Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

Asynchronous Distributed
Semi-Stochastic Gradient Optimization

Ruiliang Zhang, Shuai Zheng, James T. Kwok
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong
{rzhangaf, szhengac, jamesk } @cse.ust.hk

Abstract

With the recent proliferation of large-scale learning problems,
there have been a lot of interest on distributed machine learn-
ing algorithms, particularly those that are based on stochastic
gradient descent (SGD) and its variants. However, existing
algorithms either suffer from slow convergence due to the in-
herent variance of stochastic gradients, or have a fast linear
convergence rate but at the expense of poorer solution qual-
ity. In this paper, we combine their merits by proposing a fast
distributed asynchronous SGD-based algorithm with variance
reduction. A constant learning rate can be used, and it is also
guaranteed to converge linearly to the optimal solution. Ex-
periments on the Google Cloud Computing Platform demon-
strate that the proposed algorithm outperforms state-of-the-
art distributed asynchronous algorithms in terms of both wall
clock time and solution quality.

Introduction

With the recent proliferation of big data, learning the pa-
rameters in a large machine learning model is a chal-
lenging problem. A popular approach is to use stochas-
tic gradient descent (SGD) and its variants (Bottou 2010;
Dean et al. 2012; Gimpel, Das, and Smith 2010). However,
it can still be difficult to store and process a big data set on
one single machine. Thus, there is now growing interest in
distributed machine learning algorithms. (Dean et al. 2012;
Gimpel, Das, and Smith 2010; Niu et al. 2011; Shamir, Sre-
bro, and Zhang 2014; Zhang and Kwok 2014). The data set
is partitioned into subsets, assigned to multiple machines,
and the optimization problem is solved in a distributed man-
ner.

In general, distributed architectures can be categorized
as shared-memory (Niu et al. 2011) or distributed-memory
(Dean et al. 2012; Gimpel, Das, and Smith 2010; Shamir,
Srebro, and Zhang 2014; Zhang and Kwok 2014). In this
paper, we will focus on the latter, which is more scalable.
Usually, one of the machines is the server, while the rest
are workers. The workers store the data subsets, perform lo-
cal computations and send their updates to the server. The
server then aggregates the local information, performs the
actual update on the model parameter, and sends it back to
the workers. Note that workers only need to communicate
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with the server but not among them. Such a distributed com-
puting model has been commonly used in many recent large-
scale machine learning implementations (Dean et al. 2012;
Gimpel, Das, and Smith 2010; Shamir, Srebro, and Zhang
2014; Zhang and Kwok 2014).

Often, machines in these systems have to run syn-
chronously (Boyd et al. 2011; Shamir, Srebro, and Zhang
2014). In each iteration, information from all workers need
to be ready before the server can aggregate the updates. This
can be expensive due to communication overhead and ran-
dom network delay. It also suffers from the straggler prob-
lem (Albrecht et al. 2006), in which the system can move
forward only at the pace of the slowest worker.

To alleviate these problems, asynchronicity is introduced
(Agarwal and Duchi 2011; Dean et al. 2012; Ho et al. 2013;
Lietal. 2014; Zhang and Kwok 2014). The server is allowed
to use only staled (delayed) information from the workers,
and thus only needs to wait for a much smaller number of
workers in each iteration. Promising theoretical/empirical
results have been reported. One prominent example of asyn-
chronous SGD is the downpour SGD (Dean et al. 2012).
Each worker independently reads the parameter from the
server, computes the local gradient, and sends it back to the
server. The server then immediately updates the parameter
using the worker’s gradient information. Using an adaptive
learning rate (Duchi, Hazan, and Singer 2011), downpour
SGD achieves state-of-the-art performance.

However, in order for these algorithms to converge, the
learning rate has to decrease not only with the number of
iterations (as in standard single-machine SGD algorithms
(Bottou 2010)), but also with the maximum delay 7 (i.e.,
the duration between the time the gradient is computed by
the worker and it is used by the server) (Ho et al. 2013). On
the other hand, note that downpour SGD does not constrain
T, but no convergence guarantee is provided.

In practice, a decreasing learning rate leads to slower con-
vergence (Bottou 2010; Johnson and Zhang 2013). Recently,
Feyzmahdavian, Aytekin, and Johansson (2014) proposed
the delayed proximal gradient method in which the delayed
gradient is used to update an analogously delayed model pa-
rameter (but not its current one). It is shown that even with
a constant learning rate, the algorithm converges linearly to
within e of the optimal solution. However, to achieve a small
€, the learning rate needs to be small, which again means



slow convergence.

Recently, there has been the flourish development of
variance reduction techniques for SGD. Examples include
stochastic average gradient (SAG) (Roux, Schmidt, and
Bach 2012), stochastic variance reduced gradient (SVRG)
(Johnson and Zhang 2013), minimization by incremental
surrogate optimization (MISO) (Mairal 2013; 2015), SAGA
(Defazio, Bach, and Lacoste-Julien 2014), stochastic dual
coordinate descent (SDCA) (Shalev-Shwartz and Zhang
2013), and Proximal SVRG (Xiao and Zhang 2014). The
idea is to use past gradients to progressively reduce the
stochastic gradient’s variance, so that a constant learning
rate can again be used. When the optimization objective is
strongly convex and Lipschitz-smooth, all these variance-
reduced SGD algorithms converge linearly to the optimal
solution. However, their space requirements are different.
In particular, SVRG is advantageous in that it only needs
to store the averaged sample gradient, while SAGA and
SAG have to store all the samples’ most recent gradients.
Recently, Mania et al. (2015) and Reddi et al. (2015) ex-
tended SVRG to the parallel asynchronous setting. Their al-
gorithms are designed for shared-memory multi-core sys-
tems, and assume that the data samples are sparse. How-
ever, in a distributed computing environment, the samples
need to be mini-batched to reduce the communication over-
head between workers and server. Even when the samples
are sparse, the resultant mini-batch typically is not.

In this paper, we propose a distributed asynchronous
SGD-based algorithm with variance reduction, and the data
samples can be sparse or dense. The algorithm is easy to
implement, highly scalable, uses a constant learning rate,
and converges linearly to the optimal solution. A prototype
is implemented on the Google Cloud Computing Platform.
Experiments on several big data sets from the Pascal Large
Scale Learning Challenge and LibSVM archive demonstrate
that it outperforms the state-of-the-art.

The rest of the paper is organized as follows. We first
introduce related work. Next, we present the proposed dis-
tributed asynchronous algorithm. This is then followed by
experimental results including comparisons with the state-
of-the-art distributed asynchronous algorithms, and the last
section gives concluding remarks.

Related Work

Consider the following optimization problem

1 N
min F(w) = < > filw). (1)
=1

In many machine learning applications, w € R is the model
parameter, N is the number of training samples, and each
fi : R® — Ris the loss (possibly regularized) due to sample
1. The following assumptions are commonly made.

Assumption 1 Each f; is L;-smooth (Nesterov 2004), i.e.,
fil@) < fi(y) + Vi), — y) + Stlle — yl|? Va, y.

Assumption 2 F'is p-strongly convex (Nesterov 2004), i.e.,
F(2) > F(y) + (F(y), — y) + %]z — y||* Ve,

2324

Delayed Proximal Gradient (DPG)

At iteration ¢ of the DPG (Feyzmahdavian, Aytekin, and
Johansson 2014), a worker uses w!~"¢, the copy of w de-
layed by 7 iterations, to compute the stochastic gradient
g'=™ = V/fi(w'™) on a random sample i. The delayed
gradient is used to update the correspondingly delayed pa-
rameter copy w'™ 7t to W™ = w!™Tt — gt~ where 7 is
a constant learning rate. This !~ is then sent to the server,
which obtains the new iterate w**! as a convex combination
of the current w? and w!~T¢:

w = (1 - 0w’ + 60", 0 (0,1]. )

It can be shown that the {w'} sequence converges linearly
to the optimal solution w*, but only within a tolerance of e,
ie.,

E [F(w') — F(w")] < p(F(u®) = F(w)) + e,

for some p < 1and e > 0. The tolerance € can be reduced by
reducing 7, though at the expense of increasing p and thus
slowing down convergence. Moreover, though the learning
rate of DPG is typically larger than that of SGD, the gradient
of DPG (i.e., W'~ ) is delayed and slows convergence.

Stochastic Variance Reduced Gradient

The SGD, though simple and scalable, has a slower con-
vergence rate than batch gradient descent (Mairal 2013). As
noted in (Johnson and Zhang 2013), the underlying reason
is that the stepsize of SGD has to be decreasing so as to con-
trol the gradient’s variance. Recently, by observing that the
training set is always finite in practice, a number of tech-
niques have been developed to reduce this variance and thus
allows the use of a constant stepsize (Defazio, Bach, and
Lacoste-Julien 2014; Johnson and Zhang 2013; Mairal 2013;
Roux, Schmidt, and Bach 2012; Xiao and Zhang 2014).

In this paper, we focus on one of most popular techniques
in this family, namely the stochastic variance reduction gra-
dient (SVRG) (Johnson and Zhang 2013) (Algorithm 1). It
is advantageous in that no extra space is needed for the in-
termediate gradients or dual variables. The algorithm pro-
ceeds in stages. At the beginning of each stage, the gradi-
ent VF(0) = % Zf\il V fi(w) is computed on the whole
data set using a past parameter estimate w (which is updated
across stages). For each subsequent iteration ¢ in this stage,
the approximate gradient

Vfi(w') = Vfi(wh) — Vfi() + VF(b)

is used, where ¢ is a sample randomly selected from
{1,2,..., N}. Even with a constant learning rate 7, the (ex-
pected) variance of i (wt) goes to zero progressively, and
the algorithm achieves linear convergence.

In contrast to DPG, SVRG can converge to the optimal
solution. However, though SVRG has been extended to the
parallel asynchronous setting on shared-memory multi-core
systems (Reddi et al. 2015; Mania et al. 2015), its use and
convergence properties in a distributed asynchronous learn-
ing setting remain unexplored.



Algorithm 1 Stochastic variance reduced gradient (SVRG)
(Johnson and Zhang 2013).

1: Initialize w°;

2: fors=1,2,...do

S—

[u

3 w=w'"",
~ N ~
4 VF(w) = § XL, V(o)
5wl =
6: fort=0,1,...,m—1do
7: randomly pick i € {1,...,N};
8: witl = w! —nV fi(w?);
9: end for
10:  setw® = w! for a randomly chosen ¢t € {0,...,m —
1}
11: end for

Proposed Algorithm

In this section, we consider the distributed asynchronous
setting, and propose a hybrid of an improved DPG algo-
rithm and SVRG that inherits the advantages of both. Simi-
lar to the two algorithms, it also uses a constant learning rate
(which is typically larger than the one used by SGD), but
with guaranteed linear convergence to the optimal solution.

Update using Delayed Gradient
We replace the SVRG update (line 8 in Algorithm 1) by

wth = (1= 0)p' + 00" ™, ©)
where )
vt =wh =V fi(w'T)
and .
@ = T =V fi(wT). @)

Obviously, when 7z = 0, (3) reduces to standard SVRG.
Note that both the parameter and gradient in w'™ ™ are for
the same iteration (¢ — 7), while v? is noisy as the gradient
is delayed (by 7¢). This delayed gradient cannot be too old.
Thus, similar to (Ho et al. 2013), we impose the bounded de-
lay condition that 7; < 7 for some 7 > 0. This 7 parameter
determines the maximum duration between the time the gra-
dient is computed and till it is used. A larger 7 allows more
asynchronicity, but also adds noise to the gradient and thus
may slow convergence.

Update (3) is similar to (2) in DPG, but with two impor-
tant differences. First, the gradient V f; (w!~ ™) in DPG is re-
placed by its variance-reduced counterpart v fi(wt=™). As
will be seen, this allows convergence to the optimal solution
using a constant learning rate. The second difference is that
the delayed gradient V f; (w!~ ™) is used not only on the past
iterate w!~7t, but also on the current iterate wt. This can
potentially yield faster progress, as is most apparent when
6 = 0. In this special case, DPG reduces to w*t! = w?, and
makes no progress; while (3) reduces to the asynchronous
SVRG update in (Reddi et al. 2015).

Mini-Batch

In a distributed algorithm, communication overhead is in-
curred when a worker pulls parameters from the server or
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pushes update to it. In a distributed SGD-based algorithm,
the communication cost is proportional to the number of gra-
dient evaluations made by the workers. Similar to the other
SGD-based distributed algorithms (Gimpel, Das, and Smith
2010; Dean et al. 2012; Ho et al. 2013), this cost can be re-
duced by the use of a mini-batch. Instead of pulling parame-
ters from the server after every sample, the worker pulls only
after processing each mini-batch of size B.

Distributed Implementation

There is a scheduler, a server and P workers. The server
keeps a clock (denoted by an integer t), the most updated
copy of parameter w, a past parameter estimate w and the
corresponding full gradient VF'(w) evaluated on the whole
training set D (with N samples). We divide D into P disjoint
subsets Dy, Dy, ..., Dp, where D), is owned by worker p.
The number of samples in D,, is denoted n,,. Each worker p
also keeps a local copy w,, of w.

In the following, a task refers to an event timestamped by
the scheduler. It can be issued by the scheduler or a worker,
and received by either the server or workers. Each worker
can only process one task at a time. There are two types of
tasks, update task and evaluation task, and will be discussed
in more detail in the sequel. A worker may pull the param-
eter from the server by sending a request, which carries the
type and timestamp of the task being run by the worker.

Scheduler The scheduler (Algorithm 2) runs in stages. In
each stage, it first issues m update tasks to the workers,
where m is usually a multiple of [ N/B] as in SVRG. After
spawning enough tasks, the server measures the progress by
issuing an evaluation task to the server and all workers. As
will be seen, the server ensures that evaluation is carried out
only after all update tasks for the current stage have finished.
If the stopping condition is met, the scheduler informs the
server and all workers by issuing a STOP command; other-
wise, it moves to the next stage and sends more update tasks.

Algorithm 2 Scheduler.

I: fors=1,...,5do
2. fork=1,...,mdo

3: pick worker p with probability "—J\}’;

4: issue an update task to the worker with timestamp
t=(s—1)m+k;

5:  end for

6:  issue an evaluation task (with timestamp ¢ = sm + 1)
to workers and server;

7:  wait and collect progress information from workers;

8:  if progress meets stopping condition then

9: issue a STOP command to the workers and server;
10:  end if
11: end for

Worker At stage s, when worker p receives an update task
with timestamp ¢, it sends a parameter pull request to the
server. This request will not be responded by the server until
it finishes all tasks with timestamps before ¢ — 7.



Let w,, ; be the parameter value pulled. Worker p selects
a mini-batch B C D, (of size B) randomly from its local
data set. Analogous to W~ in (4), it computes

&)

where Aw,, ; is the mini-batch gradient evaluated at 1, .
An update task is then issued to push w,, ; and Awy,, ; to the
server.

When a worker receives an evaluation task, it again sends
a parameter pull request to the server. As will be seen in the
following section, the pulled w0, ; will always be the latest
w kept by the server in the current stage. Hence, the wy, ;’s
pulled by all workers are the same. Worker p then updates
Wy, as Wy, = Wy, computes and pushes the corresponding
gradient

Wyt = Wp,t — NAWp 1,

1
VEF (W) = e Z V fi(wp)
P ieD,
to the server. To inform the scheduler of its progress, worker
p also computes its contribution to the optimization objec-
tive ) ;cp fi(Wp) and pushes it to the scheduler. The whole
worker procedure is shown in Algorithm 3.

Algorithm 3 Worker p receiving an update/evaluation task ¢
at stage s.

1: send a parameter pull request to the server;
wait for response from the server;
if task ¢ is an update task then
pick a mini-batch subset 3¢ randomly from the local
data set;
5:  compute mini-batch gradient Aw,; and w,; using
(5), and push them to the server as an update task;
6: else
7: set, = wWp4; {task ¢ is an evaluation task}
8:  push the local subset gradient V F),(w,) to the server
as an update task;
9:  push the local objective value to the scheduler;
end if

R

Server There are two threads running on the server. One
is a daemon thread that responds to parameter pull requests
from workers (Algorithm 4); and the other is a computing
thread for handling update tasks from workers and evalua-
tion tasks from the scheduler (Algorithm 5).

When the daemon thread receives a parameter pull re-
quest, it reads the type and timestamp ¢ within. If the request
is from a worker running an update task, it checks whether
all update tasks before ¢ — 7 have finished. If not, the request
remains in the buffer; otherwise, it pushes its w value to
the requesting worker. Thus, this controls the allowed asyn-
chronicity. On the other hand, if the request is from a worker
executing an evaluation task, the daemon thread does not
push w to the workers until all update tasks before ¢ have
finished. This ensures that the w pulled by the worker is the
most up-to-date for the current stage.

When the computing thread receives an update task (with
timestamp ¢) from worker p, the w, ; and Aw, ; contained
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Algorithm 4 Daemon thread of the server.
1: repeat

2:  if pull request buffer is not empty then
3: for each request with timestamp ¢ in the buffer do
4: if request is triggered by an update task then
5: if all update tasks before ¢ — 7 have finished
then
6: push w to the requesting worker;
7: remove request from buffer;
8: end if
9: else
10: if all update tasks before ¢ have finished then
11: push w to the requesting worker;
12: remove request from buffer;
13: end if
14: end if
15: end for
16:  else
17: sleep for a while;
18:  endif

19: until STOP command is received.

Algorithm 5 Computing thread of the server.
1: repeat

2:  wait for tasks;
3. if an update task received then
4: update w using (6), and mark this task as finished;
5:  else
6: wait for all update tasks to finish;
7 set w = w;
8: collect local full gradients from workers and up-
date VF(0);
9: broadcast VF'(w) to all workers;
10:  end if

11: until STOP command is received.

inside are read. Analogous to (3), the server updates w as
w=(1-0)(w—nAwpy,)+ 0wy, (6)

and marks this task as finished. During the update, the com-
puting thread locks w so that the daemon thread cannot ac-
cess until the update is finished.

When the server receives an evaluation task, it synchro-
nizes all workers, and sets w = w. As all w,’s are the same
and equal to w, one can simply aggregate the local gradients

to obtain VF(w) = 25:1 4oV E,(w,), where q, = 52
The server then broadcasts V F'(w0) to all workers.

Discussion

Two state-of-the-art distributed asynchronous SGD algo-
rithms are the downpour SGD (Dean et al. 2012) and Petuum
SGD (Ho et al. 2013; Dai et al. 2013). Downpour SGD
does not impose the bounded delay condition (essentially,
7 = 00), while Petuum SGD does. Note that there is a sub-
tle difference in the bounded delay condition of the proposed
algorithm and that of Petuum SGD. In Petuum SGD, the
amount of staleness is measured between workers, namely



that the slowest and fastest workers must be less than s
timesteps apart (where s is the staleness parameter). Con-
sequently, the delay in the gradient is always a multiple of
P and is upper-bounded by sP. On the other hand, in the
proposed algorithm, the bounded delay condition is imposed
on the update tasks. It can be easily seen that 7 is also the
maximum delay in the gradient. Thus, 7 can be any number
which is not necessarily a multiple of P.

Convergence Analysis

For simplicity of analysis, we assume that the mini-batch
size is one. Let @ be the w stored in the server at the end
of stage S (step 7 in Algorithm 5). The following Theorem
shows linear convergence of the proposed algorithm. It is
the first such result for distributed asynchronous SGD-based
algorithms with constant learning rate.

Theorem 3 Suppose that problem (1) satisfies Assump-
tion 1 and 2. Let L max{L;}N,, and v

2\ T > .
(1 —2n(p — %)) +ﬁ. Withn € (0, 475
sufficiently large such that v < 1. Assume that the scheduler
has been run for S stages, we obtain the following linear
rate:

E[F(0%) = F(w")] < 7°[F(@°) — F(w")].
As L > p, it is easy to see that 1 — 2n(u — #) and

)andm

0#’7776;2 are both smaller than 1. Thus, v < 1 can be guaran-

teed for a sufficiently large m. Moreover, as F' is strongly
convex, the following Corollary shows that 1 also con-
verges to w*. In contrast, DPG only converges to within a
tolerance of e.
Corollary 4 E|[@° — w*||? < 2v°[F(@°) — F(w*)]/ .
When 7 < P, the server can serve at most 7 workers si-
multaneously. For maximum parallelism, 7 should increase
with P. However, v also increases with 7. Thus, a larger m
and/or S may be needed to achieve the same solution quality.
Similar to DPG, our learning rate does not depend on the
delay 7 and the number of workers P. This learning rate can
be significantly larger than the one in Pentuum SGD (Ho
et al. 2013), which has to be decayed and is proportional
to O(1/v/P). Thus, the proposed algorithm can be much
faster, as will be confirmed in the experiments. While our
bound may be loose due to the use of worst-case analysis,
linear convergence is always guaranteed for any 6 € (0, 1].

Experiments
In this section, we consider the K-class logistic regression
problem:
N K
) 1 exp(wf z;)
min — —I(y; = k) log ,
(w3, N Z Z Zle exp(w] x;)

i=1 k=1
where {(z;,v;)}, are the training samples, wy, is the pa-
rameter vector of class k, and I(-) is the indicator function
which returns 1 when the argument holds, and O otherwise.
Experiments are performed on the Mnist8m and DNA data
sets (Table 1) from the LibSVM archive' and Pascal Large

"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Scale Learning Challenge?.

#samples | #features | #classes
Mnist8m | 8,100,000 784 10
DNA 50,000,000 800 2

Table 1: Summary of the data sets used.

Using the Google Cloud Computing Platform?, we set up
a cluster with 18 computing nodes. Each node is a google
cloud nl-highmem-8 instance with eight cores and 52GB
memory. Each scheduler/server takes one instance, while
each worker takes a core. Thus, we have a maximum of 128
workers. The system is implemented in C++, with the Ze-
roMQ package for communication.

Comparison with the State-of-the-Art

In this section, the following distributed asynchronous algo-
rithms are compared:

e Downpour SGD (“downpour-sgd”) (Dean et al. 2012),
with the adaptive learning rate in Adagrad (Duchi, Hazan,
and Singer 2011);

e Petuum SGD (Dai et al. 2013) (“petuum-sgd”), the state-
of-the-art implementation of asynchronous SGD. The
learning rate is reduced by a fixed factor 0.95 at the end
of each epoch. The staleness s is set to 2, and so the delay
in the gradient is bounded by 2 P.

e DPG (Feyzmahdavian, Aytekin, and Johansson 2014)
(‘Cdpg”);

e A variant of DPG (“vr-dpg®), in which the gradient in up-
date (2) is replaced by its variance-reduced version;

e The proposed “distributed variance-reduced stochastic
gradient decent” (distr-vr-sgd) algorithm.

e A special case of distr-vr-sgd, with @ = 0 (denoted “distr-
svrg®). This reduces to the asynchronous SVRG algorithm
in (Reddi et al. 2015).

We use 128 workers. To maximize parallelism, we fix 7
to 128. The Petuum SGD code is downloaded from http://
petuum.github.io/, while the other asynchronous algorithms
are implemented in C++ by reusing most of our system’s
codes. Preliminary studies show that synchronous SVRG
is much slower and so is not included for comparison. For
distr-vr-sgd and distr-svrg, the number of stages is .S = 50,
and the number of iterations in each stage is m = [N/B],
where B is about 10% of each worker’s local data set size.
For fair comparison, the other algorithms are run for m.S it-
erations. All other parameters are tuned by a validation set,
which is 1% of the data set.

Figure 1 shows convergence of the objective w.r.t. wall
clock time. As can be seen, distr-vr-sgd outperforms all
the other algorithms. Moreover, unlike dpg, it can converge
to the optimal solution and attains a much smaller objec-
tive value. Note that distr-svrg is slow. Since 7 = 128,

Zhttp://argescale.ml.tu-berlin.de/
*http://cloud.google.com



the delayed gradient can be noisy, and the learning rate
used by distr-svrg (as determined by the validation set) is
small (108 vs 1073 in distr-vr-sgd). On the DNA data set,
distr-svrg is even slower than petuum-sgd and downpour-sgd
(which use adaptive/decaying learning rates). The vr-dpg,
which uses variance-reduced gradient, is always faster than
dpg. Moreover, distr-vr-sgd is faster than vr-sgd, showing
that replacing w? in (2) by v? in (3) is useful.

(objective  optimum)/optimum

10°

0 20 0 6 8 100 120
time

(sec)

0 160 180 200

(a) MnistSm.

(b) DNA.

Figure 1: Objective vs time (in sec).

Varying the Number of Workers

In this experiment, we run distr-vr-sgd with varying number
of workers (16, 32, 64 and 128) until a target objective value
is met. Figure 2 shows convergence of the objective with
time. On the MnistS8m data set, using 128 workers is about 3
times faster than using 16 workers. On the DNA data set, the
speedup is about 6 times.

- optimum)optimum

(objective

(objective - optimum/optimum
i

o s 10 150 200
time (sec)

(a) MnistSm.

250 00 0 400 o 20 W 50 B 0 120 10
L )

(b) DNA.

Figure 2: Objective vs time (in sec), with different numbers
of workers.

time (sec)

(a) MnistSm.

(b) DNA.

Figure 3: Breakdown into computation time and communi-
cation time, with different numbers of workers.
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Note that the most expensive step in the algorithm is on
gradient evaluations (the scheduler and server operations are
simple). Recall that each stage has m iterations, and each
iteration involvs O(B) gradient evaluations. At the end of
each stage, an additional O(N) gradients are evaluated to
obtain the full gradient and monitor the progress. Hence,
each worker spends O((mB + N)/P) time on computa-
tion. The computation time thus decreases linearly with P,
as can be seen from the breakdown of total wall clock time
into computation time and communication time in Figure 3.

Moreover, having more workers means more tasks/data
can be sent among the server and workers simultaneously,
reducing the communication time. On the other hand, as
synchronization is required among all workers at the end of
each stage, having more workers increases the communica-
tion overhead. Hence, as can be seen from Figure 3, the com-
munication time first decreases with the number of workers,
but then increases as the communication cost in the synchro-
nization step starts to dominate.

Effect of 7

In this experiment, we use 128 workers. Figure 4 shows the
time for distr-vr-sgd to finish mS tasks (where S = 50 and
m = [N/B)) when 7 is varied from 10 to 200. As can be
seen, with increasing 7, higher asynchronicity is allowed,
and the communication cost is reduced significantly.

I computation time
I communication time

time (sec)

(a) MnistS8m. (b) DNA.

Figure 4: Breakdown of the total time into computation time
and communication time, with different 7’s.

Conclusion

Existing distributed asynchronous SGD algorithms often
rely on a decaying learning rate, and thus suffer from a sub-
linear convergence rate. On the other hand, the recent de-
layed proximal gradient algorithm uses a constant learning
rate and has linear convergence rate, but can only converge
to within a neighborhood of the optimal solution. In this pa-
per, we proposed a novel distributed asynchronous SGD al-
gorithm by integrating the merits of the stochastic variance
reduced gradient algorithm and delayed proximal gradient
algorithm. Using a constant learning rate, it still guarantees
convergence to the optimal solution at a fast linear rate. A
prototype system is implemented and run on the Google
cloud platform. Experimental results show that the proposed
algorithm can reduce the communication cost significantly
with the use of asynchronicity. Moreover, it converges much



faster and yields more accurate solutions than the state-of-
the-art distributed asynchronous SGD algorithms.
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