply a deep learning technique [3] to
automatically extract desired urban forms from the collected images.
More importantly, we develop an effective visual analytics tool for
urban planners to explore human-scale urban forms.

2.2 Urban Data Visualization
Vast amounts of urban data, including traffic [10, 41], social me-
dia [6,42], environment [9], and simulated urban spaces [39], have been
collected in an urban context. Big urban data brings in unprecedented
opportunities for evidence-based urban design, and visualization sys-
tems can assist domain experts in finding evidence from the data. A
systematic overview of visualization systems can be found in [46].

Qu et al. [32] presented a comprehensive visualization system for the
analysis of a city’s air pollution that affects the daily lives of residents.
Their system integrates parallel coordinates and scatterplots to show

relationships between high-dimensional air pollutants. In addition to
air pollution, landmark visibility is related to the daily experience of
a city’s residents. Ortner et al. [30] visually compared the effects of
candidate buildings on landmark visibility from various viewpoints.
In this system, users can select a series of ranking schemes, and can-
didate buildings are then automatically sorted. Similar to our present
work, Arietta et al. [2] associated visual elements with city attributes,
including violent crime rates and housing prices. They developed var-
ious prototype visualizations, such as the visual boundary of urban
neighborhoods.

Although different data are explored, these visualizations similarly
employ CMVs, because urban data typically exhibits both spatial infor-
mation and multi-dimensional attributes. Our system also adopts this
empirical approach. In addition, to address specific domain problems,
we develop effective visualization techniques, including a novel parallel
coordinates enhanced with street layouts.

2.3 Multivariate Geographical Data Visualization
Visualizing multivariate data is a hot topic in the visualization field.
Numerous conventional approaches to this topic have been developed,
and can be classified into two groups: 1) employing visualization
techniques, such as parallel coordinates plot (PCP), scatterplot matrix,
and start coordinates; and 2) projecting data points onto a two- or
three-dimensional visual space that can be directly plotted on a screen,
such as multidimensional scaling and principal component analysis.
All these approaches have pros and cons. For example, although PCP
presents all dimensional attributes without information loss, it can easily
generate visual clutter with big data and pairwise correlations can only
be shown on two nearby coordinates [18]. Many improvements have
been developed to address these issues. These improvements include
edge bundling to reduce visual clutter [19, 47], and hierarchical data
clustering and the navigation of resulting structures [11, 45].

When multivariate data is dependent upon locations, the analytical
tasks become more complex because geographical information needs
to be revealed. Turkay et al. developed Attribute Signature [38], which
employs a geographical map and small multiples of multivariate at-
tributes to show geographic variability in attribute statistics. Goodwin
et al. [15] further explored multivariate geographical data across scales
by adopting new designs to show correlation, scale, and geographi-
cal information. The frameworks proposed by both studies can be
generalized to explore multivariate geographical data.

In this work, human-scale urban forms to be explored are also multi-
variate geographical data: the features are in six dimensions and they
are dependent on locations. We leverage the advantages of scatterplot
matrix and PCP for different analytical tasks. Specifically, we employ
scatterplot matrix for exploring features at city- and region scales given
that it can effectively reveal correlations between all pair-wise features.
We also arrange the views in a way similar to Attribute Signature [38],
i.e., geographical information is presented on maps and multivariate
attributes in small multiples. In addition, we develop a novel PCP
enhanced with a themeriver plot, which fits better with the analytical
task of showing feature variations along street layout at street-scale.

2.4 Comparative Visualization
Gleicher et al. [14] classified techniques for visual comparison into
three categories: 1) Juxtaposition, i.e., presenting objects next to each
other. For example, NodeTrix [43] arranges two human brain networks
side-by-side. 2) Superposition, i.e., presenting multiple objects on
top of one another. Typical examples are time-series line graphs that
plot the changes in several variables over time in the same coordinate
system. 3) Explicit encoding, i.e., presenting differences or correlations
between objects visually. For instance, the bivariate density map is
employed in [44] to show the relationship between departure and arrival
movements over space. In practice, these techniques are combined to
address complex analytical tasks.

Our work adopts juxtaposition that arranges maps of two
AOIs/streets side-by-side (Fig. 1(b) & (d)), and superposition to com-
pare multivariate features of two AOIs/streets in the same coordinate
system (Fig. 1(c) & (e)).
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3 BACKGROUND AND ANALYTICAL TASKS

In this section, we introduce our research background and summarize
the desired analytical tasks.

3.1 Background
Although the concept of human-scale urban form has only been recently
defined [27], its discussions in the context of urban planning has a long
history that can be traced back to the 1960s. A series of pioneering
studies [13, 20] claimed the positive effects of understanding human-
scale urban forms in designing high-quality urban space. Visible human-
scale urban forms are particularly important as human beings tend to
pay most attentions to surroundings that can be directly seen [13].

Over the past 10 months, we closely worked with a senior researcher
(SR) in the field of evidence-based urban design− an emerging research
topic in urban planning and design. SR pointed out that though urban
planners have begun to realize the importance and usefulness of street
views in analyzing visible urban forms (e.g., [22, 28, 33]), systematic
and efficient methods that can facilitate exploration remain lacking.
Hence, SR proposed the development of an efficient visual analytics
tool for exploring human-scale urban forms based on GSV images.

To better understand the problem domain, we conducted several
rounds of structured interviews with SR. The main analysis criteria are
summarized below:

• Multivariate Features. As images contain rich information on
the urban environment, the first step is to identify the urban forms
for analysis. Here, we identify five key features that can reflect
the quality and livability of street spaces [13, 20], i.e., greenery,
sky, building, road, and vehicle features. Greenery reflects the
pleasing greenery view of a street; sky and building are corre-
lated with the sense of street closure negatively and positively,
respectively; and increments in road and vehicle ratios decrease
the willingness of people to walk and street attractiveness.

• Street View Crawling. To reveal the surrounding scenes of a
street space, street views have to be crawled appropriately: succes-
sive images should reflect the continuous change in surrounding
scenes. Hence, the distance between two successive views should
not exceed a limit that produces discontinuous scenes; meanwhile,
it should not be too small, which will cause computing overload.
After experimenting with several options, we find 50 meters is a
suitable value for the distance between two successive views.

• Street View Directions. Although GSV [16] provides 360-
degree panorama imagery, only the front and back images in the
directions of street headings at sampling locations are required.
Side views are not utilized because of the following considera-
tions: First, side views mainly present building facades and street
sides and thus cannot correctly reflect other key features of street
space, e.g., road. Second, side views are partially contained by
the front and back images at nearby sampling locations.

To evaluate the effectiveness of our approach, we first experiment
with a few representative cities. SR suggested Hong Kong, Singapore,
Greater London, and New York City: Hong Kong and Singapore are
dense cities with high-rise buildings in Asia. Greater London and New
York City are well-planned cities in Europe and the US.

3.2 Analytical Tasks
After identifying the analysis criteria, SR further raised a list of ques-
tions for our system to address, including: How are the identified
features distributed in an AOI? What are the feature differences be-
tween two AOIs? What are the exact views that people can see on a
street? Are there any representative views?

Based on these questions, we compile a list of analytical tasks:

T.1: Efficient Multi-scale Exploration: Human-scale urban forms
are associated with street views at different locations that can
be organized on city-, region- and street-scales. Planners first
need an intuitive overview of the identified feature distributions
within a city or a region (T.1.1). Next, planners need to explore
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Fig. 2. Overview of StreetVizor workflow. Our system consists of two
phases: data modeling and interactive visual exploration.

the details of the urban forms, such as the exact street views, at
street level (T.1.2). Effective interactions are required to assist
users in navigating across different scales.

T.2: Quantitative Measurements: SR emphasized the importance of
quantitative measurements to evidence-based urban design. Here,
given that an AOI/street can contain vast amounts of street views,
planners should analyze the statistics of identified features, in-
cluding correlations between features, distributions, and standard
deviations (T.2.1). Filtering street views against the values of a
specific feature is also important (T.2.2).

T.3: Effective Ranking and Comparison: To help planners quickly
narrow down the exploration scope, features among multiple
AOIs/streets should be effectively ranked (T.3.1). Areas/streets
with certain features of high values can be easily discovered for
further exploration. After planners select two AOIs/streets, they
need to compare the differences in spatial distributions (T.3.2)
and the quantitative measurements (T.3.3) of the urban forms.

4 SYSTEM FRAMEWORK

StreetVizor is a web-based application comprising two major phases,
as illustrated in Fig. 2. In the data modeling phase, our system auto-
matically collects hundreds of thousands of GSV images at sampling
positions in each city generated from OpenStreetMap (OSM) (Sec-
tion 5.1). Then, we classify the pixels of the collected images into 12
classes using SegNet, and extract the desired feature metric from the
classification results (Section 5.2). Data collection and preprocessing
are conducted offline on a high-performance workstation with 12 core
3.40 GHz Intel Core i7-6800K CPU and a GeForce GTX 1080 graphics
card. Though enabled with GPU acceleration, the computation still
takes several to 20 hours to preprocess images from each city. Then,
we construct data structures, including an octree and a lookup table, to
facilitate visual exploration, such as spatial query and filtering (Sec-
tion 5.3). The datasets are stored in a back-end MongoDB server with
2.4 GHz Intel Xeon E5-2620 CPU and 64 GB memory.

The interactive visual exploration phase consists of two stages: 1)
Our system provides users with a Ranking Explorer that ranks and
compares multiple AOIs/streets based on human-scale urban forms.
Users can narrow down exploration by selecting two AOIs/streets for
detailed comparison. 2) If two AOIs are selected, the system will
present an AOI Explorer that compares the differences in human-scale
urban forms in two AOIs at city- and region-scales. The AOI Explorer is
composed of CMVs, including two juxtaposition map views for spatial
exploration and a superposition statistic view for comparing various
quantitative measurements, such as feature correlations and diversities.
Users can further navigate down to select two streets, and our system
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Fig. 3. Illustration of data preprocessing: sampling locations in New York
City are generated from OpenStreetMap (left), a street view image is
collected from Google Street View (center), and the image pixels are
classified into six features using SegNet (right).

will provide Street Explorer, which presents the fine details of human-
scale urban forms at street-level. In Street Explorer, we present map
views that show the geographical information and representative images
of two streets. We also develop a novel PCP enhanced with themeriver
along street layouts, allowing users to compare multivariate features
and reveal feature distributions along the two streets. The visualization
modules are implemented in D3.js and Three.js for different rendering
requirements, and they are integrated using Vue.js.

5 DATA MODELING

In this section, we first describe the collection of GSV images and
the extraction of human-scale urban forms from the collected images.
Furthermore, we present the methods for data querying and filtering.

5.1 Data Collection
Based on the configurations defined in Section 3.1, we develop an
automatic approach to collect GSV images. We first download the area
of a city from OSM [29] and extract the road network from the OSM
data. Next, we apply a flood-fill algorithm that recursively goes through
the entire road network every 50 meters, starting from a randomly se-
lected location. After this operation is completed, a list of sampling
locations ({pos}) with geographic information (lat & long) is gener-
ated. We then pass each (lat & long) into GSV API, and extract the
corresponding street information (SI), including street name (s name)
and heading (h). Finally, we download front and back images at each
sampling position by passing lat, long & h with the default field of
view and pitch values into GSV API. Together with the downloaded
image (Img), we model urban forms at human-scale (UFhs) at each
sampling location as:

UFhs :=< pos, SI, Img > (1)

We have collected ∼147 k, ∼183 k, ∼685 k and ∼637 k images of
Hong Kong, Singapore, Greater London and New York City, respec-
tively. Fig. 3 (left) presents all sampling locations (colored dots) in
New York City generated from OSM, and (center) shows a sample
street view image downloaded from GSV.

5.2 Feature Extraction
After collecting street views, we first classify the image pixels into 12
classes (e.g., sky and building) using SegNet [3], which is a robust
pixel-wise semantic labeling tool with a global accuracy of 82.8%.
Among the 12 classes, we count the number of pixels for the identi-
fied five features, i.e., greenery, sky, building, road, and vehicle, and
summarize the remaining pixels as others. We then normalize the
feature data because pixel counts (PC) as raw output values are not
intuitive. The normalization is straightforward for each feature value
(FV ): FVi = PCi/PCImg, where i ∈ {g,s,b,r,v,o} represent the five
features and others. Hence, all feature values are in the range of [0, 1].
Then, we can replace the image (Img) with a feature metric (FM) as:

Img→ FM :=< FVg, FVs, FVb, FVr, FVv, FVo > (2)

Fig. 3 (right) shows the classification result of the street view image
in the center produced by SegNet.

5.3 Data Querying and Filtering
Based on Equations 1 and 2, we model human-scale urban forms (UFhs)
with the following attributes: position (pos), street information (SI),
and feature metric (FM). By nature, the data exhibits the following

... ...

... ...

... ...

... ...

... ...

spatial units
streets

... street views
greenery sky
building road
vehicle others

Fig. 4. Data model: street views with six-dimensional features of green-
ery, sky, building, road, vehicle and others, are organized in an octree
structure and a street lookup table.

properties: 1) spatial, i.e., positions; 2) multi-scale, because the posi-
tions can be hierarchically grouped in accordance with city and regional
units, or street information; and 3) multivariate, i.e., the feature metric
is in six-dimensional data space.

These complex data natures bring in challenges for our analytical
tasks. To address these challenges, we further identify the following
querying and filtering models that our system should support:

• Spatial Query: To overview the feature distributions within an
AOI (T.1.1), our system should first support an efficient query of
a list of {UFhs} with their pos laying in a given AOI. The AOI
can be either an administrative zone (e.g., a city or a district) or
a user-specified region defined using a lasso tool. We achieve
the efficient spatial query operation by organizing all {UFhs} in a
city in a four-level octree structure, in which the topmost level is
the boundary of each city.

• Street Query: To support the exploration of human-scale urban
forms at street-scale (T.1.2), our system should allow users to
interactively query a street by its name. Here, we create a lookup
table with street names as keys, and store corresponding UFhs ids
in each street slot.

• Feature Filtering: To accelerate filtering against a particular
feature (T.2.2), our system first sorts all {UFhs} to be explored
in increasing order for every feature. Then, we adopt a binary
search approach in run time.

Fig. 4 illustrates the data model that organizes the street views in an
octree structure and a street lookup table. Each street view contains
the six-dimensional features of greenery, sky, building, road, vehicle,
and others. We store these querying and filtering models are stored in a
back-end MongoDB database, as shown in Fig. 2.

6 VISUALIZATION DESIGN

In this section, we first discuss the rationales behind our visualization
design. Then, we provide a detailed description of the visualization
techniques implemented in our system.

6.1 Design Rationales
To address the complex analytical tasks (Section 3.2), a proper visual
design should follow the design rationales below:

R.1: Overview+Details: To facilitate multi-scale exploration, our sys-
tem should follow the information-seeking mantra: “Overview
first, zoom and filter, then details on demand” [36]. First, the
system should provide an overview of human-scale urban forms
at city- and region-scales, and then allow users to explore more
details at street-scale. Efficient query and filtering should be
provided to enable smooth transitions between these scales.

R.2: Coordinated Multiple Views: Our system should effectively
reveal multiple perspectives information of human-scale urban
forms, including geographical locations and multivariate features.
CMVs that present linked information and allow users to explore
data from multiple joint-perspectives fulfill this requirement.

R.3: Effective Comparison: To enable effective data comparison, dif-
ferent comparative visualization techniques should be employed
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for multiple-perspective information. Specifically, given that
spatial information for two AOIs/streets is unsuitable for direct
overlay, we adopt side-by-side map views. On the other hand, the
feature metric can be mapped on the same scope. Therefor, we
select a superposition visualization to reveal the differences.

R.4: Visual Consistency: Since multi-scale and multiple-perspective
visualizations are to be designed, the system should maintain
visual consistency across different visualization modules. We
realize visual consistency by 1) applying the same layout, i.e.,
presenting spatial information on the top and quantitative mea-
surements on the bottom, in AOI Explorer and Street Explorer;
2) employing consistent color mappings. Specifically, we set
green, light blue, orange, brown, light pink, and gray to represent
the features of greenery, sky, building, road, vehicle, and others,
respectively. AOIs/streets on the left and right side are colored as
red and blue, respectively.

6.2 Ranking Explorer

Ranking Explorer is developed to overview feature attributes
across multiple AOI/street candidates to help users quickly identify
AOIs/streets for comparison (T.3.1). The explorer presents each can-
didate as a row and arranges its multivariate information in seven
columns. The first column provides general information, such as city
and region/street id. The remaining columns present the six features’
mean values as bars, where mean values are normalized and encoded
by bar lengths. Clicking the body of a feature column of interest will
expand the column as a boxplot to show statistical distributions. The
explorer also allows users to sort candidates against a particular feature
and the ranking will update correspondingly. Such designs have been
well established and evaluated in a previous work [24].

Fig. 1(a) ranks all districts in Hong Kong in accordance with
building feature (red dashed box). As an example, we observe the
detailed statistics of the sky feature. We select the column for this fea-
ture and expand it to boxplot. By comparing the orderings of greenery,
sky, and building features, we find greenery and sky features are cor-
related, while they are negatively correlated with the building feature.
This information helps users narrow down the comparison choices to 1)
district HK 16 (Yau Tsim Mong) with the highest building ratio and 2)
district HK 7 (Sai Kung) with low building and high greenery ratios,
as shown in Figs. 1(b) & (c).

6.3 AOI Explorer

AOI Explorer is developed to provide efficient comparison of human-
scale urban forms at city- and region-scales (T.1.1). The explorer
integrates coordinated multiple views, including:

6.3.1 AOI Map View

We develop side-by-side map views (Figure. 1(b)) to compare the
spatial distributions of human-scale urban forms in two AOIs (T.3.2).
Each map view consists of: 1) a background map layer implemented
with Leaflet.js to allow users to change map style (e.g. satellite, street,
and sport) for different purposes; and 2) a point density map overlaid
on top of the background map layer, with points representing street
views. The density points are evenly sampled on each street with an
upper limit of 10,000 points. Point color corresponds to the maximum
feature value in the street view image. A corresponding street view
image will pop up when the mouse pointer hovers over a point. Users
can select two cities or regions from the navigation panel, or directly
manipulate AOIs on the map views with a lasso tool.

Heat map is an alternative design for the point density map. However,
in this work, we focus on the simultaneous analysis of multiple features
of human-scale urban forms. Compositing these features into one heat
map [34] will require redundant user interactions. In addition, sampling
positions are generated along the street network. Thus, no street views
is collected from many places across a city. In this case, the heat map
will generate ambiguity between the two scenarios of 1) no record or 2)
low feature values in a region.
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Fig. 5. The AOI Statistic View combines (a) a scatterplot matrix to
show pair-wise correlations between two features, (b) small multiples
of histogram bar charts to overview feature distributions, and (c) small
multiples of deviation plots to present feature diversity.

6.3.2 AOI Statistic View
Besides the map view, which enables the comparison of spatial distri-
butions of human-scale urban forms, we develop AOI Statistic View
to allow users to compare various quantitative measurements (T.3.3).
Nonetheless, each AOI may contain too many street views (up to several
hundred thousand) that will overload the rendering process. Moreover,
the street views will occlude each other if we simply plot all of them.
To address this problem, we cluster street views into groups based on
either their administrative units (districts, divisions, and streets) or a
mean-shift clustering algorithm [7] that works as follows.

Mean Shift Clustering. We cluster urban forms based on their fea-
ture metric and geographical positions. Our algorithm works in the
following way: given an input list of N human-scale urban forms
{UFhs}, we first normalize the lat & long attributes of each UFhs
against the boundary of all {UFhs}. Then, we combine the normal-
ized latnor & longnor with the feature metric to construct a new dataset
X := {x1,x2, ...,xN}, where each data point xi is in an eight-dimensional
space, R8 :=< latnor, longnor, FVg, FVs, FVb, FVr, FVv, FVo >. The
distance between two data points is measured as their Euclidean dis-
tance. We then estimate a bandwidth h from X , and apply mean-shift
clustering algorithm on X using a flat kernel. Here, the bandwidth
estimation and mean shift clustering are performed with a machine
learning library scikit-learn [31]. Finally, we generate a list of m urban
form clusters C := {c1,c2, ...,cm}, where each cluster ci contains n data
point ci := {x1,x2, ...,xn}.

The clustering process groups geographically close street views with
similar feature attributes together. Given that locations are integrated as
two-dimensional spaces, the algorithm forms more local clusters than
an algorithm without considering spatial information, which usually
generates several big clusters with too many street views. The algo-
rithm may be further improved by adopting a network-based distance
measurement approach other than Euclidean distance. We expect to
form more representative clusters of street views with street network
information. Nonetheless, the current approach fulfills our requirement
of reducing visual clutter.

After generating the clusters C, we further compute and visualize
the following quantitative measurements:

• Feature Correlation: We first compute the mean values of the
identified features, i.e., greenery, sky, building, road, vehicle, and
others in each cluster ci. We then plot the pair-wise correlations
using a scatterplot matrix (Fig. 5(a)). Notice that the clusters in
the left and right AOIs are colored red and blue, respectively.

• Feature Histogram: Though feature values fall in the range of
[0% - 100%], we seldom find feature values that exceed 50%.
Thus, we only consider the range [0% - 50%]. For each feature,
we divide the range into 10 even parts, i.e., [0% - 5%), [5% -
10%)..., and aggregate the corresponding value in each street view
to each part. Then, histograms for each feature are plotted as bar
charts in an up and down manner for AOIs on the left and right,
respectively. The six histogram bar charts are arranged in small
multiples next to the scatterplot matrix (Fig. 5(b)).
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a

Fig. 6. Street Map View provides an overview of all street views along a
street as colored points, and highlights images on two sides of the street.
(a) A tree map showing the feature composition of an image will pop up
when the mouse pointer is hovered over the image.

• Feature Diversity: We use standard deviation to indicate the
measured feature diversity measured for each cluster, and design
diversity views that are arranged as six side-by-side small mul-
tiples for each feature as shown in Figure 5(c). In every feature
diversity view, each cluster is represented as a dot with its x-value
indicating the averaged feature value and y-value indicating stan-
dard deviation. In addition, we use line segments to indicate the
largest and smallest feature values in each cluster. In case an AOI
may have hundreds of clusters that lead to serious visual clutter
problem, we implement a contour map view [5] (Fig. 5(h)) to
show overall distribution patterns. Users can interactively choose
one of the views in accordance with different requirements.

The AOI Statistic View comparison of New York City (red) and Hong
Kong (blue) is shown in Fig. 5. From the view, we can easily identify
some obvious patterns. For example, in both cities, greenery and
building features are negatively correlated (Fig. 5(d)). The correlations
between other pairwise features, e.g., greenery and road (Fig. 5(e)), are
not obvious. From Fig. 5(f), we find that the vehicle ratio is higher in
New York City than in Hong Kong. In addition, we find that although
the greenery values are similar for both cities, diversity is higher in
Hong Kong (Fig. 5(g)). This results reflects that greenery is better
integrated into street space in New York City than in Hong Kong.

6.4 Street Explorer
Street Explorer is developed to enable the efficient comparison of
human-scale urban forms at street-scale (T.1.2). The explorer adapts
the same layout as that in the AOI Explorer, i.e., juxtaposition map
views are placed on the top of the explorer, whereas detailed statistics
view are on the bottom.

6.4.1 Street Map View
Similar to AOI Map View, Street Map View is also developed on
top of a background map layer that is implemented using Leaflet.js.
Street views on the street are over-viewed as points with colors that
correspond to primary features, i.e., green for greenery, light blue for
sky and orange for building. In contrast to AOI Map View, Street Map
View presents more details of human-scale urban forms by displaying
the corresponding street view images along the two sides of a street.
The images are evenly selected in the direction of the street heading.
In particular, the feature compositions of an image are displayed as a
tree map [35] when users hover their mouse pointer over the image. An
example is provided in Fig. 6(a).

6.4.2 Street Statistic View
The design goal for this view is to allow users to quantitatively compare
human-scale urban forms from two streets. Although we can utilize
the same views shown in the AOI Statistic View, our collaborating
domain expert SR is not satisfied. SR strongly recommended encoding
street layout information in the view, so that users can better leverage
their knowledge about streets to perform in-depth analysis. SR felt the
spatial information was not well integrated with the Street Map View.

Based on this goal, we experimented with a few alternative designs
and informally evaluated design prototypes with SR. For our first
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Fig. 7. Overview of the construction process for Street Statistic View:
(a) Construct minimum bounding box of the street network. (b) Rotate
the street network such that its bounding box fits in the rendering space.
(c) Plot themeriver style visualization within the rendering space. (d)
Enhance parallel coordinates with street layouts on both sides.

prototype, we designed some glyphs, such as a radial chart or tree
map, and directly overlaid the glyphs on the map view. The design
was aborted because isolating statistics on the two maps weakened
the effects of comparison. In addition, such a design easily generated
visual clutter, which requires redundant user interactions or clustering to
address. For the second prototype, we encoded street layout information
in a similar design as the AOI Statistic View. However, this method
was extremely difficult because the rendering space was fully utilized.

PCP with Street Layout. Inspired by [32], we ultimately develop a
design of a parallel coordinates enhanced with street layouts (Fig. 7(d)).
We elaborate the construction of this design as follows:
Bounding Box Construction (Fig. 7(a)). The first step is to construct a
minimum bounding box (MBB) of the street layout. We find the starting
(A) and ending (B) points, and generate a primary axis pointing from
A to B. MBB is generated as the minimum rectangle that contains all
nodes of the street network parallel with the primary axis.
Street Layout Rotation (Fig. 7(b)). Next, we rotate the street layout
such that MBB fits in the rendering space, i.e., A and B lay on the
top and bottom (or vice versa) sides of the rendering space, and the
rotated MBB lays in the center. In the case that MBB is wider than the
rendering space, the street layout outside the rendering space is clipped.
The rotation direction (clockwise or anticlockwise) is determined based
on the direction that produces the minimum rotation angle.
ThemeRiver Plotting (Fig. 7(c)). To fully utilize rendering space, we
plot a themeriver-style [17] visualization to show changes in feature
values along a street layout. Here, the themeriver is plotted in the
vertical instead of the traditionally horizontal direction because the
street layout is aligned along the y-axis after rotation. Next, given that
street views are sampled evenly along the street layout, we map the
street views equally onto the y-axis, i.e., y-values of the themeriver plot
reflects the relative positions of street views along the street layout.

We start plotting the themeriver visualization using the left side
of the rendering space as the baseline and calculate the upper bound
x-values for the greenery feature. The upper bound x-values of the
greenery layer are then used as baseline values for the next feature, i.e.,
sky. This process is repeated until all features are plotted. To support
better feature comparison, our system allows users to reorder feature
sequence by clicking on the feature layer of interest and shifting it to
the left side [4].
PCP Integration (Fig. 7(d)). The themeriver plot can be used as a
coordinate for the PCP. To enable comparison between two streets, we
integrate their themeriver plots into a PCP on left and right sides, and
the identified features are used as other coordinates. Each street view
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Fig. 8. AOI Map View compares spatial distributions of human-scale
urban forms in Singapore (left) and Greater London (right). Orange
points (buildings) are concentrated around the highlighted center area of
Greater London, i.e., City of London.
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Fig. 9. AOI Statistic View in coordination with Fig. 8 presents quantitative
measurements differences of human-scale urban forms in Singapore
(red) and Greater London (blue).

is conveniently presented as a polygonal line, which is colored as red
and blue for left and right street views, respectively. In addition, we
aggregate the feature values via binning techniques on left and right
sides of each feature coordinate to facilitate the visual comparison of
feature distributions.

Fig. 7(d) presents an example Street Statistic View. A first glimpse
at the two themeriver plots, we can find that the left street contains
more greenery, while on the right street people can see more sky. This
can be found in the distribution comparison on the greenery & sky
coordinates in the middle. Besides, we can also find that feature values
vary dramatically on the left themeriver plot, showing street views are
very different along the left street.

6.5 User Interactions
In addition to basic interactions in each view, StreetVizor also provides
a control panel (Fig. 1(a)) that enables:

• Multi-scale Navigation. To help users navigate effectively across
different scales, we develop city-, region- and street-panels. The
city-panel lists all four cities, i.e., Hong Kong, Singapore, Greater
London, and New York City. Users start navigation by selecting
a city. The region-panel will then list all administrative regions
under the city. For instance, City of London and Kingston will
be listed if Greater London is selected. Similarly, the street-panel
lists all the streets inside a selected city or region.

• Feature Filtering. Our system also supports filtering human-scale
urban forms against a specific feature by specifying the value
range with feature sliders. By default, each feature slide within [0
- 1], and users can change the minimum and maximum values by
dragging the slider buttons.

In addition, our system also supports the following user interactions
to facilitate visual exploration.

• Details on Demand. To enable overview+details (R.1), we de-
velop a set of interactions that allow users to explore the details
of human-scale urban forms on demand. For example, if a street
view point is selected in the AOI Map View, the correspond-
ing image will show up. Thus, users can leverage their domain
knowledge by visually examining street views.

• Linking. Our system supports automatic linking among the visu-
alization modules in both AOI Explorer and Street Explorer for

Fig. 10. Top three districts with highest building ratios, while bottom three
with highest greenery ratios in Hong Kong.

coordination across multiple views (R.2). For example, if a spe-
cific street view on the AOI Map View is selected, the cluster that
contains the street view in the scatterplot matrix and the diversity
views will be highlighted accordingly.

7 CASE STUDIES

This section presents three case studies on the application of StreetVizor
in assisting urban planners to explore and compare human-scale urban
forms on the city-, region-, and street-scales.

7.1 City-scale Comparison
Comparing Spatial Distribution. With the AOI Map View, our system
allows users to compare spatial distributions of human-scale urban
forms in two AOIs (T.1.1). Fig. 8 presents a comparison between
Singapore (left) and Greater London (right). As shown in the figure,
more orange points surround the highlighted white circle, whereas more
green points can be found at marginal areas in Greater London. This
indicates that more buildings are constructed around the City of London,
reflecting that this city is more urbanized compared with other areas. By
contrast, Singapore’s urban forms are evenly distributed. More orange
points are found in the highlighted downtown and region hubs, and
more green points can be found in natural areas. Our collaborator SR
explained the reason for the different spatial distributions of urban forms
in Greater London and Singapore: Greater London likely expanded its
urbanization from the City of London to surrounding areas, whereas
Singapore, as an island city, cannot expand.

Comparing Quantitative Measurements. We can further explore the
differences in quantitative measurements with AOI Statistic View (T.2.1
& T.3.3). Fig. 9 shows the AOI Statistic View in coordination with
Fig. 8. From the scatterplot matrix, we find that greenery and building
features are negatively correlated. This result is the same as that shown
in Fig. 5(d). Given that buildings are artifacts and greenery is natural,
the negative correlation between building and greenery features in all
four cities indicates that artifacts increase and natural environments
decrease with increasing urbanization. To improve livability, many
urban planners have proposed integrating more natural spaces in street
space. In addition, Fig. 9(a) shows that sky and building ratios are
higher in London than in Singapore. By contrast, greenery and road
ratios are higher in Singapore than in London (Fig. 9(b)). These findings
can also be found from the middle histogram bar charts. In addition, the
diversity views further show some interesting patterns. For example,
building and road diversities are more concentrated in London than
those in Singapore, as shown in Fig. 9(c) & (d), and likely resulted from
the different standards for building and road construction in the two
cities. Vehicle usage rates are low in both cities, as shown in Fig. 9(e).

7.2 Region-scale Exploration
Given that human-scale urban forms are highly associated with the
daily lives of residents, we posit that urban forms could reflect the
functionalities of a region. Study 1 already reveals the negative correla-
tions between greenery and building features, and we hypothesize that
these two urban forms can reflect urbanization levels. To evaluate the
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Fig. 11. Region-scale comparison of Tanglin in Singapore with Central
Park in New York City.

hypothesis, we further explore these two features at region-scale (T.1.1).
Using ranking functions, we sort administrative districts in Hong Kong
based on these two features. Fig. 10 presents an overview of three
districts with highest values for each feature. The top three districts are
Yau Tsim Mong, Wan Chai, and Kowloon City. They are all business
centers in Hong Kong, and we find these districts are mostly covered
by orange points (building). By contrast, the bottom three districts
contain highest values for greenery. In particular, the greenest district
is Southern Island, which is reserved as country parks. The other two
districts are also well-known natural areas in Hong Kong.

In addition to exploring regions with different functionalities, urban
planners are also interested in comparing regions with similar func-
tionalities. Here, we leverage our knowledge of famous regions in two
different cities, i.e., Tanglin in Singapore (see the region highlighted
as natural in Fig. 8) and Central Park in New York City. Both of
these regions are well-known parks. After selecting these regions, we
find that nearly all streets in the two regions are dominated by green
points, indicating that both regions contain considerable greenery as
intended. However, we find some differences between these two re-
gions by looking deeper into the Street Statistics View (Fig. 11). First,
through the feature histogram bar charts, we find that Central Park
has slightly higher greenery ratios (A1), whereas Tanglin has slightly
higher building ratios (A2). Though these differences are marginal,
they reflect that more buildings are present in Tanglin, partially because
Singapore tries to maximize land usage for building construction. In
addition, by grouping street views based on street units, we glean more
information from the diversity plots. Here, we first obtain the overview
that greenery feature has relatively higher mean values and deviations
than the other five features. We also find some anomalies. For example,
some streets have relatively low mean values but high deviations for
greenery in Central Park (B1), whereas certain streets have high sky
visibility in Tanglin (B2), and some streets have very high building
ratios in both regions (B3).

The results of this study show that human-scale urban forms are
correlated with regional functionalities. Meanwhile, even though two
regions may have the same functionalities, street spaces in regions can
be different between two cities. This may reflect the differences in city
planning and development strategies between cities.

7.3 Street-scale Comparison
Our collaborating domain expert SR is interested in comparing the fine-
grained details of two streets (T.1.2). StreetVizor meets this require-
ment with Street Explorer. Here, we select one street from Brooklyn,
New York City, and one from Kowloon, Hong Kong. Both streets are
representative streets of each district.

Fig. 12 presents the visual comparison of these two streets. The
map views provide an overview that nearly half of the street views
are mostly green (greenery), and the other half are mostly orange
(building) on the street from Brooklyn. By contrast, the street views in
Kowloon are mostly orange (building). We can observe more details
by looking at the street view images. As shown on the top images,
more greenery and sky with low buildings are seen in the left two

Fig. 12. Street Explorer compares the differences in human-scale urban
forms of two streets in Brooklyn, New York City (left) and Kowloon,
Hong Kong (right). The left street views contain more balanced features,
whereas the right street views are dominated by building and road.

images, whereas the right two images are filled with building and
road. The tree map of the leftmost image shows the street view is well
balanced with greenery, road, building, and vehicle features. Notice
that the street view is also highlighted in the bottom Street Statistic
View. More details on the quantitative measurements of street views
can be observed in the bottom Street Statistic View. The themeriver
plots clearly show differences in feature distributions: street views in
Brooklyn are more mixed with balanced greenery, sky, building, road,
and vehicle features, whereas street views in Kowloon are mostly filled
with building and road features. The histogram bars in PCP further
confirm this observation: most street views in Kowloon have less than
10% greenery and sky.

Though it is well known in the field of urban planning that New York
City is well integrated with natural features and that Hong Kong has
more high-rise buildings, SR is excited to see our system can present
these differences so intuitively. “Street Explorer can definitely improve
our work efficiency,” SR commented.

8 EXPERT REVIEW

To evaluate the effectiveness of StreetVizor, we conducted expert inter-
views with two independent domain experts other than our collaborating
senior researcher SR. One of them focuses on designing livable public
space (denoted as EA), and the other is an urban ecologist aiming at
improving greenery in cities (denoted as EB). Hence, the experts are
from different backgrounds: SR and EA in urban planning, while EB
in ecology. In the interviews, we started with explaining the visual
encodings and interface design, and demonstrated to them how our sys-
tem works. Then, we showed them the case studies, and allowed them
to explore the system by themselves for about twenty minutes in the
end. In general, both experts agrees that the way we study human-scale
urban forms with street view images is a promising direction. Their
detailed feedbacks are summarized below.

Methodology and Approach. EA agreed with SR that evidence-based
urban design is becoming a trend in urban planning. He commented,
“StreetVizor is far more than simply a visualization platform. Rather, it
is an excellent combination of machine learning and visualization tech-
niques, together with classical urban design theories in place-making”.
EB also expressed that “street view images as an emerging data source
can reflect urban environments well”, and a visual analytics system can
greatly facilitate the exploration of street views.

Interactive Visual Design. Both experts confirmed that StreetVizor is
nicely designed according to the problem domain. They appreciated
the visual consistency across different views. EA highlighted “it is very
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important to use the same colors in different views”. SR agreed the
workflow of ranking multiple AOIs/streets with Ranking Explorer, and
comparing two AOIs/streets for details through AOI and Street Explorer
is helpful. “It is easier for me to identify interested regions, such as
those in Hong Kong (Fig. 10)”, commented by SR. The AOI Explorer
is nicely designed with intuitive map and statistic views. In particular,
“the statistic view seamlessly integrates three easily understandable
plots”, commented by EB. By referring to the scatterplot matrix in
Fig. 5 & Fig. 9, EA was excited to see the negative correlation between
greenery and building − “there are much space to improve”. EA also
liked the visual comparison of human-scale urban form distributions
over space (Fig. 8), as it reflects the differences of urbanization process
and master plans in different cities.

The experts thought presenting street view images in the Street Ex-
plorer is intuitive, and mouse hover over to show tree map is helpful. In
contrary, it was difficult in the beginning for both experts to understand
the PCP enhanced with street layout information, especially the the-
meriver plot. But after exploration, they agreed it is an excellent idea,
as it clearly reveals the feature distributions along street. “Though not
common, I believe there are many applications and potentials for the
enhanced PCP”, commented by EB.

Applicability. Both domain experts would like to apply our system
to deal with practical problems in their domains. Expertized in urban
planning and design, EA emphasized “the lack of efficient tools for
human-scale management and design obstacles creating high-quality
urban streets.” StreetVizor has a great potential to be employed by
planners and designers to “build more pedestrian-oriented and livable
streets.” EA also commented “StreetVizor is highly applicable for
evaluating case studies in urban planning”. For example, planners can
select several key areas, e.g., CBDs, among different cities and then
compare their spatial features to develop appropriate strategies in urban
renewal. EB would like to apply our system in environment monitoring,
since “the large amount of GSV images can provide rich information of
urban environment”. He suggested to extend our system in exploring a
time-series street view dataset, so that it would allow him to monitor
environment changes.

Limitations and Improvements. The experts pointed out some limi-
tations in our system. In this work, we explore only six features of
human-scale urban forms. Both experts suggested to extract more urban
forms, such as aesthetic amenities and mental well-being, from street
view images. This will advance our system’s analytical capabilities and
extend its applicabilities. For instance, a recent study [21] shows that
certain relationship may exist between street greenery & sky ratio and
the risk of health challenges. Besides, they proposed to improve our
visual designs. EB noticed the feature histogram bars in AOI and Street
Statistic View are designed differently: one in horizontal, and the other
one in vertical style. He felt the vertical histogram bars are confusing,
as they “do not fit our work habits”. EA suggested the Street Statistic
View can be further improved, by “encoding neighboring street layouts
in the plot”, to reflect spatial information better.

9 DISCUSSION

In this work, we combine automatic machine learning and interactive
visual analytics techniques to explore human-scale urban forms. The
combination of methods tackles the challenges of integrating informa-
tion from multiple perspectives and at different scales for analysis. This
approach is attractive for urban planners [25, 26] because it shows the
possibility of transferring traditional subjective and intuitive-oriented
urban design to evidence-based and big-data informed methods.

The analysis of human-scale urban form in this work relies heavily
on a deep learning technique for image classification. Therefore, classi-
fication accuracy poses serious challenges in our approach. We select
SegNet, which achieves a global accuracy of 82.8%, out of the different
classification techniques that we tried. The case studies show that the
classification technique could provide reasonable analytical results on
city- and region-scale human-scale urban form patterns. Nonetheless,
the results remain unsatisfactory in many cases, especially when users
would like to examine fine detailed urban forms at street-scale. We

envision applying a more advanced classification algorithm in the near
future, given the rapid evolution of image classification techniques. In
addition, the classification is preprocessed offline. Our system does
not support the analysis of street views queried on runtime. Thus, its
applicability is limited and domain knowledge of planners are underuti-
lized in exploring street views in other cities. This deficiency can also
be resolved with advancement in image classification algorithms and
machine computing capabilities.

Moreover, we expect that our system will face scalability issues
when the number of street view images increase (e.g. when analyzing
street views in more cities). To tackle this problem, we can integrate
more advanced data structures, such as nanocubes [23] or Gaussian
cubes [40] for spatial data querying. More levels of detail and abstrac-
tion can also be introduced to handle this problem. The increase in
image number will also burden street view clustering in the interactive
exploration process. We anticipate that certain pre-configurations will
facilitate this process.

Presenting multivariate data with spatial information is challenging.
We tackle this challenge by integrating popular PCP with a themeriver
plot along an adjusted street layout. The case studies and feedbacks
from experts demonstrate the effectiveness of this design. Nonetheless,
there are some issues with our design. First, it represents street layout
as a simple spline, which is not sufficiently intuitive when the street
is straight. We plan to encode more semantic labels, such as neigh-
boring streets, in the design, as suggested by EA. Second, although
the majority of the streets (over 95%) that we have explored can be
rotated and fitted in the rendering space, adjustment does not work in
some cases. Typical examples are streets in a spiral layout. A more
general approach should be developed that can reveal the street layout
intuitively and seamlessly fit the street layout in the rendering space.

10 CONCLUSION AND FUTURE WORK

In this paper, we introduce StreetVizor, a visual analytics system for
the exploration of human-scale urban forms based on GSV images.
Through discussions with a collaborating researcher who specializes in
evidence-based urban planning, we identify various analysis criteria and
formulate a set of analytical tasks. We integrate some well-estimated
visualization techniques, such as juxtaposition map views, scatterplot
matrix, and small multiples, into our system. Specifically, we design
an enhanced parallel coordinates with street layout to present coor-
dinated feature values and reveal feature distributions along a street
layout. StreetVizor is used to analyze ∼1.7 million street views from
Hong Kong, Singapore, Greater London, and New York City. Using
our system, domain experts detect some interesting patterns, such as
the negative correlation between greenery and building features. The
experts also agree that our system has a wide range of applications, in
areas like public space design and street environment monitoring.

There are several promising directions for future work. First,
we would like to extract more high-level information, such as sign-
boards, from GSV images. The signboards can then be compared with
points-of-interest information extracted from other data sources, e.g.,
Foursquare or Google Places. We anticipate revealing some interest-
ing patterns by fusing multiple types of big urban data. In addition,
to address the scalability issues, we plan to develop more advanced
data structures (e.g., [23, 40]) to improve the querying and filtering
processes in our method. Besides, we would like to explore new visual
interfaces to compare detailed statistics of human-scale urban forms
across multiple AOIs/streets at the same time.
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