
Towards Safe Semi-Supervised Learning
for Multivariate Performance Measures∗

Yu-Feng Li1,2 James T. Kwok3 Zhi-Hua Zhou1,2

1 National Key Laboratory for Novel Software Technology, Nanjing University
2 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, 210023

3 Department of Computer Science & Engineering, Hong Kong University of Science and Technology, Hong Kong
liyf@nju.edu.cn jamesk@cse.ust.hk zhouzh@nju.edu.cn

Abstract

Semi-supervised learning (SSL) is an important research
problem in machine learning. While it is usually expected
that the use of unlabeled data can improve performance, in
many cases SSL is outperformed by supervised learning us-
ing only labeled data. To this end, the construction of a
performance-safe SSL method has become a key issue of
SSL study. To alleviate this problem, we propose in this
paper the UMVP (safe semi-sUpervised learning for Multi-
Variate Performance measure) method, because of the need
of various performance measures in practical tasks. The pro-
posed method integrates multiple semi-supervised learners,
and maximizes the worst-case performance gain to derive
the final prediction. The overall problem is formulated as a
maximin optimization. In oder to solve the resultant difficult
maximin optimization, this paper shows that when the perfor-
mance measure is the Top-k Precision, Fβ score or AUC, a
minimax convex relaxation of the maximin optimization can
be solved efficiently. Experimental results show that the pro-
posed method can effectively improve the safeness of SSL
under multiple multivariate performance measures.

Introduction

In many real-world tasks, labeled data are expensive to
collect and so supervised learning may not be able to at-
tain good performance. In contrast, large amounts of unla-
beled data are often readily available. It is now well-known
that by using both labeled and unlabeled data, much bet-
ter performance can be obtained by semi-supervised learn-
ing (SSL) (Chapelle, Schölkopf, and Zien 2006; Zhu 2007;
Zhou and Li 2010). Over the past decades, SSL has received
a lot of attention, and played a significant role in many ap-
plications. Examples include image classification, text cate-
gorization, bioinformatics, and information retrieval.

In the past, one usually expects SSL to have improved
performance whenever labeled data are few. However, re-
cent studies have shown that in many cases, not only is
SSL unable to improve performance, it may even be out-
performed by supervised learning with the use of labeled

∗This research was supported by the NSFC (61333014,
61403186), 863 Program (2015AA015406), JiangsuSF (BK2014
0613) and Hong Kong RGC (614012).
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data only (Blum and Chawla 2001; Chapelle, Schölkopf, and
Zien 2006; Chawla and Karakoulas 2005; Cozman, Cohen,
and Cirelo 2002; Li and Zhou 2011a; 2015; Nigam et al.
2000; Zhang and Oles 2000). This phenomenon seriously
affects the use of SSL in many applications. The develop-
ment of safe SSL has thus been considered as an important
issue in SSL (Zhou and Li 2010; Li and Zhou 2015). In
other words, besides being able to improve performance,
SSL should not be worse than simple supervised learning
in the worst case.

There are some studies (Cozman, Cohen, and Cirelo
2002; Balcan and Blum 2010; Singh, Nowak, and Zhu 2009;
Yang and Priebe 2011; Li and Zhou 2011a; 2015) about
the quality of unlabeled data, providing some insights about
how to exploit unlabeled data in better ways. However, safe
SSL remains challenging. Moreover, in many practical ap-
plications, the performance measures are often diverse. For
example, in text categorization, the F1-score and precision-
recall breakeven point are often used; in information re-
trieval, precision and recall are more preferred; in ranking
applications, the Area Under the ROC Curve (AUC) and
Top-k precision are more popular. To this end, one needs
to develop a safe SSL method which can work with such a
diversity of performance measures.

To alleviate this problem, we propose in this paper the
UMVP (safe semi-sUpervised learning for MultiVariate Per-
formance measure) method, which produces the final SSL
prediction by integrating multiple semi-supervised learn-
ers. Without sufficient knowledge in distinguishing multi-
ple semi-supervised learners, UMVP models the safe SSL
problem as a maximin optimization problem. Specifically,
the performance gain (with respect to various multivariate
performance criteria) is maximized relative to the baseline
supervised model in the worst-case scenario. However, the
multivariate performance measure is typically discontinuous
and non-convex, and thus difficult to optimize. In this pa-
per, a tight minimax convex relaxation technique is adopted,
which relaxes the original optimization problem into a con-
vex one with a global solution. We show that when the per-
formance measure is the Top-k Precision, Fβ score or AUC,
this convex relaxation problem can be solved efficiently by
closed-form solutions and small linear programs. Experi-
mental results on a number of data sets show that the pro-
posed method effectively improves the safeness of SSL un-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1816

der multiple multivariate performance measures.

The rest of the paper is organized as follows. We first in-
troduce related works and some commonly used multivari-
ate performance measures. Next, we present the proposed
UMVP method. This is then followed by extensive experi-
mental results, and finally we give concluding remarks.

Related Work

Experiments in some literatures (Blum and Chawla 2001;
Chapelle, Schölkopf, and Zien 2006; Chawla and Karak-
oulas 2005; Cozman, Cohen, and Cirelo 2002; Li and Zhou
2011a; 2015; Nigam et al. 2000; Zhang and Oles 2000) have
shown that when using unlabeled data, sometimes the per-
formance may be worse than using labeled data only. There
are several discussions about the source of the performance
degradation. For example, for generative methods, Cozman,
Cohen, and Cirelo (2002) conjectured that the performance
degradation is caused by the use of incorrect model assump-
tion in the generative methods; however, it is almost impos-
sible to make correct model assumption without adequate
domain knowledge. For disagreement-based methods (Zhou
and Li 2010), such as co-training (Blum and Mitchell 1998),
Li and Zhou (2005) realized that incorrect pseudo-labels
used in the SSL process are the source of performance degra-
dation. For graph-based methods, Zhu (2007) conjectured
that the graph construction is crucial for the performance,
whereas there is no theory to indicate how to construct the
correct graph. For semi-supervised SVMs (S3VMs), Li and
Zhou (2011b) proved that the existence of multiple low-
density separator and the incorrect selection will lead to per-
formance degradation.

Designing safe SSL approaches is very challenging. The
first safe SSL approach was developed by (Li and Zhou
2005), which focuses on disagreement-based SSL methods
and introduces data editing techniques to filter out poten-
tially incorrect pseudo-labels during the SSL process. This
approach works well in many scenarios, however, it is based
on heuristics. Li and Zhou (2011b,2015) advocate the im-
portance of safe SSL approaches, and proposed a sound ap-
proach to construct safe S3VMs. Their approach, S4VM,
tries to optimize the worst-case performance among all po-
tentially selection of low-density separators, and S4VM is
proved to be safe given that the ground-truth separator is a
low-density separator. In this paper we consider safe SSL
under more performance measures besides simply accuracy
used in S4VM.

This paper is related to the work in (Joachims 2005) and
references therein. However, they typically in the super-
vised learning setting whereas here we consider SSL. This
work also has some connections to semi-supervised ensem-
ble learning approaches (Zhou 2012). However, our primary
goal is to make the use of unlabeled data “safe”, which has
not been considered in previous semi-supervised ensemble
learning approaches.

Multivariate Performance Measures

Top-k Precision

Top-k Precision is popularly used in search applica-
tions (Joachims 2005), in which one wants to predict
whether an instance is relevant. On a given set of u in-
stances, let the ground-truth relevance be stored in y =
[y1, . . . , yu] ∈ {0, 1}u (where 1 indicates relevant and 0
otherwise), and the predictions be ŷ = [ŷ1, . . . , ŷu] ∈ R

u.
Rankings of the instances by ŷi can be represented by the
vector πŷ ∈ {1, . . . , u}u, where πŷ

i > πŷ
j if ŷi > ŷj (with

ties broken arbitrarily).
Typically, users are only interested in the top-ranked in-

stances. The top-k precision is defined as (Manning, Ragha-
van, and Schtze 2008)

Pre@k(ŷ,y) =
1

k

∑
p:1≤p≤u

I(yp = 1)I(πŷ
p > u− k), (1)

where I(·) is the indicator function that returns 1 when the
argument holds, and 0 otherwise.

Fβ Score

The Fβ score is commonly used for binary classification,
particularly when classes are highly imbalanced. Let y ∈
{0, 1}u be the vector of ground-truth labels (where 1 is for
positive instances and 0 for negative ones), and ŷ ∈ {0, 1}u
be the predictions. Precision and recall are defined as
Pre(ŷ,y) = ŷ′y

ŷ′1 and Rec(ŷ,y) = ŷ′y
y′1 , respectively, where

1 is the vector of all ones, and ′ denotes the transpose of a
vector. The Fβ score is a weighted harmonic average of pre-
cision and recall (Manning, Raghavan, and Schtze 2008)

Fβ(ŷ,y) = (1 + β2)
Pre(ŷ,y)Rec(ŷ,y)

β2Pre(ŷ,y) +Rec(ŷ,y)

=
(1 + β2)ŷ′y
ŷ′1+ β2y′1

, (2)

where β (usually set to 1) trades off precision and recall.

AUC (Area Under the ROC Curve)

The AUC (Manning, Raghavan, and Schtze 2008) character-
izes the probability that positive instances are ranked higher
than negative ones. Let the ground-truth labels on the unla-
beled data be y = [y1, . . . , yu] ∈ {0, 1}u, and the predic-
tions be ŷ = [ŷ1, . . . , ŷu] ∈ R

u. The AUC is defined as

AUC(ŷ,y) =

∑
p,q:1≤p,q≤u I(yp > yq)I(ŷp > ŷq)

PyNy
, (3)

where Py and Ny are the numbers of positive and negative
labels in y, respectively.

The UMVP Method

The UMVP method uses b semi-supervised learners to con-
struct safe predictions. These learners may be obtained by,
e.g., (i) running a SSL algorithm with different parameters,
(ii) different SSL algorithms, or (iii) a hybrid of the two.

1817

Let perf be the target performance measure (e.g., top-k
precision, Fβ , AUC). Without loss of generality, we assume
that the larger the perf value, the better the performance. Our
goal is to find a prediction ŷ that maximally aligns with pre-
dictions from the b semi-supervised learners, and also per-
forms better than a given baseline learner (e.g., a supervised
learner) ŷ0. This can be formulated as the following opti-
mization problem

max
ŷ∈Y

b∑
i=1

αi

(
perf(ŷ,yi)− perf(ŷ0,yi)

)
, (4)

where {y1, . . . ,yb} are predictions of the b semi-supervised
learners on the unlabeled instances, yi = [yi1, . . . , y

i
u] ∈

{0, 1}u, Y is the feasible region1 of ŷ;
(
perf(ŷ,yi) −

perf(ŷ0,yi)
)

is the performance improvement of ŷ rela-
tive to y0, if yi is the ground-truth label assignment, α =
[α1, . . . , αb] captures the relative importance of the b semi-
supervised learners. Without loss of generality, we assume
that α is in the simplex M = {α | ∑b

i=1 αi = 1, αi ≥ 0}.
We also assume that ŷ0 ∈ Y , and so the objective of Eq.(4)
is non-negative.

In real-world situations, the relative importance of semi-
supervised learners are typically unknown. Simply trusting
any one of these may risk performance degradation. To ad-
dress this problem, we consider the worst-case, adversarial
setting of α. The goal is to achieve the best possible perfor-
mance gain relative to the baseline ŷ0 even in this scenario.
The UMVP method formulates this as the following max-
imin optimization problem:

max
ŷ∈Y

min
α∈M

b∑
i=1

αi

(
perf(ŷ,yi)− perf(ŷ0,y

i)
)
. (5)

It is easy to see from Eq.(5) that when one of the semi-
supervised leaners realizes the ground-truth label assign-
ment, the UMVP solution obtained is safe. Recall that the
success of SSL often relies on some assumptions (e.g., clus-
ter assumption, low-density assumption, manifold assump-
tion) (Chapelle, Schölkopf, and Zien 2006). It remains chal-
lenging to see which one is more suitable for a particular
data set. Eq.(5) shows that as long as one of these assump-
tions realizes a perfect solution, a safe SSL method can be
obtained. Moreover, note that this is a sufficient condition,
but not necessary condition for the safeness of UMVP.

Optimizing Eq.(5)

As many performance measures are discontinuous and
non-convex, continuous optimization techniques (such as
gradient-based approaches) are not applicable. In this pa-
per, we propose the use of convex relaxation and cutting
plane algorithm (Kelley 1960), which have been very useful
in solving nonsmooth problems (Sra, Nowozin, and Wright
2012).

1If the target ŷ are values output by the learner, Y = R
u. If ŷ

corresponds to the binary class labels, Y = {0, 1}u.

Exchanging the maxŷ∈Y and minα∈M operators in
Eq.(5), we have

min
α∈M

max
ŷ∈Y

b∑
i=1

αi

(
perf(ŷ,yi)− perf(ŷ0,y

i)
)
. (6)

From the minimax theorem (Kim and Boyd 2008), the ob-
jective of Eq.(6) upper-bounds that of Eq.(5). Eq.(6) can
also be rewritten as

min
α∈M,θ

θ (7)

s.t. θ ≥
b∑

i=1

αi

(
perf(ŷ,yi)− perf(ŷ0,y

i)
)
, ∀ŷ ∈ Y.

Both the objective and constraints in problem (7) are linear
in α and θ. Hence, problem (7) is convex. In other words,
problem (7), or equivalently problem (6), is a convex relax-
ation of (5). Such convex relaxations have been shown to be
tight for a number of non-convex problems (Li et al. 2013).

Because of the large number of possible label assign-
ments/ranks for the unlabeled instances, problem (7) in-
volves an exponential number of constraints. Usually, not all
of them are active, and using a small subset of these can lead
to a good approximate solution. This motivates the use of
the cutting-plane algorithm, which iteratively adds a cutting
plane to shrink the feasible region. Since the constraints in
problem (7) are linear in α, the cutting plane corresponds to
finding the most violated constraint for the current α (Nes-
terov 2003), i.e., solving the following optimization problem

argmax
ŷ∈Y

b∑
i=1

αi

(
perf(ŷ,yi)− perf(ŷ0,y

i)
)
. (8)

While this step can only be suboptimally solved in some
machine learning problems (Tsochantaridis et al. 2005;
Li et al. 2013), here, we show when the performance mea-
sure is either the Top-k Precision, Fβ score or AUC, Eq.(8)
has a closed-form optimal solution.

Closed-Form Solutions of Eq.(8) When α is known,
Eq.(8) reduces to the simpler problem:

max
ŷ∈Y

b∑
i=1

αi perf(ŷ,yi). (9)

In the following, we show that closed-form solution exists
when either the Top-k Precision, Fβ score or AUC is used as
performance measure.
Proposition 1. When the Top-k precision is used in Eq.(9),
any ŷ that ranks the unlabeled instances as s =

∑b
i=1 αiy

i

is optimal (ties are broken arbitrarily).

Proof. From Eq.(1), the optimal ŷ∗ of Eq.(9) only relates
to its ranking vector πŷ∗

. The key is to show πŷ∗
= πs.

Assume, to the contrary, that πŷ∗ �= πs. Then there exist
two unlabeled instances xl+p, xl+q such that πŷ∗

p > πŷ∗
q

but sp < sq . Define a new z such that πz = [πz
j] with

πz
j =

⎧⎪⎨
⎪⎩
πy∗
j if j �= p and j �= q

πŷ∗
p if j = q

πŷ∗
q if j = p

.

1818

From Eq.(1),
∑b

i=1
αiPre@k(ŷ∗,yi)−

∑b

i=1
αiPre@k(z,yi)

=
1

k

(∑b

i=1
αiy

i
p −

∑b

i=1
αiy

i
q

)
< 0,

which contradicts the optimality of ŷ∗. Thus πŷ∗
= πs.

Proposition 2. Assume that ŷ′1 = c, a constant. Let
s =

∑b
i=1

αi(1+β2)
c+β2Pyi

yi, where Pyi = yi′1 is the number

of positive labels in yi. When the Fβ score is used in Eq.(9),
the optimal ŷ∗ = [ŷ∗j] is given by

ŷ∗j =

{
1 πs

j > u− c
0 otherwise .

Proof. Expand Eq.(9) with Eq.(2), we have

∑b

i=1
αi

(1 + β2)ŷ′yi

ŷ′1+ β2yi′1
=

∑b

i=1

αi(1 + β2)ŷ′yi

c+ β2Pyi

= ŷ′s.

Eq.(9) is equivalent to

max
ŷ

ŷ′s s.t. ŷ′1 = c, ŷ ∈ {1, 0}u.

Obviously, selecting the largest c elements of s and setting
the corresponding ŷi entries to one is optimal.

Before showing the closed-form solution of Eq.(9) for
AUC, we first introduce the following Lemma.
Lemma 1. Eq.(3) can be rewritten as

AUC(ŷ,y)=

∑
p:1≤p≤u I(yp = 1)πŷ

p − 1
2 (Py + 1)Py

PyNy
.

(10)

Proof. Note that the AUC is proportional to the number of
positive-negative instance pairs such that the positive ones
are ranked higher than the negative ones. Denote these as
the correct pairs. The AUC can be rewritten as

AUC(ŷ,y) = number of correct pairs/PyNy.

Let [πŷ
1 , . . . , π

ŷ
Py

] be the ranks of positive instances, with

πŷ
1 > πŷ

2 > · · · > πŷ
Py

. The total number of correct pairs is

equal to
∑Py

i=1

(
πŷ
i −(Py−i+1)

)
=

∑Py

i=1 π
ŷ
i −

∑Py

i=1(Py−
i+ 1) =

∑
1≤p≤u I(yp = 1)πŷ

p − 1
2 (Py + 1)Py, and hence

Eq.(10).

Proposition 3. When the AUC is used in Eq.(9), any ŷ that
ranks the unlabeled instances as s =

∑b
i=1

αi

PyiNyi
yi is op-

timal.

Proof. From (3), the optimal ŷ∗ of Eq.(9) only relates to its
ranking vector πŷ∗

. From Lemma 1, on substituting Eq.(10)
into Eq.(9), we have

b∑
i=1

αiAUC(ŷ,yi) =

b∑
i=1

αi

∑
1≤p≤u I(y

i
p = 1)πŷ

p

PyiNyi

− h,

Algorithm 1 Cutting-plane algorithm for Eq.(7).
Input: {yi}bi=1.

1: Initialize ŷ0 =
∑b

i=1
1
by

i and working set C = {ŷ0}.
2: Solve the subproblem

min
α∈M,θ

θ (11)

s.t. θ ≥
∑b

i=1
αi

(
perf(ŷ,yi)− perf(ŷ0,y

i)
)
, ∀ŷ ∈ C

as a linear program, and obtain the solution α. Denote
the obtained objective value as ô;

3: Solve Eq.(8) via the closed-form solutions, and obtain
the solution ŷnew. Denote the obtained objective value
as o.

4: Update C = C⋃{ŷnew};
5: Repeat steps 2-4 until o− ô ≤ ε;
6: Output ŷ = ŷnew.

where h =
∑b

i=1 αi
(Pyi+1)Pyi

2PyiNyi
is a constant (not related to

ŷ). Now,

b∑
i=1

αi

∑
1≤p≤u

I(yip = 1)πŷ
p

PyiNyi

=
b∑

i=1

αi

∑
1≤p≤u

yipπ
ŷ
p

PyiNyi

= πŷ′
s.

Hence, maximizing πŷ′
s leads to πŷ having the same rank-

ing of elements in s.

Algorithm 1 shows the optimization procedure. It itera-
tively solves α via a small set of constraints (i.e., Eq.(11))
and finds a violated constraint according to the updated α
(i.e, Eq.(8)). Solving Eq.(11) leads to a small linear program
and solving Eq.(8) has closed-form solution. These allow
the proposed algorithm to be very efficient. After obtaining
the optimal α, the optimal solution of Eq.(8) is employed as
an approximate solution of Eq.(5).

Experiments

We evaluate the proposed UMVP method on a number of
binary classification data sets2 that cover a wide range of
properties (Table 1). The sample size ranges from 1,500 to
more than 70,000. The feature dimensionality ranges from
19 to more than 20,000. The proportion of classes (i.e., ratio
of the number of positive samples to that of negative sam-
ples) ranges from 0.03 to around 1. For each data set, 1% of
the samples are labeled and the rest are unlabeled. The same
class imbalance ratio is maintained on both sets. Each ex-
periment is repeated 10 times, and the average performance
on the unlabeled data is reported.

The semi-supervised learners used in UMVP are the semi-
supervised SVMs (S3VM’s) (Joachims 1999). By using 20

2Downloaded from http://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/, http://www.kyb.tuebingen.mpg.de/ssl-
book/, and from (Mallapragada et al. 2009) (for the ethn data set).
For the MNIST data set, we focus on its four most difficult binary
classification tasks (Zhang, Tsang, and Kwok 2007).

1819

Table 1: Results on Pre@k, F1 and AUC (all in percentages).
“Imbalance rate” is the ratio of the numbers of positive in-
stances to that of negative instances. � (resp., ♠) denotes
that the result is significantly worse (resp., better) than that
of SVMperf (the paired t-tests at 95% significance level).

Pre@k F1 AUC

COIL2 SVMperf 58.5 ± 3.9 62.2 ± 5.8 61.4 ± 4.7
samples: 1,500 self-SVMperf 57.3 ± 3.8 57.7 ± 4.9 58.0 ± 4.6 �
features: 241 S4VM 60.6 ± 4.8 61.1 ± 4.5 62.1 ± 4.1
Imbalance rate: 1.0 UMVP− 58.4 ± 4.7 59.8 ± 5.4 59.3 ± 3.4 �
1% labeled instances UMVP 58.7 ± 4.4 60.0 ± 5.6 62.2 ± 4.6
digit1 SVMperf 83.2 ± 3.8 79.5 ± 3.6 92.0 ± 2.8
samples: 1,500 self-SVMperf 84.5 ± 3.3 ♠ 85.5 ± 3.5 ♠ 86.8 ± 3.7 �
features: 241 S4VM 83.4 ± 3.3 83.2 ± 3.7 ♠ 89.6 ± 2.8 �
Imbalance rate: 0.96 UMVP− 87.0 ± 3.0 ♠ 86.6 ± 3.4 ♠ 94.7 ± 2.5 ♠
1% labeled instances UMVP 86.7 ± 3.0 ♠ 86.4 ± 3.3 ♠ 94.0 ± 2.4 ♠
ethn SVMperf 80.8 ± 4.0 78.0 ± 2.4 88.8 ± 3.3
samples: 2,630 self-SVMperf 86.4 ± 3.9 ♠ 84.5 ± 5.7 ♠ 81.5 ± 4.4 �
features: 30 S4VM 82.3 ± 5.1 81.7 ± 5.4 ♠ 79.7 ± 5.9 �
Imbalance rate: 0.99 UMVP− 83.2 ± 4.9 ♠ 83.4 ± 5.0 ♠ 91.7 ± 3.7 ♠
1% labeled instances UMVP 84.5 ± 5.4 ♠ 82.2 ± 5.5 ♠ 91.7 ± 3.0 ♠
mnist4vs9 SVMperf 91.4 ± 0.9 92.2 ± 0.9 97.2 ± 0.6
samples: 13,782 self-SVMperf 86.6 ± 1.8 � 93.8 ± 0.8 ♠ 96.4 ± 1.6
features: 629 S4VM 93.3 ± 0.6 ♠ 93.5 ± 0.9 ♠ 98.8 ± 0.5 ♠
Imbalance rate: 0.98 UMVP− 94.1 ± 0.5 ♠ 94.3 ± 1.4 ♠ 98.5 ± 0.3 ♠
1% labeled instances UMVP 94.0 ± 0.5 ♠ 94.1 ± 1.3 ♠ 97.9 ± 0.4 ♠
mnist3vs8 SVMperf 92.8 ± 1.1 93.3 ± 0.8 97.8 ± 0.6
samples: 13,966 self-SVMperf 90.3 ± 1.4 � 94.3 ± 1.2 ♠ 97.7 ± 0.7
features: 631 S4VM 93.8 ± 0.9 ♠ 94.3 ± 0.9 ♠ 99.1 ± 0.2 ♠
Imbalance rate: 1.05 UMVP− 94.4 ± 0.8 ♠ 95.0 ± 0.8 ♠ 98.3 ± 0.4 ♠
1% labeled instances UMVP 94.3 ± 0.8 ♠ 95.0 ± 0.8 ♠ 98.1 ± 0.6 ♠
mnist7vs9 SVMperf 91.7 ± 1.2 92.2 ± 1.0 97.0 ± 0.7
samples: 14,251 self-SVMperf 88.3 ± 1.4 � 94.2 ± 0.7 ♠ 96.0 ± 1.2 �
features: 600 S4VM 93.1 ± 1.1 ♠ 93.6 ± 1.0 ♠ 98.8 ± 0.4 ♠
Imbalance rate: 1.05 UMVP− 93.6 ± 0.7 ♠ 94.0 ± 0.7 ♠ 97.7 ± 0.4 ♠
1% labeled instances UMVP 93.4 ± 0.8 ♠ 93.8 ± 0.8 ♠ 97.5 ± 0.5 ♠
mnist1vs7 SVMperf 98.0 ± 0.2 98.1 ± 0.4 99.9 ± 0.0
samples: 15,170 self-SVMperf 93.8 ± 1.6 � 98.8 ± 0.4 ♠ 97.5 ± 1.0 �
features: 652 S4VM 98.4 ± 0.1 ♠ 99.0 ± 0.1 ♠ 99.9 ± 0.1 ♠
Imbalance rate: 1.08 UMVP− 98.6 ± 0.1 ♠ 99.1 ± 0.1 ♠ 99.9 ± 0.0 ♠
1% labeled instances UMVP 98.6 ± 0.1 ♠ 99.1 ± 0.1 ♠ 99.9 ± 0.0 ♠
adult-a SVMperf 62.2 ± 1.2 63.1 ± 1.1 86.8 ± 0.8
samples: 32,561 self-SVMperf 59.4 ± 1.6 � 58.4 ± 1.6 � 82.0 ± 2.8 �
features: 123 S4VM 59.9 ± 2.0 � 59.9 ± 2.1 � 76.4 ± 1.2 �
Imbalance rate: 0.32 UMVP− 61.2 ± 1.9 � 62.1 ± 1.0 � 86.5 ± 1.0 �
1% labeled instances UMVP 61.8 ± 1.4 62.2 ± 1.3 � 86.8 ± 0.8
w8a SVMperf 36.1 ± 4.1 24.8 ± 3.0 82.7 ± 3.0
samples: 49,749 self-SVMperf 32.2 ± 5.6 31.9 ± 5.7 ♠ 97.8 ± 0.2 ♠
features: 300 S4VM 35.9 ± 2.7 35.6 ± 1.9 ♠ 92.9 ± 1.3 ♠
Imbalance rate: 0.03 UMVP− 37.2 ± 4.4 34.5 ± 6.1 ♠ 79.1 ± 2.7 �
1% labeled instances UMVP 37.5 ± 2.9 35.1 ± 5.8 ♠ 82.9 ± 2.9 ♠
real-sim SVMperf 85.3 ± 0.6 54.6 ± 0.4 97.3 ± 0.2
samples: 72,309 self-SVMperf 76.5 ± 0.2 � 76.0 ± 0.2 ♠ 98.1 ± 0.1 ♠
features: 20,958 S4VM 89.1 ± 0.5 ♠ 89.2 ± 0.6 ♠ 98.8 ± 0.1 ♠
Imbalance rate: 0.44 UMVP− 88.9 ± 0.8 ♠ 89.3 ± 0.8 ♠ 98.0 ± 0.2 ♠
1% labeled instances UMVP 88.7 ± 1.2 ♠ 89.5 ± 1.1 ♠ 97.7 ± 0.2 ♠

random initial label assignments on the unlabeled data, 20
S3VM’s are obtained. Predictions on the unlabeled data
from these 20 S3VMs are then grouped into 5 clusters by
using the k-means clustering algorithm. The S3VM with
the smallest S3VM objective in each cluster is selected as
the semi-supervised learner of UMVP. The linear program
in Eq.(11) is solved by the Matlab function linprog, and ε in
Algorithm 1 is set to 10−6. When Fβ is used as the perfor-
mance measure, the c in Proposition 2 is set to the average
number of positive samples for the multiple learners., i.e.,
1
b

∑b
i=1(y

i)′1.

UMVP is compared with the following methods.

Table 2: A summary of the experimental results. For
each performance measure, the “average performance im-
provement” is the average of (performance value of the
semi-supervised learner − performance value of SVMperf)
over all data sets. “Win/tie/loss” counts the data sets for
which the semi-supervised learner is statistically signifi-
cantly better/comparable/significantly worse than SVMperf .
“(H, p-value)” of the Wilcoxon sign test is calcu-
lated from Win/Tie/Loss. H= −1/0/1 denotes that
the semi-supervised learner is statistically significantly
worse/comparable/significantly better than SVMperf , and
the corresponding p-value.

Pre@k F1 AUC

average Self-SVMperf -2.5 3.7 -0.9
performance S4VM 1.0 5.3 -0.5
improvement UMVP− 1.7 6.0 0.3

UMVP 1.8 5.9 0.8
win/tie/loss Self-SVMperf 2/2/6 8/1/1 2/2/6

S4VM 4/5/1 8/1/1 6/1/3
UMVP− 6/3/1 8/1/1 7/0/3
UMVP 6/4/0 8/1/1 8/2/0

sign test Self-SVMperf (0, 0.29) (1, 0.04) (0, 0.29)
(H, p-value) S4VM (0, 0.38) (1, 0.04) (0, 0.51)

UMVP− (0, 0.13) (1, 0.04) (0, 0.34)
UMVP (1, 0.03) (1, 0.04) (1, 0.01)

1. SVMperf (Joachims 2005)3: This is our baseline super-
vised model, which uses the SVM to optimize multivari-
ate performance measures with only labeled data.

2. Self-SVMperf : This is a semi-supervised extension of
SVMperf based on self-training (Yarowsky 1995). It
first trains a standard SVMperf (with only labeled data).
By adding the predicted labels on the unlabeled data as
“ground-truth”, another SVMperf is trained. This pro-
cess is repeated until predictions on the unlabeled data no
longer change or a maximum number of iterations (set to
25 in the experiments) is reached.

3. S4VM (Safe Semi-Supervised SVM) (Li and Zhou
2015)4: S4VM performs quite well in many scenarios
when using accuracy as performance measurement.

4. UMVP−, a variant of UMVP which assigns uniform
weights to the semi-supervised leaners.
For all methods, the C parameter in SVM is set to 1 and

the linear kernel is used. Parameters of S4VM are set as rec-
ommended in the package. Performance evaluation is based
on Pre@k (with k being the number of positive instances
in the test set), F1 and AUC. The experiments are used with
MATLAB 8.0.1 and LIBLINEAR 1.91. Experiments are run
on a PC with a 3.2GHz Core2 Duo CPU and 4GB memory.

We compare the safeness of SSL methods with the base-
line supervised model by the following:

1. Average performance improvement.
3http://www.cs.cornell.edu/People/tj/svm light/svm perf.html
4http://lamda.nju.edu.cn/code S4VM.ashx

1820

Table 3: Average CPU time (in seconds) with different performance measures for the various methods. For UMVP, the first
number inside brackets is the time for generating the SSL learners, and the second number is the time for optimization.

SVMperf Self-SVMperf S4VM UMVP
adult-a 0.844 145.516 22.403 34.811 (32.936 + 1.875)

mnist3vs8 3.622 621.665 148.980 87.891 (87.435 + 0.456)
mnist7vs9 3.093 638.300 116.440 72.622 (72.155 + 0.467)
mnist1vs7 2.791 465.190 101.235 57.697 (57.220 + 0.477)
mnist4vs9 3.411 597.095 121.038 87.179 (86.765 + 0.414)
real-sim 7.975 1073.755 93.880 129.196 (119.552 + 9.644)

w8a 1.486 888.995 35.172 38.985 (35.091 + 3.894)
ethn 0.247 9.737 2.074 3.521 (3.458 + 0.063)

COIL2 0.698 16.593 20.114 11.506 (11.466 + 0.04)
digit1 0.699 22.700 20.342 11.472 (11.430 + 0.042)

Pre@k F1 AUC

Figure 1: Average performance improvement of UMVP (i.e., (performance value of UMVP - performance value of
SVMperf)/(performance value of SVMperf)) versus number of semi-supervised learners.

2. Win/Tie/Loss: This characterizes the degree of perfor-
mance degradation of SSL methods.

3. Sign test: This characterizes the dependence between the
performance of SSL methods and data sets.
Table 1 shows the experimental results of the various

methods on all data sets. Table 2 summarizes the results.
On average performance improvement, UMVP achieves per-
formance improvement on all three performance measures.
S4VM does not achieve performance improvement on AUC.
Self-SVMperf does not achieve performance improvement
on Pre@k and AUC. Although UMVP− achieves perfor-
mance improvement on all three measures, its overall im-
provement is not as large as UMVP. In terms of win/tie/loss,
the UMVP method only has significant performance drop on
one data set, while the others all have significant drops in at
least 5 cases. In addition, the UMVP method achieves sig-
nificant improvements in 22 cases, which is the most among
all methods. In terms of the statistical significance test (us-
ing the Wilcoxon sign test at 95% significance level) of 10
data sets, the UMVP method is superior to the baseline su-
pervised model on all three performance measures, while the
other methods do not. In summary, the UMVP method ef-
fectively improves the safeness of SSL methods under mul-
tiple multivariate performance measures.

Table 3 shows the average training time of all methods
on all data sets and performance measures. SVMperf is the

fastest, because it is a supervised model using a small la-
beled data set. UMVP spends most of the time on generat-
ing the semi-supervised learners, but its optimization proce-
dure is fast (the number of iterations in Algorithm 1 is usu-
ally fewer than 100). Overall, the training time of UMVP
is comparable with S4VM, and is more efficient than Self-
SVMperf .

Figure 1 shows the effect on the performance of UMVP
with different numbers of semi-supervised learners. By set-
ting different numbers of clusters (2, 3, 5, 8, 10) in the k-
means clustering algorithm, UMVP obtains different num-
bers of learners. As can be seen, when the number of learn-
ers is relatively large (e.g., b ≥ 5), UMVP obtains robust
performance.

Conclusion and Future Work

Designing safe SSL approaches is challenging. We proposed
in this paper the UMVP method that rarely deteriorates its
performance in terms of multiple multivariate performance
measures when using unlabeled data. The proposed method
integrates a number of SSL results, and optimizes its worst-
case performance gain against a supervised model. This is
thus modeled as a maximin optimization. When the Top-
k Precision, Fβ score or AUC is used as the performance
measure, a minimax convex relaxation is obtained and this
can be efficiently solved. Experimental results demonstrate

1821

the ability of the proposed method in improving the safeness
of SSL under multiple multivariate performance measures.

In the future, it is worth understanding the sufficient and
necessary conditions of safe SSL. Extending safe SSL to
more performance measures like MAP (Yue et al. 2007) is
also a worthy problem.

References
Balcan, M. F., and Blum, A. 2010. A discriminative model
for semi-supervised learning. Journal of the ACM 57(3).
Blum, A., and Chawla, S. 2001. Learning from labeled and
unlabeled data using graph mincuts. In Proceedings of the
8th International Conference on Machine Learning, 19–26.
Blum, A., and Mitchell, T. 1998. Combining labeled and
unlabeled data with co-training. In Proceedings of the 7th
Annual Conference on Computational Learning Theory.
Chapelle, O.; Schölkopf, B.; and Zien, A., eds. 2006. Semi-
Supervised Learning. MIT Press.
Chawla, N. V., and Karakoulas, G. 2005. Learning from
labeled and unlabeled data: An empirical study across tech-
niques and domains. Journal of Artificial Intelligence Re-
search 23:331–366.
Cozman, F. G.; Cohen, I.; and Cirelo, M. 2002. Unla-
beled data can degrade classification performance of gen-
erative classifiers. In Proceedings of the 15th International
Florida Artificial Intelligence Research Society Conference,
327–331.
Joachims, T. 1999. Transductive inference for text classifi-
cation using support vector machines. In Proceedings of the
16th International Conference on Machine Learning, 200–
209.
Joachims, T. 2005. A support vector method for multivariate
performance measures. In Proceedings of the 22th Interna-
tional Conference on Machine Learning, 377–384.
Kelley, J. E. 1960. The cutting-plane method for solving
convex programs. Journal of the Society for Industrial and
Applied Mathematics 8(4):703–712.
Kim, S.-J., and Boyd, S. 2008. A minimax theorem with
applications to machine learning, signal processing, and fi-
nance. SIAM Journal on Optimization 19(3).
Li, M., and Zhou, Z.-H. 2005. SETRED: Self-training with
editing. In Proceedings of the 9th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, 611–621.
Li, Y.-F., and Zhou, Z.-H. 2011a. Improving semi-
supervised support vector machines through unlabeled in-
stances selection. In Proceedings of 25th AAAI Conference
on Artificial Intelligence, 386–391.
Li, Y.-F., and Zhou, Z.-H. 2011b. Towards making unlabeled
data never hurt. In Proceedings of the 28th International
Conference on Machine learning, 1081–1088.
Li, Y.-F., and Zhou, Z.-H. 2015. Towards making unlabeled
data never hurt. IEEE Transactions on Pattern Analysis and
Machine Intelligence 37(1):175–188.
Li, Y.-F.; Kwok, J.; Tsang, I.; and Zhou, Z.-H. 2013. Con-
vex and scalable weakly label SVMs. Journal of Machine
Learning Research 14:2151–2188.

Mallapragada, P.; Jin, R.; Jain, A.; and Liu, Y. 2009.
SemiBoost: Boosting for semi-supervised learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence
31(11):2000–2014.
Manning, C.; Raghavan, P.; and Schtze, H. 2008. Introduc-
tion to Information Retrieval. New York, NY: Cambridge
University Press.
Nesterov, Y. 2003. Introductory Lectures on Convex Opti-
mization: A Basic Course. Springer.
Nigam, K.; McCallum, A. K.; Thrun, S.; and Mitchell, T.
2000. Text classification from labeled and unlabeled docu-
ments using EM. Machine learning 39(2):103–134.
Singh, A.; Nowak, R.; and Zhu, X. 2009. Unlabeled data:
Now it helps, now it doesn’t. In Koller, D.; Schuurmans,
D.; Bengio, Y.; and Bottou, L., eds., Advances in Neural
Information Processing Systems 21. MIT Press. 1513–1520.
Sra, S.; Nowozin, S.; and Wright, S. J. 2012. Optimization
for Machine Learning. MIT Press.
Tsochantaridis, I.; Joachims, T.; Hofmann, T.; and Altun,
Y. 2005. Large margin methods for structured and inter-
dependent output variables. Journal of Machine Learning
Research 6:1453–1484.
Yang, T., and Priebe, C. 2011. The effect of model
misspecification on semi-supervised classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence
33(10):2093–2103.
Yarowsky, D. 1995. Unsupervised word sense disambigua-
tion rivaling supervised methods. In Proceedings of the 33rd
Annual Meeting on Association for Computational Linguis-
tics, 189–196.
Yue, Y.; Finley, T.; Radlinski, F.; and Joachims, T. 2007.
A support vector method for optimizing average precision.
In Proceedings of ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), 271–278.
Zhang, T., and Oles, F. 2000. The value of unlabeled data
for classification problems. In Proceedings of the 17th In-
ternational Conference on Machine Learning, 1191–1198.
Zhang, K.; Tsang, I. W.; and Kwok, J. T. 2007. Maximum
margin clustering made practical. In Proceedings of the
24th International Conference on Machine Learning, 1119–
1126.
Zhou, Z.-H., and Li, M. 2010. Semi-supervised learn-
ing by disagreement. Knowledge and Information Systems
24(3):415–439.
Zhou, Z.-H. 2012. Ensemble Methods: Foundations and
Algorithms. Boca Raton: FL: Chapman & Hall.
Zhu, X. 2007. Semi-supervised learning literature survey.
Technical report, University of Wisconsin-Madison.

1822

