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Abstract

We present an interactive stereoscopic rendering algo-
rithm of voxel-based terrain. It provides unambiguous
depth information of a terrain scene by generating perspec-
tive images for a pair of eyes with a horizontal parallax.
The left-eye image is generated using a fast ray casting al-
gorithm accelerated by exploiting a specific ray coherence
method in the voxel-based terrain scene. The right-eye im-
age is obtained by exploiting the frame coherence between
the two views. Most of the pixel values are directly obtained
from the left image by reprojection. The remaining pixels
are computed by ray casting, while further accelerated with
ray coherence. An A-buffer is employed to reduce image
error caused by reprojection to non-integer pixel locations.
Image-based task partitioning schemes are explored to ef-
fectively parallelize our algorithm on a multiprocessor.

Keywords: Terrain visualization, voxel-based modeling,
ray casting, parallel rendering, virtual environment, visual
flythrough, stereoscopic rendering, antialiasing.

1 Introduction

Stereoscopic displays play an important role in scientific
visualization applications and virtual reality environments.
In such systems we often generate two images of a scene
which differ in their horizontal positions by using stereo-
scopic rendering techniques, and display them with stereo-
scopic displays. As a result, the observer sees a merged im-
age with binocular parallax that appears truly 3D. Compared
to the conventional display mode employing single-image
cues, stereoscopy provides unambiguous depth information
with greater robustness [1].

Although stereoscopic rendering provides impressive
true 3D visual effects, its popularity is often limited by its

slow rendering rates when compared to those of a single
image rendering. In the worst case, the rendering time is
doubled. Therefore, fast stereoscopic rendering approaches
have been proposed which exploit the coherence between
the two views, so that the second image of the stereo im-
age pair can be generated in a fraction of the time of the
first image. Most of the previous work was based on tra-
ditional geometric rendering schemes, such as ray tracing,
where Adelson and Hodges computed the second view with
as little as 5% of the computation time required to fully ray
trace the first view [2]. With the increasing interest in vol-
umetric data and volume rendering techniques, a fast stereo
volume rendering technique for ray casting was proposed
by Adelson and Hansen [3] and further accelerated by He
and Kaufman [4]. However, both papers assumed parallel
projection. Our work focuses on the more complicated per-
spective stereo projection. In particular, we are interested
in interactive stereoscopic rendering of voxel-based terrain,
which is critical to our virtual flythrough system.

In general, the topographical and textural features of the
terrain are obtained from a 2D elevation map and a corre-
sponding color aerial or satellite photograph. Two kinds of
terrain modeling have been adopted for different terrain ren-
dering algorithms: surface-based modeling [5], which uses
a set of tiny triangles to cover the elevation grid, and voxel-
based modeling [6, 7, 8], where terrain is represented as
a view-independent volume buffer of volume elements (in
short,voxels) above abase planeor sea plane with an ele-
vation value of0. In our virtual flythrough system, we have
chosen the voxel-based approach for terrain modeling and
rendering due to several considerations. First, the format of
the elevation map lends itself to generating a very high res-
olution 3D volume of terrain and multiresolution volumes.
Also, texture mapping for voxels is much simpler, higher
quality, and can be preprocessed. More importantly, the
voxel-based model is somewhat scene complexity indepen-
dent, and it is easy to incorporate clouds, haze, flames, and
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other amorphous phenomena and volumetric objects [9].
In our previous work, we developed a fast single image

rendering method for voxel-based terrain [8]. The ray cast-
ing method has shown several attractive features supporting
fast terrain rendering:

1. Early ray termination: This is performed by terminat-
ing ray sampling along each ray once the closest terrain
surface is hit, since the terrain surface is opaque.

2. Ray coherence: If two rays cast from the viewpoint are
projected onto the same line on the base plane of the
terrain, the higher ray hits the terrain surface at a posi-
tion farther away from the view point [7]. Ray casting
can be dramatically accelerated by skipping most of
the empty space above the terrain surface.

3. Scalability: As an image-order rendering approach, the
ray casting algorithm can be effectively parallelized by
using image-based task partitioning schemes. Its per-
formance can be scalable with the number of proces-
sors when a load-balancing image partitioning scheme
is employed.

As a result of these features, we reached interactive ren-
dering rates at more than 10 frames per second for sin-
gle terrain images [8]. However, such an encouraging re-
sult makes our fast stereoscopic rendering even more chal-
lenging. Therefore, we propose an interactive stereoscopic
rendering approach, where most of the pixel values of the
right image are effectively reprojected from the left image.
Remaining pixel values are computed by performing ad-
ditional ray casting. A perspective projection geometry is
adopted so that the reprojection can be efficiently done in
both images in the same scanline order. Ray coherence
is exploited to accelerate the additional ray casting proce-
dure. Different image-based task partitioning schemes are
employed for further speedups.

Our stereoscopic rendering method is different from the
previous stereo volume rendering approaches [3, 4]. We use
a depth image from the left view of theopaqueterrain, while
the methods in [3, 4] recorded all intermediate sampling
information along each ray from the left view to produce
transparentobjects. Furthermore, our work focuses on the
more complicated perspective projection. By the way, al-
though Adelson and Hasen [3] rendered on a parallel ma-
chine, they did not discuss specific load balancing solutions
for stereo algorithms. In fact, our method is more similar
to Adelson and Hodges’ work on stereo ray-tracing [2], al-
though they dealt with complex surface models rather than
3D volume data. In our study, we are more concerned with
exploiting specific properties of the volume data and the ter-
rain scene. For example, we process image scanlines from
top down and process pixels in each scanline from right to

left. The rules of visibility determination for reprojected
points also differ.

2 Our Stereoscopic Rendering Algorithm

To generate a true 3D terrain scene viewed by two eyes
with horizontal parallax, we first put the camera at the left
eye to get the left image, by using our previously proposed
perspective terrain rendering algorithm for single images
[8]. Then, we shift the camera to the right eye position
to generate the right image. Since the eyes are so close to
each other, the frame-to-frame coherence between these two
images can be exploited to save computation time. Specifi-
cally, when we generate the right image, instead of perform-
ing full ray casting as we did for the left image, we directly
obtain most, if not all, of the pixel values from the left im-
age. The basic steps of our serial stereoscopic rendering
pipeline are as follows:

1. Generate the left image as a normal single-image and
record the depth value for each pixel.

2. Establish a perspective stereoscopic projection geom-
etry so that pixels in a scanline of the left image are
reprojected to the same scanline in the right image.

3. Reproject each pixel in the left image to the right image
in scanline order, and employ an A-buffer to alleviate
the aliasing caused by reprojecting to non-integer pixel
locations.

4. Remove invisible reprojections due to different fields
of view or occlusion.

5. Fill the “holes” in the right image by additional ray
casting which is accelerated by exploiting ray coher-
ence.

The rest of this section describes more specific details of
these steps. The parallelization of this serial stereoscopic
rendering algorithm is described in the Section 3.

2.1 Generating the Left Image

The left image is generated by using our previously pro-
posed terrain rendering algorithm [8], where a sequence of
equidistant resamplings are taken along the ray cast from
each pixel, until the ray hits the terrain surface or exits
the volume. If the current resampling value is greater than
the density threshold, we regard the ray as having reached
terrain surface and thus stop the ray traversal. If a 2D
color photograph is available as the terrain texture, it is pre-
aligned with and pre-assigned to the terrain voxels. We can
then easily calculate the terrain color at this sample point
using bilinear interpolation from the related four neighbors
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in the photo and map it back to the source pixel. Otherwise,
we apply a local lighting model.

A key advantage of ray casting over other volume ren-
dering techniques is that the ray coherence property can be
efficiently exploited for acceleration. According to ray co-
herence, a higher ray always hits the terrain at a greater dis-
tance than that of the ray below it. Therefore, when the
image columns are vertical to the horizontal direction, we
can accelerate the traversal of a higher ray by space leaping
according to the intersection information (or depth value) of
the previous ray which was emanated from a lower neigh-
boring pixel on the same image column.

E

P’i
Pi-1Terrain base plane

Ray i

Ray i-1

Pixel column

H

Viewpoint

Terrain surface

Pi

Figure 1. Terrain space leaping based on ray
coherence.

Specifically, assume that rayi and rayi�1 are cast from
two adjacent pixels in the same image column, andd is the
distance from viewpointE to stopping pointPi�1 (hit point)
on rayi� 1 (see Figure 1). According to ray coherence, the
traversal along the higher rayi can start from the sampling
pointPi, which is located right abovePi�1. An alternative
to Pi is P 0

i , which has the same distanced from the view-
point. ChoosingP 0

i would be more efficient for skipping
the empty space when the rays are more perpendicular to
the base plane. However,P 0

i may not be a conservative es-
timation for hit pointH on rayi, as it may already passH .
Therefore, the traversal may need to retrace fromP 0

i to find
the terrain surface.

2.2 Stereoscopic Projection Geometry

The fundamental technique of stereoscopic rendering is
the establishment ofcorrespondence– that is, the pairing up
of pixels in the two images such that each pixel in a pair of
points is the image of the same point in space. In our algo-
rithm, we are more interested in finding the corresponding
right image pixel for each non-background left image pixel.
Figure 2 illustrates that there is no need to search the entire
right image for the corresponding pixelPr of an arbitrary

pixel Pl in the left image.Pr is constrained to lie on the
straight lineLr that is the projection of the line throughPl

and the left center of projectionEl. Likewise,Pl is also
constrained to be located on the straight lineLl that is the
projection of the line throughPr and the right center of pro-
jectionEr. Ll andLr are called the correspondingepipo-
lar lines in the computer vision community. Also, the line
connecting the two centers of projection is called thebase-
line and a plane through the baseline is termed aepipolar
plane. Evidently, the epipolar plane passing through pixel
Pl intersects the left and right images along epipolar linesLl

andLr. Accordingly, any pixel on an epipolar line has its
corresponding pixel on the corresponding epipolar line. In

S

(Left Center of Projection)
Baseline

L r

(Right Center of Projection)

El Er

PrPl

Epipolar Plane

L l

Terrain

Figure 2. General case for stereo correspon-
dence.

general, the epipolar lines in each image are different from
the image scanlines. An intuitive proof is that the epipolar
lines are not parallel to each other. Nevertheless, the two
image planes can be chosen to be coplanar and parallel to
their baseline; therefore, two corresponding epipolar lines
Ll andLr become collinear. Then, each pixel in a scanline
of the left image can only be reprojected to the same scan-
line in the right image. As a result, the reprojection prob-
lem is simplified in 2D. The reprojection procedure from
the left image to the right one can be efficiently conducted
in a scanline order. Usually, since the two eyes are closer
to each other than to the objects in space, the above rectifi-
cation of image planes works fine. (The distance of the two
projection centersEl andEr in Figure 2 has been magnified
for legibility.)

Figure 3 illustrates the perspective projection geometry
used in our stereoscopic rendering algorithm.El andEr,
separated by distancee, are located to the same side of the
projection plane with the same distanceh. We define the
left-hand image space coordinate system as follows. Ori-
gin O is El. Axis Z is perpendicular to the image plane.
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The main view vector or boresight of the left view is along
axisZ. Axis X is along the horizontal direction pointing
right, passing throughEl andEr. Axis Y is orthogonal
to both axesX andZ and points upward. By using this
stereoscopic projection geometry, our single-image render-
ing algorithm can be employed to generate the left image
without any modification. That is why we place the left
center of projection at the origin and place the right center
of projection to its right, instead of placing them symmet-
rically about the origin. The stereo images generated from
these two kinds of projection geometry would be very simi-
lar, since the angly� between a pair of left and right rays is
very small (often less than2 degrees [4]).

2.3 Reprojecting Left Image Pixels

We assume that every pixel in the left image is the per-
spective projection of an object point on the terrain, and
that each left image pixel has at most a single unique corre-
sponding pixel in the right image. A left image pixel may
not have its correspondence in the right image when the re-
lated object point is only visible to the left eye. Our as-
sumption also excludes transparent objects from the scene.
However, if a left image pixel does have a reprojection on
the right image, the reprojection must be located in the same
scanline in the right image according to our stereoscopic
projection geometry. Therefore, our reprojection procedure
is performed in a scanline order. For each scanline, the re-
projection of left image pixels is conducted in the same XZ
plane in image space. Thus, our reprojection computation
only involvesx andz coordinates, and we only care about
x value of the reprojection for the right view.

Assume that the current pixel in question is at position
(i; j) of the left image, and its 3D location in the image
space is atPl(xl; yj ; h) on the projection plane. We are in-
terested in the corresponding pixel in the right image(n; j)
of the same image scanlinej, whose 3D image space coor-
dinates arePr(xr ; yj ; h). These two pixels must be the im-
ages of an object pointP (x; y; z) in the image space, where
x, y, z values can be obtained from the depth value ofPl in
the left image (see Figure 3). Line segmentsAB andCD
are the parts of the projection scanline respectively covered
by the left and right images.Pl andPr respectively fall into
AB andCD. When the two eyes are close enough,AB and
CD can overlap. From(xr � e)=(x� e) = h=z, we get

xr = e+ h(x� e)=z (1)

Then, the unknownn of the reprojected pixel position(n; j)
in the right image can be easily computed fromxr:

n = (xr � c)=w = (e+ h(x� e)=z � c)=w (2)

wherec is X coordinate of the left-most pixel of the right
image on the current scanline of the projection plane, and

w is the physical width of one pixel on the projection plane.
Both c andw are constants.

Projection Plane

(xl , yj , h) (xr , yj , h) Scanline yj

(x, y, z)P

Pl Pr

X

Y Z

Er (e,0,0)El (0,0,0)

A B C D

h

Figure 3. Stereoscopic perspective projection
geometry (XZ plane).

In general, the value ofn calculated from Equation 2
is non-integer. If we simply truncate or round it, serious
aliasing may arise.P may be reprojected to a position in the
right image that is off from its true reprojection by as much
as near one pixel width. To fix this, rather than performing
a time-consuming supersampling in the left view by casting
multiple rays per pixel, we define an A-buffer in the right
image. Unlike a common A-buffer where a4� 8 area mask
is defined to represent the area of a pixel, a1 � 8 mask
is sufficient in our algorithm, since we are only concerned
about the X coordinate of the reprojection. Thus, a pixel in
the right image is represented by merely one byte, so that
efficient bit operations are performed. Consequently, the
maximum positioning error is reduced from nearly one pixel
width to less than one eighth of that.

2.4 Hidden Reprojection Removal

An object point visible to the left eye is most probably
also visible to the right eye. However, this is not always
true for two reasons. First, the two eyes have different fields
of view. Second, objects occlusion is viewpoint dependent.
In order to generate a correct right view from the left view,
we have to determine which reprojected left image pixels to
utilize, as some of them might be hidden in the right view.
On the other hand, there are some object points that are only
visible to the right eye. Their projection on the right image
can not be obtained from the left view. How to fill these
“holes”(gaps) in the right image is discussed in Section 2.5.
Here, we focus on a viable reprojection determination by a
method we callhidden reprojection removal.

Figure 4 illustrates the different fields of view from the
two eyes. Scene areasI andII are only visible to the left
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eye. Scene areasIV andV are only visible to the right eye.
Scene objects in areaIII are visible to both eyes.

El Er

Projection Plane

Z

X

A C B D

IV
III

II

I V

Figure 4. Different fields of view from two
eyes.

If a pixel Pl in the left image is reprojected to a position
outside the scope of[C;D] on the current scanline, the re-
lated object pointP in space must be located in eitherI or
II , and invisible from the right eye. Therefore, the pixel
value ofPl has no contribution to the final right image, and
its reprojection is ignored. Otherwise, the reprojection of
Pl is located betweenC andD and its related object point
P is in areaIII . AlthoughP is now in the field of view
of the right eye, it may still not be viable in the right im-
age, since it can be occluded by other scene objects located
in front of P from the right view. These occluding objects
are located either in areaIII or V . If in areaV , we can
cast rays from the right eye through the right image pixels
betweenB andD on the scanline. The hitting test along
these rays is performed only in that portion of areaV that
extends outward from the projection plane. If object points
are found in this area, the reprojected pixels beyond them
are ignored. Since this portion of areaV is very small, the
hitting test can be done very fast. In fact, this area is so tiny
that the scene objects have a very low chance of appearing
there. For the simplicity of description, we focus on the case
when the occluding objects are in areaIII . In particular, we
are interested in the situation where the reprojection of the
current left image pixel is occluded by the reprojection of
another left image pixel which is closer to the right eye.

Since the right eye is positioned to the right of the left
eye, the reprojection of the current pixel can only be oc-
cluded by the reprojections of those pixels to the right of the
current pixel on the same image scanline. Accordingly, we
process each pixel in the current left image scanline in an or-
der from right to left. We only need to record the up-to-date

left-most reprojection on the current scanline on the pro-
jection plane, and keep updating it when necessary. Specifi-
cally, assume thatPl is the current pixel in the left image,Pr

is its reprojection to the right eye,Pl andPr are the images
of an object pointP , andPs is the left-most reprojection so
far on the current scanline. There are two possibilities for
the relation ofPr andPs: Pr is either to the left ofPs or
not. Normally,Pr is to the left ofPs, which meansP is vis-
ible to both eyes (see Figure 5a). Therefore, we updatePs

by Pr. However, sometimesPr is located on or to the right
of Ps, which meansP might be occluded by some object
points which are projected to the right ofPl in the left im-
age, as shown in Figure 5b. In this case, we simply ignore
Pr and keep the currentPs untouched. It is worth pointing
out that even in this special case,P may not be blocked to
the right eye if it happens to be viewed through some gap
on the terrain contour as illustrated in Figure 5c. Since the
terrain contour is mostly continuous, this special situation
rarely occurs. Therefore, even ifP is actually visible to the
right eye, we still ignore it for the simplicity of the imple-
mentation. In the following section, we discuss how to fill
such gaps in the right image to ensure a correct image.

2.5 Filling “Holes” for the Right Image

During the above reprojection procedure, once we have
determined that the current reprojected left image pixel is
visible to the right eye, we fill the gap between the current
reprojectionPr and the current left-most reprojectionPs on
the current right image scanline. There are three different
situations depending on whetherPr is the left-most, right-
most, or middle reprojection on the right image row. We
still useC andD to respectively represent the left-end and
right-end points of the current right image scanline.

1. Left end gap: first, we examine whetherPr is the left-
most (first) viable reprojection on the current right im-
age row. If it is, we cast rays through each image pixel
betweenPr andD to fill this left end gap, and setPs

toPr.

2. Middle end gaps: ifPr is not the left-most reprojec-
tion, thenPs is available. We calculate the distance
betweenPr andPs. If this distance is less than a user-
defined gap threshold, we interpolate the colors of the
pixels betweenPr andPs. Otherwise, we cast rays
through these pixels to fill the gap betweenPr andPs.
Then, assignPr toPs.

3. Right end gap: ifPr is already the right-most reprojec-
tion, we cast rays through the pixels betweenC andPr

to fill the right end gap.

Figure 6 presents a pseudo-code of our serial stereo-
scopic algorithm. Note that in our implementation, the re-
projection and gap filling procedure are performed on the

5



Left Eye

Pl Pr Ps

Right Eye Left Eye Right Eye Left Eye

Pl PrPs

Right Eye

Terrain Contour

Projection Plane

(a) (b) (c)

Pl PrPs

Terrain Contour Terrain Contour

Projection Plane Projection Plane

Figure 5. Hidden reprojection removal.

finer A-buffer with1�8 area mask for each image pixel. In-
terpolation between two neighboring reprojections are con-
ducted on this A-buffer. Image pixel colors are finally
summed from the A-buffer. Yet, additional ray casting is
directly performed on the right image to find the unknown
pixels in the gaps. For the simplification of the algorithm
description, we do not mention the A-buffer in the pseudo-
code. In addition, we set the gap threshold to be two-pixel
width. A larger threshold may lead to a faster speed, but
may also lose some details between the two neighboring re-
projections. In order to accelerate the additional ray casting
procedure, we also make an effort to skip the empty space
along each ray. A straightforward method to find the depth
of a ray casting pixel seems to be interpolating the depth
from those of the two neighboring reprojections. However,
there are two problems that may arise. First, additional ray
casting is usually performed where the two neighboring re-
projections are so far away that the interpolated results (for
colors and also for depth) may be unacceptable. Second,
there is no guarantee that the depth of a ray cast pixel is
always between those of its neighboring reprojections, ex-
cept when the two neighbors are very close to each other.
We realize that accelerating the additional ray casting proce-
dure by exploiting ray coherence is still critical for our fast
stereoscopic rendering algorithm. The solution is discussed
in the next section, incorporated with our image-based task
partitioning scheme.

3 Parallelism Acceleration

In our previous work, we parallelized the full ray casting
algorithm for a single-image on a Silicon Graphics Power
Challenge, a bus-based shared-memory MIMD (Multiple
Instruction, Multiple Data) machine. We used a static
image-based task partitioning strategy for parallelism. The
image was treated as a pool of columns, and each processor

selected and processed a fixed number of image columns in
an interleaved order. Ray coherence was exploited to skip
most of the empty space along a set of rays cast from the
same image column. The total traversal distance along each
set of rays cast from each image column was almost the
same, so that each set of rays had approximately an equal
amount of work to perform for ray traversal [8].

In order to maintain an interactive rate for the stereo-
scopic terrain rendering, we need to parallelize the gener-
ation of the right image. We would like to modify the se-
rial stereoscopic rendering algorithm given before, by sep-
arating the additional ray casting operation from the repro-
jection and interpolation operations. Thus, the algorithm is
separated into two parts. In the first part, pixels in the left
image are reprojected to the right view in scanline order.
Whenever ray casting is needed to fill a gap in the right im-
age, we simply assign a special color to those pixels inside
the gap, instead of casting rays through these pixels right
away. We call theseray-casting pixels. When all pixels
in the left image have been processed, we enter the second
part where ray casting is performed on those pixels having
a special color in the right image. The first part is called the
reprojection procedure, while the second part is called the
additional ray casting procedure.

3.1 Parallelization of Reprojection

In the reprojection procedure, the pixels in the left im-
age row are reprojected to the right image and a linear in-
terpolation is conducted if the distance between two neigh-
boring reprojections is no more than a user-defined thresh-
old. Since this threshold is often quite small (about two-
pixel width), the interpolation computation between the two
neighbors does not change much. Accordingly, the amount
of computation work on each scanline is approximately pro-
portional to the number of pixels in the left image row.
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//assume points are represented in 3D image space.
for(each row in left image){

//end points on right image row
compute C and D
START = FALSE;
END = FALSE;
//right to left
for (each non-background left image pixel Pl){

calculate the reprojection Pr of Pl;
//discard an object point in area II
if (Pr >= D) //to the right of D?

continue; //yes, discard
if (Pr < C)

END = TRUE; //discard points in area I
if (START==FALSE){

cast rays between [Pr, D]; //left-end gap
Ps = Pr;
START = TRUE;
continue;

}
if (END==TRUE){

cast rays between [C, Ps]; //right-end gap
break; //go to the next row

}
distance = Ps - Pr;
if (distance <= 0)

continue; //discard occluded points
if (distance <= GAP_THRESHOLD)

interpolate pixel colors between [Pr, Ps];
else

cast rays between [Pr, Ps];//middle gaps
Ps = Pr;

}
}

Figure 6. Serial algorithm for stereoscopic ter-
rain rendering.

Therefore, we can treat the left image as a pool of rows,
and assign a fixed number of image rows to each processor
in an interleaved order.

Although we do not perform additional ray casting in
this reprojection procedure right now, we need to do some
preparation beyond assigning a specific color to each ray-
casting pixel. As mentioned, we can not find the depth in-
formation for each ray-casting pixel from its neighboring
reprojections on the same scanline. Fortunately, in the sub-
sequent additional ray casting procedure, we can exploit ray
coherence for all the ray-casting pixels in the same image
column. Thus, we can skip most of the empty space along
a ray, according to the depth of the ray-casting pixel in the
same column below it. But how about the lowest ray-casting
pixelPw in an image column? There are two different situ-
ations. IfPw is the bottom pixel of the column, we have to
traverse along the ray from the beginning as we did in the
left view. Otherwise,Pw has a neighborPn below it in the
column, whose color is obtained by interpolation rather than
ray casting (see Figure 7). Since interpolation is performed

on Pn, the two neighboring reprojections ofPn must be
very close. Therefore, we can safely find the depth ofPn

by interpolation from the depths of its two neighboring re-
projections, and use it to accelerate the ray casting ofPw.

In our implementation, we establish a 1D array for each
processor, called adepth buffer. Each element of the depth
buffer corresponds to one column of the right image, with
several components to record the position of the lowest ray
casting pixelPw, the depth of its lower neighborPn (if ex-
ists), and the number of ray-casting pixels in that image col-
umn. Note that the computation of the depth value for an in-
terpolated pixel is necessary only when its upper neighbor is
a ray-casting pixel. Therefore, we constrain the reprojection
procedure in a scanline order top down, so that we can com-
pute depth values only when necessary. After all processors
have completed their reprojection work, their depth buffers
are combined into one, and only the lowest ray-casting pixel
survives for each column. The number of ray-casting pixels
from the same column are summed up. This combination
requires synchronization, but no inter-processor communi-
cation due to the shared-memory.

3.2 Parallelization of Additional Ray Casting

To exploit ray coherence for ray-casting pixels in the
same column, we treat the right image as a pool of columns
when we parallelize the additional ray casting procedure.
However, unlike the generation of a full ray casting im-
age, the amount of computation work differs dramatically
among different columns, due to the different number of
ray-casting pixels in each column. A static interleaved par-
titioning scheme, such as the one we used to generate the
left full ray casting image, can not guarantee a good load
balance. Instead, a dynamic partitioning scheme is more ap-
propriate. First, a task queue is created which contains those
right image columns possessing at least one ray-casting
pixel. Then, all the image columns in the queue are sorted in
an order of decreasing number of ray-casting pixels. After

Terrain Contour
Ray-Casting Pixel

Interpolated Pixel

P n

P w

Figure 7. Depth Information from the lower
interpolated pixel.
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that, each processor takes and processes one column from
the head of the task queue. Once a processor completes its
column, it takes another one from the head of the queue un-
til all columns are exhausted.

For each column, additional ray casting is completed
in the following steps. First, find the location of the low-
est ray-casting pixel and the corresponding depth from the
depth buffer generated in the previous reprojection proce-
dure. Cast a ray from this pixel and use the corresponding
depth to skip the empty space along the ray. When the hit
position is found along the ray, save the new depth value
in the depth buffer and update the old one. Second, move
upward along the column to the next ray-casting pixel with
the specific color and cast a ray through it. The updated
depth value is used to skip the empty space along the ray;
it is updated again once the hit point is found. Then, repeat
the second step, until no ray-casting pixels are left or the
current ray does not intersect with the terrain surface. Fi-
nally, search upward along the column for all remaining ray-
casting pixels, and directly assign their colors to be back-
ground color. No ray casting is performed through these
pixels, since they have no chance intersecting with the ter-
rain surface.

4 Implementation and Experimental Results

We have implemented our interactive stereoscopic ter-
rain rendering algorithm as the core of our virtual flythrough
system on both SGI graphics workstations and a virtual re-
ality environment using a Responsive Workbench. The Re-
sponsive Workbench provides a powerful tool by immersing
the user within the computer-generated virtual navigation
environment with a superior 3D interaction. The user can
conveniently control the viewing position and orientation by
moving and rotating the Ascension tracker with six degrees
of freedom. Arbitrary stereoscopic perspective views over
the terrain are generated using our interactive stereoscopic
algorithm. These views are displayed on-the-fly by shut-
ter glasses for several people working collaboratively, with
both immediate visual feedback and high-definition photo-
realistic images.

To demonstrate the performance of our stereoscopic al-
gorithm, we have tested several terrain data sets on an
SGI Power Challenge with 16 MIPS R10000 processors
(194MHz) and 4 GB RAM. Figure 8a and 8b show a pair
of stereoscopic images of a terrain in Southern California,
generated by our algorithm. Each image size is500� 400.
Our terrain model consists of a 3D terrain volume with a
resolution of512 � 512 � 64 and a corresponding regis-
tered aerial photo. In Figure 8, instead of mapping the color
photo to the terrain, we used a lighting model. Our system
provides such a rendering option, considering that a color
photo may not always be available for terrain data sets. Ta-

ble 1 presents measured rendering times for both the left
and right images of Figures 8a and 8b generated by our al-
gorithm with different number of processors. Near linear
scalability is shown as the number of processors increases,
which is ascribed to our effective task partitioning schemes.

Table 1. Stereoscopic rendering times (in sec) of a
terrain in Southern California.

processors 1 4 8 12 16
Left image 2:92 0:79 0:41 0:30 0:21
Right image 0:28 0:08 0:04 0:03 0:02

The speedup ratio between the left and right images
is affected by several factors, such as how many non-
background pixels we work on, and how many pixels are
computed by the additional ray casting. For an arbitrary
view as shown in Figure 8, the average time saving of the
right image is about90% of the left image for a different
numbers of processors. In Figure 8c, we marked with red
colors those pixels in Figure 8b which were rendered by ray
casting. The remaining non-background pixels were gener-
ated by interpolation. The user-defined gap threshold was
set to a two-pixel width. The ratio between the number of
ray-casting pixels and the interpolated ones is4:3%. How-
ever, since the amount of computation for ray casting is
much more expensive than the reprojection and interpola-
tion operations, the additional ray casting time takes about
one fourth of the entire rendering time for the right image.
Thus we believe that speedup for the additional ray casting
procedure is very important and have made efforts to ac-
celerate it by exploiting ray coherence. We measured the
additional ray casting time for Figure 8b without consider-
ing ray coherence, and found it increased by about a factor
of four.

In order to show the accuracy of the right image in Fig-
ure 8b, we rendered a full ray casting image from the same
right view in Figure 8d and compared these two images
pixel by pixel. Figure 8e shows the differences of pixel col-
ors between Figure 8b and 8d. The differences are mea-
sured as Euclidean distances in RGB (256 � 256 � 256)
space. The average difference is 3.1%. (The intensities
shown in Figure 8e were magnified from scope 1–50 to 1–
255.) The error is small because we employed A-buffer for
antialiasing. When we further experimented with integer
truncation without using an A-buffer, the error increased.
The difference map is shown in Figure 8f, where the average
difference increased to 5.7%. By the way, we did not find
noticeable increase of the rendering time when A-buffer was
used. This is because the numbers of both reprojected pixels
and the ray-casting pixels did not change, which dominated
the rendering time. This result proved the effectiveness of
the A-buffer.

Figure 9 gives another stereoscopic view of the same ter-
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rain data set as for Figure 8. This time we rendered the ter-
rain with texture obtained from the registered pre-mapped
color photo. Table 2 presents the rendering times for both
the left and right images generated by our algorithm with
different numbers of processors. The average time saving
is about 72%, which is less than the 90% shown in Table 1
— bilinear interpolations for texture mapping is much less
time-consuming than lighting computation [8]. Although
the time saving for the right image decreased, the total ren-
dering speed for the stereoscopic image pair increased. As a
result, we reached a stereoscopic perspective rendering rate
at more than10Hz on 16 processors. Similar results have

Table 2. Stereoscopic rendering times (in sec) of a
terrain (with texture).

processors 1 4 8 12 16
Left image 0:93 0:26 0:14 0:10 0:07
Right image 0:25 0:07 0:04 0:03 0:02

been shown on other terrain data sets.

5 Conclusions and Future Work

We have presented an interactive stereoscopic rendering
algorithm of voxel-based terrain with natural perspective
projection. It provides unambiguous depth information of
a terrain scene during navigation in our virtual flythrough
system. The generation of the right half of the stereo image
pair is vastly accelerated by exploiting the frame coherence
between the two views. Most of its pixel values are directly
obtained from the left image by reprojection. A small num-
ber of rays are cast through the remaining pixels to fill the
gaps, and further accelerated by exploiting ray coherence.
High image quality is not only ascribed to the accurate addi-
tional ray casting, but also to the antialiasing A-buffer which
reduces the image error caused by the non-integer reprojec-
tion problem. In addition, load balancing task partitioning
schemes lead to good speedups when the algorithm is run
on a multiprocessor, and interactive stereoscopic rendering
rates have been reached.

Our current work includes multiresolution rendering,
representation and manipulation of other 3D volumetric ob-
jects, such as stationary buildings, trees, clouds, and mov-
ing planes and vehicles on top of the terrain. We are in the
process of combining these 3D voxelized objects with the
terrain to generate richer and more practical stereoscopic
perspective views in the context of a scene graph.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Stereoscopic views of shaded terrain and difference maps. (a) Left image by full ray-casting. (b)
Right image by our method. (c) Right image with ray-casting pixels shown in red. (d) Right image by full ray-casting.
(e) Intensity-magnified difference map of (b) and (d). (f) Intensity-magnified difference map of (b) and (d) without
A-buffer.

(a) (b)

Figure 9. A stereo pair from a flythrough of texture-mapped terrain on the Responsive Workbench.
(a) Left image by full ray-casting. (b) Right image by our method.
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