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Cascade Prediction of WeChat Articles
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Abstract—Social media, such as Facebook and WeChat, empowers millions of users to create, consume, and disseminate online
information on an unprecedented scale. The abundant information on social media intensifies the competition of WeChat Public Official
Articles (i.e., posts) for gaining user attention due to the zero-sum nature of attention. Therefore, only a small portion of information
tends to become extremely popular while the rest remains unnoticed or quickly disappears. Such a typical “long-tail” phenomenon is
very common in social media. Thus, recent years have witnessed a growing interest in predicting the future trend in the popularity of
social media posts and understanding the factors that influence the popularity of the posts. Nevertheless, existing predictive models
either rely on cumbersome feature engineering or sophisticated parameter tuning, which are difficult to understand and improve. In this
paper, we study and enhance a point process-based model by incorporating visual reasoning to support communication between the
users and the predictive model for a better prediction result. The proposed system supports users to uncover the working mechanism
behind the model and improve the prediction accuracy accordingly based on the insights gained. We use realistic WeChat articles to
demonstrate the effectiveness of the system and verify the improved model on a large scale of WeChat articles. We also elicit and
summarize the feedback from WeChat domain experts.

Index Terms—Visual reasoning, propagation prediction, model understanding, information propagation visualization
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1 INTRODUCTION

W EChat1, which is a new type of social networking
service, has already become ubiquitous in the daily

mobile communication of the Chinese. Reports2 indicate
that by the end of March 2018, WeChat had approximately
1,040 million monthly active users. In addition to its typical
functions, such as direct messaging, WeChat allows indi-
viduals and organizations to register official accounts for
publicizing articles (i.e., posts). Reading and sharing articles
have become important activities of WeChat users.

Predicting the ultimate popularity of WeChat articles is
important. First, the abundant information on WeChat in-
tensifies the competition of articles for gaining user attention
due to the zero-sum nature of attention. Therefore, only a
small portion of information becomes extremely popular,
whereas the rest remains unnoticed or rapidly disappears.
For example, statistical results show that, although 1.5 mil-
lion articles are generated each day, only 0.07% of the total
articles are shared over 10,000 times. Popularity prediction
allows WeChat to rank articles for recommendation pur-
pose, discover potential trending articles, and improve its
social recommendation applications. Second, articles with
anomalous behaviors and purposes can be potential threats
to the online communication system. WeChat needs to trace
the spread of articles, make decisions, and act at an early
stage before a large popularity propagation to control the
spread of rumors. Third, predicting the future trend of
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articles allows understanding of the factors that influence
the popularity of the articles, gaining insights into collective
behaviors, and carrying out efficient advertising campaigns.

A team of experts from WeChat conventionally applies
feature-based models [1] to estimate the probability of large
propagation for each article and mark articles with a pre-
dictive final propagation size greater than a predetermined
threshold. However, shortcomings are inherent in the ap-
proaches used at present. (1) Demanding Feature Engi-
neering. For the feature-based models, an exhaustive set of
potentially effective features and even their weights need to
be extracted and determined to predict the future growth
of information propagation. However, feature engineering
can be costly and cumbersome because it consumes a large
number of articles to capture the necessary features and
construct the training/testing set. Moreover, given that nu-
merous and diverse accounts and articles constantly appear,
new features may emerge, and the weights of existing ones
may change. (2) Binary Classification. Most feature-based
models consider propagation prediction as a classification
problem, in which a predefined threshold is required to
define the so-called “viral” articles. Therefore, they only
provide a one-time finding and are thus coarse-grained for
further analysis. (3) Lack of Sensitivity. The predetermined
threshold is based on a selected time window of the input
propagation historical data. This empirical choice is ques-
tionable because not all final “viral” articles exhibit “viral”
properties in the fixed time window, and not all predicted
“viral” articles are truly “viral” after a certain observation
period. (4) Skepticism about Performance. Most feature-
based models involve demanding diagnosticity that causes
difficulty in understanding the model mechanism, which
may affect prediction results; consequently, improving pre-
diction accuracy is also difficult. For example, when the pre-
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diction and the truth do not match, the problem is difficult
to identify, “it is a black box to analysts who don’t understand
the constraints of the inside mechanisms and how to employ
it appropriately” [2]. On the contrary, point process-based
models [3], [4], [5] directly model an individual’s behavior
and the formation of an information cascade in a network
and then aggregate the effects of the individual to make a
prediction; thus, they are more light weighted, and their
principle is bottom-up. Unlike the feature-based models
that merely use features in classifiers to conduct a one-time
finding of future growth, the point process-based models
can reflect a consistently updating status of propagation
trend in real-time online settings and are therefore more
fine-grained for detailed propagation analysis.

Although point process-based models improve the di-
agnosticity better than feature-based models, more efforts
are directed to parameter tunings of the inner mechanism
to obtain a better prediction result [5], [6]. Visualization is
recently applied to understand the involved information
propagation, diagnose a predictive model mechanism, and
provide visual evidence to support or refute conclusions [7],
[8], [9], [10], which are theoretically and practically im-
portant for experts. However, designing an effective visu-
alization for predictive models in WeChat article scenario
is technically and empirically challenging. First, the large
amount of sharing records of articles are multidimensional,
thereby presenting difficulty in organizing and visualizing
them. Second, unfolding the inner mechanism requires dif-
ferent levels of efforts because it may involve extracting
different sets of parameters. Even experienced technical
experts need to spend considerable time on the inevitable
trial-and-error process to indicate appropriate parameters
for those growing sorts of WeChat articles, such as breaking
news and entertainment, for everyone, in contrast to science
that exhibits various manifestations of propagation patterns.
Third, few empirical studies have been conducted on the
extent to which the gained visual insights can be leveraged
to reshape the improvement of prediction accuracy and
further enhance the understanding of the reasons behind
different prediction results.

In this study, we explore how visualization assists in
evolving the domain experts’ “conversation” [11] with a
point process-based model. We first review their conven-
tional approaches to propagation prediction, abstract the
needs, and find that a point process-based model, SEIS-
MIC [5], is preferable. In consideration of the affordance
and inadequacy of the model, we propose a novel visual
reasoning approach to help refine the parameters that are
conventionally trained automatically in a unified setting
across articles and derive factors that may lead to varied
prediction results of different articles. The visual reasoning
approach summarizes the learned rules by moving the
snapshot on the time window of the article’s historical data
to predict future growth. Our visual approach can lead to
a better prediction result than the original SEISMIC model.
Representative real-world case studies, expert interviews,
and quantitative experiments are utilized to evaluate our
approach. We summarize the major contributions as follows:

• We study and enhance a point process-based model
for an improved prediction result.

• We design a visual reasoning system to support
communication between the experts and the point
process-based model and derive the reasons for the
different prediction results of WeChat articles.

• We verify the efficacy of our proposed method by
conducting a quantitive study in comparison to the
original model on a large collection of WeChat ar-
ticles to support the explainability of the generated
results.

2 RELATED WORK

The literature that explores several aspects that overlap with
those discussed in this work can be sorted into three cat-
egories, namely, information popularity prediction, visual
analytics of information propagation, and predictive visual
analytics on social media.

2.1 Information Popularity Prediction
Researchers have deciphered the secret of information pop-
ularity by analyzing the information diffusion character-
istics on some famous microblogging platforms, such as
Facebook, Twitter, and Weibo [12], [13], [14], [15], [16]. These
works have set a theoretical foundation and stimulated the
blooming of research thereafter. With the increase in social
media users, the prediction and analysis of the information
popularity of web contents have gathered a large number
of researchers, and many prediction models for analyzing
different sources of web contents have been proposed in
recent years [17], [18], [19], [20], [21].

One type of the pioneering popularity prediction meth-
ods is based on features, which extracts an exhaustive list
of potentially relevant features. For example, Bandari et al.
predicted the popularity of web contents prior to their re-
lease by utilizing features derived from article properties as
predictors [22]. Can et al. incorporated image-, content-, and
structure-based features for prediction tasks [23]. Cheng et
al. addressed cascade prediction problems by studying the
features of post content, network structure, and temporal
evolution [24] and leveraged different learning algorithms,
such as regression models [24], content-based models [25],
and regression trees [26]. These approaches encounter labo-
rious feature engineering and extensive training. In other
words, feature quality affects model performance [22].

Another category of approach is the point process-based
model, which directly studies the information cascade for-
mation in a social network [3], [4], [5]. Most of these models
are developed to infer the social network structure over
which the cascades propagate [27], [28]. In this study, our
goal is to predict the final cascade size. We improve a
well-established point process-based model, SEISMIC, in
WeChat scenario. Unlike the original model, our approach
can predict the final popularity in a more flexible and
reliable manner for various types of WeChat articles.

2.2 Visual Analytics of Information Propagation
The merits of visual analytics, such as providing insight
and understanding of information propagation, have been
studied for years [29]. Li et al. investigated how information
propagation in a specific microblogging platform evolves
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to identify relevant patterns and understand the dynamic
attributes of information propagation and the underlying
sociological motivations [30]. Chen et al. proposed D-map to
explore the diffusion of information on social communities
in Sina Weibo [31]. Lu et al. presented a visual analytic
framework for event cueing using media data [32]. Zhao
et al. presented FluxFlow to study the spread of anomalous
information in social media [33]. They leveraged machine
learning algorithms to detect anomalies and offered novel
visual designs to depict the detected threads for a deep
analysis. Wu et al. introduced OpinionFlow to enable analysts
to detect opinion propagation patterns [34]. In short, special
designs, such as map-like [31] and river-like techniques [33],
[34] have been proposed to describe the characteristics
of propagation properties and the involved messages and
users [35].

However, these visual analytic systems mainly target
information diffusion and visualize the output of the un-
derlying models. In this study, target users are involved in
exploring the predictive model, and we mainly focus on the
predictive analysis of cascades rather than the information
propagation analysis.

2.3 Predictive Visual Analytics on Social Media

Although researchers have considerably contributed to the
predictive analysis by either proposing different models or
adopting effective features, a gap remains toward a fully
reliable model. Thus, how to distinguish and make choices
among them and to understand the mechanisms remain
open problems [36], [37].

With the understanding of existing behaviors, visual an-
alytic systems help predict future information trends based
on an underlying trained model, derive insights by using
visualization techniques, or visually verify prediction re-
sults [35]. For example, Mühlbacher et al. provided a survey
of frequently used algorithms and discussed possibilities
to enable user involvement in ongoing computations [38].
Yeon et al. combined the contextual similar cases in the
past to predict and visualize event evolution patterns [39].
Their approach combines with a prediction model and visu-
alization. Other visual analytic approaches rely on either the
temporal relevant past events [40], [41], [42] or spatially cor-
related activities [43]. Few works have addressed predictive
analysis in the context of visual analytics [44]. Integrating
interaction and visualization tightly in predictive analysis
remains challenging [35].

A partition-based framework for building and validating
regression models is proposed to address such limitations
as the selection of input variables, i.e., feature subset se-
lection [45]. Relationship structures are qualitatively visu-
alized, and their relevance to feature ranking is quantified.
Similar to this approach, we also conducted a “step-wise”
identification of a regression model. However, in this study,
we do not target feature/parameter selection problems but
visually reason the value ranges of the studied parameters
in the predictive model for different WeChat articles. Thus,
we can flexibly obtain a reliable prediction result toward
different types of articles.

3 BACKGROUND AND PRELIMINARY STUDY

3.1 Propagation Process of WeChat Articles

WeChat Official Account Platform serves as the main source
of articles for publicizing, reading, and sharing articles.
Subscription accounts are often used similarly to daily news
feeds because they can push one or several new update(s) to
their followers every day. The update(s) can contain a single
article or multiple articles bundled together. Users may
subscribe to as many accounts as they like. All subscrip-
tion accounts are placed together in a subscription account
folder on the timeline of users. The information cascade of
articles in WeChat often follows the ensuring process, i.e., an
account publishes an article (Fig. 1 (a)). The followers who
read this article may opt to share it, their respective sets of
followers will be exposed to this article, and the cascade
continues. In WeChat platform, apart from sharing articles
on users’ Moments (similar to the Facebook timeline) (Fig. 1
(b)), articles can also be shared to a specified friend or a
group of friends via direct messaging (Fig. 1 (c)). All the
WeChat articles we studied are “posts”; hence, we refer to
the terms of “posts” and “articles” interchangeably.

Fig. 1. (1) A list of subscription accounts publish articles like a daily news
feed; (2) WeChat users share the articles on their Moments; (3) WeChat
users can choose to share the article via multiple channels, such as
private chatting, group chatting, Moments or adding to favorites.

3.2 Experts and their Conventional Practice

We collaborate with three experts from WeChat, including
two data scientists (E.1-2) and one business manager (E.3),
for three months. They have provided the rule of thumb to
define the “final” propagation of a certain WeChat article.
According to their statistics, 95% of WeChat articles cannot
propagate beyond three days. Therefore, suggested by the
experts, we set one week from an article’s publication as its
final propagation size.

E.1-2 are mainly responsible for the information cascade
research on WeChat articles. They examine whether the
current propagation of a particular article meets the criteria
to form a viral propagation. Considering the requirements of
generalization and running time, they need to make a trade-
off between selecting features and preserving or improving
the discriminative capability of the classifier. They focus on
the following three categories of features: (1) Article Infor-
mation. This category contains the basic information of the
WeChat article, including the article length, the posted time,
and the number of the subscribers of the article’s publisher.
(2) Sharing Activities. This category mainly includes the
percentage of the “first-level nodes” (nodes that directly
reshare articles from the root node) within the firstX shares,
the total number of friends of the first X shares, the number
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of reads of the articles when they reach the Xth share,
the number of users who share by direct messaging, and
the number of users who share by posting on Moments.
(3) Sharer Information. “Sharer” is defined as the one
who shares the article. The aggregation of the sharers, such
as the age distribution, the gender, and the geographical
distribution, reflects the aggregation degree of the sharers.
Given the training set of first X shares of M articles, the
prediction task is to determine whether each article will
achieve the median final cascade size of all M articles. They
then apply classification models, such as SVM to select the
possible articles that may propagate virally. Eventually, E.3
combines the analysis and observation of E.1-2 to determine
and promote the articles that should be monitored.

Although feature engineering can improve the perfor-
mance of classifiers, the team encounters the following diffi-
culties when engaging it to the practical scenarios: (1) Sensi-
tivity. Feature-based models typically treat cascade predic-
tion as a classification problem, which defines “thresholds”
that differentiate “viral” articles. However, these “thresh-
olds” are attained on the basis of a fixed time window of the
historical data of input propagation from various articles,
and they may be insufficiently sensitive to the propagation
prediction task for a certain type of article. In other words,
the current setting cannot capture the temporal information
of the sharing process, which may vary across different arti-
cles. (2) Flexibility. The collaboration with WeChat enables
us to learn that three main propagation patterns exist in
typical article cascades: (a) Immediate Outbreak. Such arti-
cles as breaking news or high-quality articles may experi-
ence a sudden increase. (b) Rise and Recession. Articles that
mainly propagate through Moments and Group Chatting
may have relatively lengthy lifecycles. (c) Wave-like Persistent
Propagation. Such articles as superstition-related topics may
propagate in this manner. Sweeping all types of articles
in one unified setting will not allow adaptive thresholds.
(3) Diagnosticity. The mechanism of feature-based models
is usually difficult to understand. Consequently, prediction
accuracy is also difficult to improve, and the factors that
may affect prediction results are difficult to determine.

We determine that a “simple and principle bottom-
up” [5] model of cascade behaviors is preferable to re-
solve the above-mentioned issues. A well-established point
process-based model, SEISMIC, has recently been proposed
to predict the final size of shares for a given tweet [5]. This
model enables infectiousness to vary over time, which indi-
cates that infectiousness can decrease as the tweet content
becomes stale. Moreover, whether the current cascade is in
a “supercritical” or “subcritical” state can be identified. A
cascade is exploding if it is in the “supercritical” state, and
its final size cannot be predicted. By contrast, the final size
can be predicted by using the Galton-Watson tree [46] if the
cascade is in the “subcritical” state. We approach the issue of
the cascade prediction of WeChat articles as a regression task
and opt for the SEISMIC model on the basis of the following
merits: (1) Generality. A complete social network structure
is usually difficult to obtain and handle, especially for
WeChat that involves billions of nodes and edges. SEISMIC
only assumes minimal knowledge of the network, namely,
limited history of shares and degrees (number of friends)
of the sharing nodes; thus, costly feature engineering is not

required. (2) Scalability. SEISMIC requires computational
time only linear in the number of observed shared of each
article; therefore, this model can easily provide immediate
feedback on each individual article prediction. (3) Accuracy.
As shown in [5], this model is more robust and accurate
than the time-series linear regression and the two other
point process-based methods, i.e., dynamic and reinforced
poisson models, when applied to tweet data. In the follow-
ing subsections, we briefly introduce the SEISMIC model to
understand its affordance and inadequacy when we apply
it to predict the cascade size for WeChat articles.

3.3 SEISMIC Model

The goal of SEISMIC is to predict the final propagation
size R∞ of an article. Important variables of SEISMIC are
Rt, i.e., the total number of shares of a given article up to
time t, and λt, i.e., the current spread rate (intensity) of the
cascade. SEISMIC introduces two important components,
namely, infectiousness pt and human reaction time, to deter-
mine the spread rate λt of the cascade. (1) Infectiousness.
SEISMIC assumes that each article has a “time-dependent,
intrinsic” [5] infectiousness parameter pt, which represents
how likely an article will be shared at time t. (2) Human
Reaction Time. Human reaction time models the delay
between an article being posted to a user (e.g., appearing
in the user’s feed) and the time when that user shares that
article. This factor is modeled as a “probability density”
φ(s) (i.e., memory kernel [47]), where s is the time difference
between the current time and the share’s initial post time.
With the two components, the article’s intensity λt that
represents the probability of obtaining a share at time t can
be calculated as

λt = pt ·
∑
ti≤t

niφ(t− ti), (1)

where ni is the degree of node i (i.e., users that can see share
i). Therefore, the likelihood that share i occurs at ti is given
by

P (ti|t1, ..., ti−1) = λti · exp(−
∫ ti

ti−1

λsds). (2)

The total likelihood is:

P (Rt = r, t1, ..., tr) =

Rt∏
i=1

λti · exp(−
∫ t

t0

λsds), (3)

whereRt is the current number of shares. The infectiousness
pt can be estimated by maximizing the likelihood as

pt =
Rt∑Rt

i=1 ni
∫ t

ti
φ(s− ti)ds

. (4)

The denominator can be interpreted as the “effective” num-
ber of exposed users, denoted as Ne

t . The mean degree of
the network is represented as n∗ = (1/R∞)

∑R∞
i=0 ni, and

SEISMIC assumes that node degree {ni} is independent
and identically distributed with mean degree n∗. 1/n∗ is
the infectiousness as t→∞.

After infectiousness pt is calculated, the final propaga-
tion size can be predicted. Let Zk be the number of shares
in the kth generation descendants. The final sharing count is
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Fig. 2. In SEISMIC, the cascade up to time t is observed and we predict
how the cascade tree will grow in the future. Zk denotes the number of
shares caused by the kth generation descendants.

simply Rt +
∑∞

i=1 Zk (see Fig 2). The final propagation size
according to probability theory is

R∞ = Rt +
pt(Nt −Ne

t )

1− ptn∗
. (5)

SEISMIC adopts two evaluation metrics to measure the
accuracy of the prediction model. (1) Absolute Percentage
Error (APE). Given an article w and a prediction time t, this
metric is defined as

APE(w, t) =
|Pre∞(w, t)−R∞(w)|

R∞(w)
. (6)

(2) Breakout Article Coverage. Large cascades are usually
important to real-world business; hence, predicting whether
the final cascade size of an article is within the top M of all
articles will be useful. In this study, we collect a ground-
truth list of top 100 articles ranked by their final size. We
also produce a predicted top 100 list based on our methods.
We then evaluate the methods by quantifying the degree of
overlap between the predicted top 100 list and the ground-
truth top 100 list. We adopt the two evaluation metrics
to conduct performance comparison between SEISMIC and
our approach (Subsection 5.3).

3.4 Preliminary Study
In this subsection, we conduct a preliminary study to com-
pare the performance of a feature-based model, i.e., SVM,
and SEISMIC on predicting the propagation popularity of
WeChat articles. We measure the median accuracy explained
in Subsection 3.2, i.e., for a certain threshold X , we calculate
the prediction results, classify them to be either below or
above the median value, and compare them with the final
actual results.

We randomly collect 7509 articles that were published
during the first week of March 2016 and obtain their shar-
ing histories until the first week of April 2016. We have
three main tables, namely, sharing, reading, and user. The
sharing table consists of the sharing activities of the articles,
including article id, user id, sharing timestamp, and article
post time. The reading table includes article-reading activity.
This table has similar columns to those of the sharing table.
The user table consists of the demographic information of
WeChat users who are involved in the sharing and reading
activities. We also have information about article publishers,
such as the number of subscribers.

We run SVM for thresholds X = 200, 300, 500, 800,
1000. X is the number of shares we have observed. We
use cross-validation to measure the accuracy in predicting
whether an article will reach the median cascade size. We
then implement SEISMIC using the exact same parame-
ters, including φ(s), pt, n∗, and apply it to our dataset.

The results are shown in Table 1. The median accuracy
of SEISMIC is mostly higher than that of SVM. Without
feature engineering, SEISMIC can at least achieve a good
performance in cascade size prediction as the feature-based
SVM considering that we only leverage the same parameters
in the original SEISMIC.

TABLE 1
Median accuracy comparison of SVM and SEISMIC for threshold X =

200, 300, 500, 800, and 1000, respectively.

X # of articles CV of SVM CV of SEISMIC
200 886 75.2% 75.0%
300 665 75.1% 79.0%
500 441 77.0% 77.2%
800 292 73.9% 78.0%
1000 241 73.1% 73.3%

3.5 Model Enhancement
In this subsection, we identify key observations when apply-
ing SEISMIC to predict WeChat article final size and propose
our approach to enhance the original SEISMIC model.

Identifying Article Infectiousness pt. SEISMIC intro-
duces a correction factor α on the estimated infectiousness
to account for the information becoming stale and outdated.
α decreases over time t and scales down the estimated
infectiousness in the future. This correction factor α is
obtained via minimizing the average APE of a predefined
trained tweet dataset. The variable α that decreases over
time would inevitably lead to a “supercritical” state. How-
ever, in WeChat scenario, the infectiousness of articles varies
because articles exhibit various propagation patterns. There-
fore, the way to scale down the estimated infectiousness
for future propagation should be strongly relevant to the
property of the article itself. In other words, we should
define a scaling factor to adjust infectiousness on the basis
of the current propagation data of each article.

Many factors may affect article infectiousness, such as
the article quality, the network structure, the current times-
tamp and the geographical locations of sharing users [5]. We
leverage the propagation speed as

pst = (Rt+1 −Rt)/Rf (7)

to scale the estimated infectiousness, where pst is the prop-
agation speed at timestamp t, and Rt+1, Rt and Rf are
the cumulative popularities at time t + 1, t and final size,
respectively. Unlike SEISMIC that uses an always decreas-
ing α over time to scale down the infectiousness, we use
propagation speed to adjust the original infectiousness at
timestamp t, i.e.,

p′t = (pst − psmin)/(psmax − psmin) ∗ pt (8)

on the basis of the observations of some cascades of WeChat
articles. In contrasts to tweets, articles are not necessarily
stale over time; they may break out after some time.

Estimating Mean Degree n∗. In a point process-based
model with constant infectiousness pt ≡ p, a transition
exists at a critical threshold p∗. Therefore, (1) If p > p∗,
then Rt → ∞ as t → ∞ (This condition is called the
supercritical regime); (2) If p < p∗, then suptRt < ∞
(This condition is called the subcritical regime) [46]. SEISMIC
defines the critical infectiousness threshold p∗ as p∗ = 1/n∗,
the reciprocal of the mean degree.
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Fig. 3. One-day sharing activity of a WeChat article which is about the release of the name list of “double first-class” university in China. The
left figure shows that the propagation first increases dramatically and then quickly decreases (see the histogram of sharing count). The article
infectiousnesses of SEISMIC and WeSeer (introduced later) are estimated and compared (see infectiousness curves). The right figure shows that
the APEs of SEISMIC and WeSeer at each timestamp, the predictions of final propagation size of SEISMIC and WeSeer, and the true final size
(“GroundTruth”). “Observed” curve plots the cumulative number of observed shares by a given time.

The collaboration with WeChat enables us to learn that
the mean degree n∗ of WeChat network is 140. However,
adopting this fixed value as n∗ for every article propagation
prediction is far from adequate: (1) Overlap of Users’
Friends. SEISMIC assumes that the friends of a user do
not overlap with the friends of other users; however, when
an article propagates over time, numerous users are actu-
ally exposed multiple times. (2) Sharing Probability. Some
WeChat articles may cover a large scope of the underlying
social network, whereas others may fail to penetrate a
certain community of the network. Users may also have
totally different tastes toward different types of articles,
i.e., the sharing probability of WeChat users is different.
Therefore, estimating an appropriate mean degree of the
underlying social network in different propagation stages
is indispensable for an accurate prediction. Besides, when
the infectiousness pt is larger than 1/n∗, the point process is
“supercritical” and stays explosive, which does not exist in
real-world propagation. Therefore, we adopt the previously
speed-adjusted article infectiousness p′t to bound the search-
ing space of an expected mean degree. With the bounded
searching space n∗t = 1/p′t, an appropriate mean degree
can be estimated at different propagation stage.

Unlike the original SEISMIC, which only utilizes the
instantaneous propagation information at the current times-
tamp and does not leverage the historical data that cover
from the beginning to the current timestamp, our enhance-
ment, i.e., using propagation speed to adjust article in-
fectiousness and further bounding the searching space of
the mean degree at each timestamp, fully leverages the
information of “what we have seen so far” and makes the
utmost of the historical propagation data. Fig. 3 shows the
first 24 h of the sharing activity of a popular article and the
results of SEISMIC and our approach, WeSeer (introduced
later). SEISMIC fails to give a prediction result until 2 h. At
the 150th min, the prediction is high and inaccurate (APE
is about 3.5), although it later gives a good estimation of
the final size. By contrast, WeSeer rapidly finds an accurate
estimation of the final cascade size in only 20 min.

3.6 Experts’ Needs and Expectations

We interview the experts (E.1-3) to identify their primary
concerns and potential obstacles in their path regarding
SEISMIC performance. At the end of the interviews, the

need for a visual reasoning system to ground the team’s
conversation [48] with SEISMIC emerges as a key theme.
Despite the differences in individual expectation for such a
system, certain requirements are expressed across the board.

R.1 Identifying effects of article infectiousness and
mean network degree on final prediction results. E.1-2 are
interested in knowing how articles with different infectious-
ness propagate in the underlying social network and how
the model responses and returns a prediction result. A clear
visual cue of the best parameters of the predictive model
should be displayed, i.e., the effects of the infectiousness
and the mean network degree should be intuitively studied.
A comparison of the outcomes should also be provided to
understand the mechanism of the predictive model.

R.2 Visualizing the propagation statistics and indi-
vidual activities. E.2 indicates that the statistical changes,
e.g., pace and volume, of the propagation process of the
articles throughout the observation period should be easily
observed to identify the relationship between sharers’ prop-
erties and the propagation prediction results. An intuitive
and clear view should be provided to observe individual
activities that may contribute to prediction outcomes for
identifying their roles in article propagation process.

R.3 Interactively Filtering Interesting Timeframes. His-
torical sharing activities occur within different timeframes.
Hence, interaction should be provided to select the inter-
esting timeframes for a comparative investigation to further
understand the factors that may affect prediction results.

4 WORKFLOW AND VISUAL DESIGN

Fig. 4. Workflow of the proposed visual reasoning approach.
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Fig. 5. Prediction view: (a) Identifying the article infectiousness: (1) Propagation speed within a one-day time period. (2) Immediate propagation
volume (purple area) and cumulative propagation volume (pink area) for the remaining propagation time period. (3) The original infectiousness
(green line) and the new infectiousness (blue line) adjusted by the propagation speed. (4) Detailed comparison by zooming in the highlighted area
in (3). (b) Users can initialize a value of mean degree and the system will automatically bound the values of mean degree at each timestamp. Three
versions of prediction (i.e., by WeSeer, new infectiousness and SEISMIC) will be generated. User interactions will be reserved by faded curves.

4.1 Workflow and Data Processing

We design the workflow (Fig. 4) according to the experts’
analysis process and partition it into three integral mod-
ules: the data processing module, the back-end enhanced
model (i.e., the data analyzer module), and the front-end
interactive interface (i.e., the visual reasoner module). In
this section, we first introduce the data processing module,
and we then present the visual reasoning system WeSeer in
detail. The enhanced model can be referred to in Section 3.5.

In this paper, we use one-day historical propagation data
to predict the final propagation size of articles. However, we
can easily modify this setting in accordance with the scale
of the historical propagation data we have. We unevenly di-
vide the one-day time period into n consecutive timeframes
(t1 =0˜10 min, t2 =10˜20 min, ..., tn =1200˜1440 min) based
on the suggestions of the domain experts and then arrange
the propagation data in the following aspects: D.1 Sharing
History: We arrange the historical propagation data within
each time window ti as a list, i.e., resti = [res1, res2, ...].
The sharing data in each time window have the follow-
ing format: fromuid (parent user ID), touid (current user
ID), fromtype (parent propagation channel), totype (current
sharing channel), and the current sharing timestamp; D.2
Involved Users’ Out-degree: The out-degree degu is defined
as the number of friends of a user u. For all users, we
have degu = [degu1

, degu2
, ..., degun

] in each timeframe;
D.3 Involved Users’ Properties: We extract the basic infor-
mation of the users in each timeframe, such as gender, age,
geographical information, and friend number. D.1-2 serve as
the input for the predictive model (Prediction/Exploration
View) and D.3 facilitates the exploration of the inherent
information of the involved users (Propagation View).

4.2 Visual Design

We develop a visual reasoning system, WeSeer, which con-
sists of four views to help experts understand the model
mechanism and the reasons for the propagation prediction
result. The information view shows the basic information of
the studied WeChat article and its publisher. The prediction
view, the exploration view, and the propagation view help
experts understand the underlying model and reason the
prediction results. Once the team determines how visual
reasoning can streamline their analysis, they can further ap-
ply their domain knowledge to improve prediction accuracy.

4.2.1 Prediction View
Prediction view provides comprehensive visual summary
and understanding of the model mechanism, which vi-
sualizes the article infectiousness during the observation
period and allows users to interactively fine-tune the model
parameters in the bounded searching space of a reasonable
mean degree. The target is to understand and compare the
effects of article infectiousness and mean degree, thereby
acquiring initial insights into the model.

Visual Encoding for Speed-adjusted Article Infectious-
ness. As discussed in Subsection 3.5, a reasonably varying
infectiousness accounts for the phenomenon that the article
is becoming stale and outdated. We use the propagation
speed to adjust the article infectiousness (R.1, R.2). As
shown in Fig. 5 (a) (1-2), we use deep blue to represent the
highest propagation speed psmax in the observation period,
and light blue represents the lowest propagation speed
psmin. More spaces are allocated to the one-day propagation
data and less space to the immediate propagation out of the
one-day data (represented by light purple) and the cumula-
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Fig. 6. Involved users are distributed along a horizontal axis that divides them into “big nodes” and “small nodes”. Four variables, i.e., infectiousness
and corresponding bounded mean degree derived from deletion and adding operations are rendered as river metaphors. We link them to four
separate vertical axes, which represent initial values and final values of infectiousness by deletion, adding, mean degree by deletion, adding,
respectively. ‘+’ indicates an increasing infectiousness while ‘-’ indicates a decreasing infectiousness. For example, in deletion operation, ‘+’ means
if without the corresponding nodes, infectiousness will increase; otherwise, it will decrease.

tive propagation over time (represented by pink color). We
draw two infectiousness curves to represent the original pt
and the one adjusted by propagation speed p′t (Fig. 5 (a)
(3)). A slide is added to support detailed comparison on the
highlighted infectiousness (Fig. 5 (a) (4)) due to the large-
scale discrepancy between the two infectiousness curves.

Visual Encoding for Reasoning Mean Degree. The
searching space of the mean degree should be displayed to
reason an appropriate mean degree for the specific article
(R.1). The suggested mean degree n∗ should always be
bounded by 1/p′t over time, which we render as the safe
zone (Fig. 5) (b). Users can input a value as the initial mean
network degree. With the boundary, the initial mean degree
will be adjusted, thereby ensuring that the adjusted one at
each timeframe is within the safe zone. We can then observe
the distribution of APEs to determine the approximate mean
degree at each timestamp. The users’ exploration of the
mean degree input will be preserved each time.

Visual Encoding for Comparing Prediction Results.
We generate a new prediction curve (prediction by WeSeer)
with the speed-adjusted article infectiousness and the es-
timated mean degree. Therefore, we have three versions
of prediction results, i.e., the original SEISMIC, prediction
by new infectiousness (adjusted by speed) and fixed mean
degree (140), and WeSeer (prediction by new infectiousness
and bounded mean degree). We encode the APE(s) at each
timestamp of the three versions by three aligned bars (Fig. 5
(APE)) to compare them. We design a circular glyph at each
timestamp to help users understand the potential propaga-
tion popularity by comparing APE1 (comparing predictive
size with one-day size) and APE2 (comparing predictive
size with the final size), as shown in Fig. 5. The colors rang-
ing from green to blue indicate the difference between the
two APEs; if the difference approximates to zero, the color
is red and the propagation of this article mainly occurs in
the first day; otherwise, the color is green. Users can observe
the distribution of APEs (the circular glyphs on all the faded
curves) generated by multiple inputs of initial degree mean
pre-setup by the system and determine the most appropriate
mean degree at different stages of propagation.

4.2.2 Exploration View
We propose exploration view to clarify the contribution
of individual users to the model performance (R.3), and
support “what-if” analysis to help analysts understand the
model. For a given timeframe, we obtain the collection of the
sharing nodes within it and then conduct the following two
operations: (1) Deletion Operation. For a particular time-
frame, we delete one sharing record (an individual user) at
a time, preserve the others, and calculate the corresponding
infectiousness over time. (2) Adding Operation. Following
a similar approach, we add the sharing node successively
over time and examine the infectiousness change.

Visual Encoding. As shown in Fig. 6, we place the nodes
within the corresponding timeframe in packed circles. We
divide them by a horizontal axis. Nodes with more than
1,000 friends are placed in circles above the axis, and nodes
with less than 1,000 friends are placed in circles below the
axis. Nodes with 1,000 friends or above are defined as “big
nodes”; otherwise, they are defined as “small nodes” by
the experts. We conduct a dynamic circle packing process,
in which, if the space within the boundary is sufficient to
generate a new packed circle, then we generate a new circle
and evenly put the nodes into the circles; otherwise, we put
all the nodes in one circle. Aside from all the involved nodes
over time within the selected timeframe, this view also
renders the changes in four variables, namely, the value of
infectiousness from deletion (ptd) and adding (pta), and the
value of bounded mean degree derived from deletion (n∗d)
and adding (n∗a), as the width of four river metaphors. We
link the rivers to four separate vertical axes to help analysts
observe the initial and final variable values, i.e., ptd, pta, n∗d,
and n∗a for understanding how much each variable changes
after this propagation timeframe. The sign of “+” indicates
an increasing infectiousness, whereas “-” indicates a de-
creasing infectiousness. For example, in deletion operation,
if we delete the corresponding nodes in the timeframe, then
the infectiousness will either increase (“+”), or decrease (“-
”). In adding operation, if we add the corresponding nodes
in the timeframe, then the infectiousness will either increase
(“+”), or decrease (“-”).

Design Alternatives. Originally, we use a scatter plot
to show the distribution of involved users in the selected
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timeframe, with the x-axis representing the difference be-
tween the sharing timestamp and the post time of the article
and the y-axis representing the number of friends. Four
curves show the changes in the above four variables over
the timeframe (Design Alternative in Fig. 6). However, we
find that our analysts have to move their eyes, jumping
from one view to another. “Drawing the same x axis four times
is duplicated for observation,” says E.2. The numerous nodes
distributed in the scatter plot also cause visual clutter.

Fig. 7. Propagation view encodes the sharing processing using “bible”
metaphor [49]. Sharers are represented by circles with size encoding
degree and color encoding friend number. Sharing channels are shown
with height encoding the number of shares that occur via the corre-
sponding channel. Curve links from the parent to the child nodes. The
parent and child nodes may locate in the same timeframe or the parent
nodes may locate in the previous timeframe.

4.2.3 Propagation View
Apart from the model, the inherent information of the
involved users and their sharing status over the underlying
network are also concerned by the experts. Therefore, we
develop propagation view (Fig. 7) to show the relevant
propagation and the involved users’ information. This view
demonstrates the distribution of the sharing channel and the
sharing hierarchy. Some users in the current timeframe may
share from the users in the previous timeframes; thereby,
a previous timeframe indicator is added. Each vertically
aligned gray node indicates one previous timeframe. In this
manner, the communication among different timeframes
can be easily observed and compared.

4.3 Interactions Among the Views
Our system provides rich interactions to facilitate efficient
analysis: (1) Linking and Brushing. The system enables
automatic linking among different views. For example,
when users hover on a faded curve in prediction view, the
corresponding setting of mean degree and prediction result
will be displayed. When users want to inspect details of
infectiousness in the prediction view, they can brush their
interesting area of infectiousness. (2) Details on Demand.
When users are interested in a particular timestamp, they
can click the corresponding button, indicated as Fig. 5
(Moving Snapshot), and the detailed information, such as
propagation users and user portrait, will be displayed. (3)
Hovering and Displaying. Tooltips are provided to give
users cues of the area of interest for facilitating further
exploration. For example, in prediction view, concrete pre-
diction results from SEISMIC and WeSeer are displayed as
tooltips.

5 EVALUATION

We first use several articles’ propagation data to demon-
strate the sensitivity and flexibility of WeSeer. We then au-
tomate our visual reasoning approach on a large collection
of WeChat articles to quantitatively verify its efficacy. The
showcased articles can be grouped into three categories,
namely, celebrity (introduction of some celebrities), event
(some emergency events), and “chicken-soup” articles (e.g.,
festival greetings and inspirational articles). We also sum-
marize the discussion and feedback from our experts.

5.1 Case One: Highly Sensitive to Prediction

In the first case, we show that WeSeer is more sensitive
than SEISMIC (R.1). We leverage the propagation data of
one “event” WeChat article, which introduces the release of
iPhone 7. The final propagation size is 11500, and it lasts for
more than three weeks.

Prediction Performance Comparison. As shown in Fig. 8
(1), we determine that in the first 2 h after the release of
this article, the propagation speed is very high. SEISMIC
and the model of infectiousness adjusted only by speed
fail to give a prediction result. From the exploration view
(Fig. 8 (right)), most sharing nodes are “small” nodes, and
they exert limited impacts on the mean degree (by deletion
operation) (the width of the pink band below the axis in
Fig. 8 (3)). The number of “big” nodes that participated
in the sharing process is insufficient; consequently, the in-
fectiousness remains in a comparatively high-value scale
(between 0.0294 and 0.0296). However, the “big” nodes
can increase the article infectiousness (by adding operation)
remarkably (the width of the green band above the axis)
(Fig. 8 (2)). This view also gives us a visual cue that, after
10 min to 20 min time propagation, the current mean degree
is over 500,000 (Fig. 8 (4)), but the expected mean degree
is only approximately 33 (Fig. 8 (5)). However, in original
SEISMIC, the mean degree value is fixed to 140, thereby
failing to make a prediction.

Estimating Mean Degree. WeSeer leverages the knowl-
edge from the historical data (the one-day propagation data)
to estimate an appropriate mean degree of the network
for each timestamp. We click on the gray area (Fig. 9 (1))
and randomly select an initial value for the mean degree
of the social network. WeSeer automatically suggests the
mean degree n∗ curve at each timestamp (Fig. 9 (2)). Each
interaction of users in selecting the initial value of n∗ is
recorded for further comparison (Fig. 9 (3)). In this case,
from the distribution of APE(s), we can observe that the
appropriate mean degree recommended by WeSeer for this
WeChat article is approximately 200, which enables us to
attain a good prediction result at an early stage (Fig. 9
(distribution of APE(s))).

5.2 Case Two: Highly Flexible Toward Articles

When E.1 is exploring the original model, he finds that some
articles only need a few minutes of historical propagation
data to estimate the final propagation popularity, whereas
other articles consume more historical propagation data.
For example, in the right part of Fig. 3, SEISMIC gives a
prediction after 2h. He then expresses a desire to observe
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Fig. 8. (1) Both SEISMIC and the model adjusted only by speed fail to give a prediction result in the first two hours. (2) “Big” nodes increase
infectiousness significantly. (3) “Small nodes” (see packed circles are mainly below 1000) and they have little impact on mean degree. (4) The
current mean degree is too large and (5) the expected mean degree is around 22 after 10-20-minute time window of propagation.

Fig. 9. (1) User randomly click and generate an initial value of mean
degree, and the system suggests mean degree curve at each timestamp
and gets the improved final prediction size (prediction by WeSeer). (3)
The interactive selection of mean degree will be reserved and repre-
sented by faded curves. We can observe the distribution of APE(s) and
know which timestamp returns the most accurate predictive result.

the prediction difference among articles. Therefore, in the
second case, we leverage two celebrity (CB) articles and
one “chicken-soup” (CS) WeChat article to demonstrate the
flexibility of WeSeer toward different types of articles (R.1).

We first give a brief introduction of the basic information
of the three showcased articles: (1) CB1 is about a celebrity,
Jianlin Wang, who is also a Chinese businessperson and the
founder of Dalian Wanda Group. The content is that he was
taking a TV interview and said that “to achieve an ultimate
life, we should first set up a small goal, for example, to earn
a billion RMB first.” The propagation lasts for three days,
and the original posted time is “20160829 12:30:00.” The
final propagation size is 4630. (2) CB2 is about a Chinese
competitive female swimmer, Yuanhui Fu, who specializes in
the backstroke. At 2016 Summer Olympics in Rio, Fu gained
popularity and became a swimming icon nationwide. Her
series of facial expressions spread widely on the Internet,
as well as her statement, “I’ve already spent my supernatural
energy.” The propagation lasts for three weeks. The original
posted time is “20160808 18:00:00,” and the final propaga-
tion size is around 57700. (3) CS is about greetings on the
last day of November; e.g., “Whoever reads this article on the
last day of November will get blessed.” The original posted date
is “20161129,” and the final propagation size is 110692.

Prediction of Celebrity Articles. As shown in Fig. 10,
CB1 exposes a rapid propagation speed in the initial stage.
SEISMIC fails to give a predictive result until 60 min.
WeSeer immediately finds the estimation accurately after
approximately 40 min with a sufficiently small APE (Fig. 10
(1)). The recommended mean degree is approximately 150
(Fig. 10 (2)). CB2 first presents a slow propagation speed
but then begins to outbreak after several-hour propagation.
We obtain the best predictive result with an APE of 0.441
after approximately 60 min (Fig. 10 (3)), and the expected
mean degree is approximately 100 (Fig. 10 (4)). However,
when the propagation speed increases, APE also increases
and the predictive final propagation size is overestimated.

Prediction of Chicken-soup Articles. We observe dif-
ferent phenomena by analyzing a “chicken-soup” article
(Fig. 11). The propagation lasts for more than a day but has
a rapid propagation speed and a comparatively large cov-
erage. This “chicken-soup” article has many sharing users
who actively promote the propagation, given the propaga-
tion channel of Private Chatting ranks the first place (Fig. 11
(3)). SEISMIC cannot give a prediction result until the very
end of the one-day time period (Fig. 11 (2)). Although the
propagation covers the majority of mainland China and
engages people in different ages, the average number of
their friends is relatively low (0-1,000) (Fig. 11 (4)). WeSeer
can rapidly find an accurate estimation (Fig. 11 (1)), and
the majority of the adjusted mean degree across timeframes
within the one-day period is only around 45 (Fig. 11 (5)). E.1
comments that “the quality of these articles is low, and they may
therefore only propagate among certain communities of users and
cannot spread to a larger group”; “Although the final size is over
100,000, unlike the ‘event’ articles, the engaged users of ‘chicken-
soup’ articles are of homogeneity and lack diversification.”

5.3 Quantitative Evaluation
In this subsection, we quantify the performance of SEISMIC
(original model) and WeSeer (enhanced model) in predicting
WeChat article propagation on a large collection of WeChat
articles. We randomly select 814 WeChat articles newly
published on 21st, September 2017. The propagation of
these articles all lasts for over a week. We first compare the
prediction performance of SEISMIC and WeSeer via APE.
We then identify whether WeSeer can perform better in
identifying breakout articles than SEISMIC.

Predicting Final Sharing Count. We use the historical
propagation data in 10, 20, 40, ..., 1440-min, respectively
and run SEISMIC and WeSeer for each article. We obtain
APE for each article and plot the distribution of APE(s) over
time (10, 20, 40, ..., 1440-min) and the corresponding number
of predicted articles that fall into that APE scale. As shown
in Fig. 12, SEISMIC often fails to give a prediction result
(denoted by APE=-1) in each time interval. By contrast,
WeSeer can give an estimation of the final propagation size
(few APE=-1 occurs). Comparison of the trends of the num-
ber of predicted articles in each interval of APE between
SEISMIC and WeSeer shows that WeSeer can predict more
articles than SEISMIC, especially in the earlier stages. For
example, the red rectangles highlight the WeSeer can cover
more articles than SEISMIC at an earlier stage of prediction
with APE falling into the scales of [0, 25] and (0.25, 0.5].

Identifying Breakout Articles. Identifying breakout
WeChat articles is important in such tasks as trend fore-
casting or rumor detection. We rank a ground-truth list L∗M ,
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Fig. 10. (1) CB1: WeSeer gives a prediction with a lower APE in 40-minute and (2) the recommendation mean degree for one-day propagation is
around 150. (3) CB2: WeSeer quickly finds the estimation around 60-minute and (4) the expected mean degree is distributed around 100. When
the propagation speed increases, we may overestimate the final propagation size.

Fig. 11. (1) WeSeer immediately estimates a good result. (2) SEISMIC
fails to give a prediction until the very end of one day. (3) Private/Group
chatting occupy the 1st place for propagation and (4) most of the users
have a comparatively low number of friends. (5) The appropriate value
for mean degree should be around 45.

Fig. 12. Six categories of APEs and the corresponding number of pre-
dicted articles over time predicted by SEISMIC and WeSeer are plotted.
X axis indicates the intervals of APE. Y axis indicates the time (min)
used for prediction. The height of green bars inside shows the number
of articles predicted by SEISMIC or WeSeer.

which contains top M articles with the highest final sharing
count. We generate the list of size M , L1

M (t) and L2
M (t), for

SEISMIC and WeSeer, respectively. At each time t, the list
contains the topM articles with the highest predicted article
counts at time t. We compare L1

M (t) and L2
M (t) with L∗M

and calculate the BreakoutArticle Coverage, which is defined

by the proportion of articles in L∗M covered by L1
M (t) or

L2
M (t). Fig. 13 compares the performance of SEISMIC and

WeSeer in detecting the top 100 most shared articles and
the corresponding coverage percentages over time. We can
observe that WeSeer can predict and cover more articles that
are in the real-world top 100 most shared list as there are
more green blocks. From the right part of Fig. 13, the circles
highlight that around 50% of articles (1) are covered in the
first 60-min, overwhelming SEISMIC’s only 10% coverage
(2). After 180 min, 60% of the articles (3) can be covered by
WeSeer, while for SEISMIC, only 40% (4).

5.4 Expert Review and Discussion
We conduct a half an hour interview with our experts (E.1-
3). They have been studying information propagation in
WeChat for more than a year. We first demonstrate and
explain our system, thereby allowing them to freely explore.
We then have a post-interview with them.

System Capability. All the experts appreciate the capa-
bility of WeSeer to support interactive exploration of propa-
gation prediction results. E.1 comments that “the smooth in-
teractions make the exploration very effective and efficient.” They
enjoy the prediction view that compares several versions
of a predictive model simultaneously. “WeSeer records the
historical exploration results, thereby making the task of reasoning
the mean degree considerably easy,” according to E.2.

Learning Curve. We involve the experts from the initial
design of WeSeer. The main visualizations are based on
their familiar visual metaphors, such as the curves and bars.
After system briefing and explanations, the experts become
familiar with the visualizations and the accompanied visual
encodings. After they explore the prediction process of an
article by themselves, they become thoroughly familiar with
the interactions among the views. E.1-2 comment that “the
system helps us better understand the model and determine the
possible effect of the parameters on the prediction result.”

System Outcome. The experts are impressed by the
outcome of WeSeer. Unlike the SEISMIC model that fails
to sufficiently leverage the historical information to con-
duct prediction, WeSeer adjusts the article infectiousness by
propagation speed and estimates mean degree via the ad-
justed infectiousness and can thus generate more sensitive
and reliable prediction results. Therefore, WeSeer can cover
articles that are considered in the “supercritical state” by the
original SEISMIC model. They also appreciate that WeSeer
combines the analysis of the prediction model with the
propagation data to intuitively understand the panorama
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Fig. 13. (Left): Coverage of top 100 most shared WeChat articles by SEISMIC and WeSeer. Each row represents an article and each column
represents a time interval. White indicates that the predicted list of top 100 articles at time t fails to cover a given article, and green indicates
successful coverages. (Right): Comparison of the coverage percentage of top 100 articles between SEISMIC and WeSeer.

of propagation and the involved users, such as their portrait
and sharing channels. E.2 comments that the quantitative
comparison in the larger scale of articles further verifies
the efficacy of WeSeer, and they all agree that our approach
can automatically narrow down the searching space of the
key parameters of the model. E.1-2 report that “the low APE
and the less time that the improved model needs to do prediction
indicate that it works well.” E.3 states that “the enhanced model
can be practically used to replace the original one.”

Deployment and Factors behind Prediction. The en-
hanced model has been deployed in WeChat for real-time
predictive analysis and it generates a top k ranking list of
articles with predictive propagation size in a descending
order each day. The experts mainly select and inspect in-
teresting articles from the daily ranking list. After exploring
several articles, E.1-2 agree that involving “big nodes” in
an earlier stage can significantly lower article infectiousness
and can thus achieve a stable prediction result. The under-
lying network structure also greatly affects the propagation
because the recommended mean degree for different types
of articles is different. “Articles have different capabilities to
penetrate certain communities of the social network; for instance,
‘event’ or ‘celebrity’ articles have a larger mean degree than that of
‘chicken-soup’ articles,” says E.1. E.2 comments that WeChat
network is more private than other social networks; hence,
Chatting plays important roles in certain types of articles’
propagation, e.g., “chicken-soup” articles.

5.5 Limitation

Our work can be further improved through several aspects.
(1) Inductive article content. Like SEISMIC that only uti-
lizes the propagation data and basic properties of users, we
do not utilize the content information of the articles, such
as the title, the length of article content, and the article sen-
timent. (2) Sharing probability. WeSeer bounds the mean
degree at each timestamp and concludes that articles differ
in their capabilities to penetrate certain social communities.
This conclusion is consistent with the observation that the
users have their own preferences and have different prop-
agation probabilities to share an article. If we can yield a
sharing probability estimation from trained historical data,
then we may have an improved prediction result. (3) Effects
of friend number and sharing channels. If we can attain a

complete WeChat social relationship, we can acquire a more
accurate model by only computing the number of newly
exposed users that each share brings in rather than directly
using the degrees. (4) Daily circle of posting/sharing. Most
WeChat users are located in China and Southeast Asia, un-
like other social media users, such as Twitter and Facebook.
A daily cycle of WeChat posting/sharing activities occurs,
i.e., it may be reasonable that shares occur frequently at
night and in the morning in the local time.

“Slow Onset” Articles. When identifying breakout arti-
cles in the quantitative evaluation, the experts observe that
some articles are not covered by SEISMIC and WeSeer in the
prediction list of top 100 articles. For example, if the view
count of an article surges two weeks after it was posted,
it is less likely that we can predict the final propagation
based merely on the propagation data from the first day. The
experts comment that “if an article’s delayed outbreak happens
long after the preset one-day propagation window, WeSeer may
not be able to pick up any signal.” They further suggest that we
can dynamically resize the historical propagation window
to capture necessary information as the system input.

Generality. We also discuss with E.1-2 about the gen-
erality of our approach. They comment that the system,
especially the parameter-relevant part, i.e., the prediction
view, needs revision when applying to explore other point
process-based models. Taking the aforementioned factors
into consideration, such as the article content and sharing
probability, may also generalize the current system.

6 CONCLUSIONS AND FUTURE WORK

This study proposes WeSeer, a step-by-step interactive vi-
sual reasoning system, to help domain experts understand
and improve a point process-based predictive model, SEIS-
MIC, for a better prediction result. The reason for the fac-
tors behind WeChat articles’ propagation prediction is also
provided. Several showcased realistic WeChat articles and
feedback from domain experts demonstrate the efficacy of
our system. We also quantitatively verify the performance of
WeSeer on a large scale of WeChat articles. In the future, we
plan to improve the model and the system by considering
the effects of article content, different sharing probabilities,
newly exposing users and sharing channels, and the daily
circle of posting/sharing activities. Another direction is that
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we can further design aggregated representations to iden-
tify certain subclasses of articles that propagate similarly
(e.g., “chicken-soup” articles) and class-specific optimized
parameters. Experts can then define appropriate training
subsets and use them to derive fine-grained class-specific
settings. Therefore, when making a prediction for an un-
known article, the experts can find a matching class and ap-
ply appropriate optimized parameters accordingly. Further-
more, we currently mainly focus on two key components,
namely, infectiousness and mean degree bounded at each
timeframe during the observation period, and ignore other
parameters, such as the memory kernels used for weighting
the original infectiousness. We may further refine WeSeer by
involving human expertise in analyzing the kernels to reach
highly accurate predictions in the future.
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