
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Effective Decoding in Graph Auto-Encoder Using Triadic Closure

Han Shi,1 Haozheng Fan,1,2 James T. Kwok1

1Department of Computer Science and Engineering
Hong Kong University of Science and Technology, Hong Kong

2Amazon
{hshiac, jamesk}@cse.ust.hk, fanhaozh@amazon.com

Abstract

The (variational) graph auto-encoder and its variants have
been popularly used for representation learning on graph-
structured data. While the encoder is often a powerful graph
convolutional network, the decoder reconstructs the graph
structure by only considering two nodes at a time, thus ig-
noring possible interactions among edges. On the other hand,
structured prediction, which considers the whole graph simul-
taneously, is computationally expensive. In this paper, we uti-
lize the well-known triadic closure property which is exhib-
ited in many real-world networks. We propose the triad de-
coder, which considers and predicts the three edges involved
in a local triad together. The triad decoder can be readily used
in any graph-based auto-encoder. In particular, we incorpo-
rate this to the (variational) graph auto-encoder. Experiments
on link prediction, node clustering and graph generation show
that the use of triads leads to more accurate prediction, clus-
tering and better preservation of the graph characteristics.

Introduction
With the proliferation of online social networks, an enor-
mous number of people are now connected digitally. Besides
people, almost everything is also increasingly connected ei-
ther physically or by all sorts of relationships, leading to the
recent popularity of the internet of things and knowledge
graphs. In today’s big data era, it is thus important for or-
ganizations to derive the most value and insight out of this
colossal amount of data entities and inter-relationships.

In general, nodes in the graph represent data entities,
while edges represent all sorts of fine-grained relation-
ships. For example, in a social network, the nodes are
users that are connected by edges denoting pairwise friend-
ships. In an author collaboration network, the edges de-
note co-authorship relationships. Besides social networks
and knowledge graphs, data in domains such as chemistry
and natural language semantics are often naturally repre-
sented as graphs.

There are a number of important tasks in graph analytics.
A prominent example is link prediction (Wang, Chen, and
Li 2017), which predicts whether an edge should exist be-
tween two given nodes. Since its early success at LinkedIn,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

link recommendation has attracted significant attention in
social networks, and also in predicting associations between
molecules in biology, and the discovery of relationships in
a terrorist network. Other popular graph analytics tasks in-
clude the clustering of nodes (Wang et al. 2017), and auto-
matic graph generation (Bojchevski et al. 2018). Node clus-
tering aims to partition graph nodes into a set of clusters
such that the intra-cluster nodes are much related (densely
connected) with each other as compared to the inter-cluster
nodes. These cluster structures occur frequently in many do-
mains such as computer networks, sociology, and physics.
Graph generation refers to the task of generating similar out-
put graphs given an input graph. It can be used in the discov-
ery of molecule structures and dynamic network prediction.

However, graphs are typically difficult to analyze because
they are large and highly sparse. Recently, there is a surge
of interest in learning better graph representations (Goyal
and Ferrara 2018; Hamilton, Ying, and Leskovec 2017). Dif-
ferent approaches are proposed to embed the structural and
attribute information in a graph to a low-dimensional vec-
tor space, such that both the neighborhood similarity and
community membership are preserved (Zhang et al. 2018).
A particularly successful unsupervised representation learn-
ing model on graphs is the variational auto-encoder (VAE)
(Kingma and Welling 2014), and its variants such as the
variational graph auto-encoder (VGAE), graph auto-encoder
(GAE) (Kipf and Welling 2016b), adversarially regularized
graph auto-encoder (ARGA), and adversarially regularized
variational graph auto-encoder (ARVGA) (Pan et al. 2018).
All these auto-encoder models consist of an encoder, which
learns the latent representation, and a decoder, which recon-
structs the graph-structured data based on the learned repre-
sentation. The encoder is often based on the powerful graph
convolutional network (GCN) (Kipf and Welling 2016a).
However, the decoder is relatively primitive, and prediction
of a link is based simply on the inner product between the
latent representations of the nodes involved.

As nodes in a graph are interrelated, instead of predict-
ing each link separately, all the candidate links in the whole
graph should be considered together, leading to a structured
prediction problem. However, learning of structured predic-
tion models is often NP-hard (Globerson et al. 2015). A re-

906

cent model along this direction is the structured prediction
energy network (SPEN) (Belanger and McCallum 2016).
However, design of the underlying energy function is still an
open question, and computation of the underlying Hessian
is computationally expensive.

On the other hand, an interesting property exhibited in
many real-world networks is the so-called triadic closure,
which is first proposed by Simmel (1908). This mechanism
states that for any three nodes {i, j, k} in a graph, if there
are edges between (i, j) and (i, k), it is likely that an edge
also exists between j and k. It is then popularized by Gra-
novetter (1973), who demonstrated empirically that triadic
closure can be used to characterize link connections in many
domains. For example, if two people (A and B) in a friend-
ship network have a common friend, it is likely that A and B
are also friends. If two papers in a citation network cite the
same paper (suggesting that they belong to the same topic), it
is likely that one also cites the other. Besides, the triadic clo-
sure is also fundamental to the understanding and prediction
of network evolution and community growth (Caplow 1968;
Bianconi et al. 2014; Zhou et al. 2018).

In this paper, we utilize this triadic closure property as an
efficient tradeoff between structured prediction (which con-
siders the whole graph simultaneously but is expensive) and
individual link prediction (which is simple but ignores in-
teractions among edges). Specifically, we propose the triad
decoder, which predicts the three edges involved in a triad
together. The triad decoder can readily replace the vanilla
decoder in any graph-based auto-encoder. In particular, we
incorporate this into VGAE and GAE, leading to the triad
variational graph auto-encoder (TVGA) and triad graph
auto-encoder (TGA). Experiments are performed on link
prediction, node clustering and graph generation using a
number of real-world data sets. The prediction and cluster-
ing results are more accurate, and the graphs generated pre-
serve more characteristics of the input graph, demonstrating
the usefulness of triads in graph analytics.

Related Work: Graph Auto-Encoder
The variational graph auto-encoder (VGAE) and its non-
variational variant graph auto-encoder (GAE) are introduced
in (Kipf and Welling 2016b). Using the variational auto-
encoder (VAE) framework (Kingma and Welling 2014), they
are based on unsupervised deep learning model consisting of
an encoder and a decoder.

GCN Encoder

Let the graph be G = (V,E), where V is a set of N nodes,
and E is the set of edges. Let its adjacency matrix be A. The
encoder is a graph convolutional network (GCN) (Kipf and
Welling 2016a), which is a deep learning model for graph-
structure data. For a L-layer GCN, the layer-wise propaga-
tion rule is given by:

H(l+1) = f(H(l), A) = relu(D̃
1
2 ÃD̃− 1

2H(l)W (l)),

where Ã = A + I , I is the identity matrix, D̃ is a diagonal
matrix with D̃ii =

∑N
j=1 Aij , H(l) and W (l) are the fea-

ture map and weight at the lth layer, respectively, and relu(·)

is the ReLU activation function. H(0) is the matrix of node
feature vectors X , and H(L) is the (deterministic) graph em-
bedding matrix Z. Often, L = 2 (Kipf and Welling 2016b),
leading to the following encoder:

H(1) = f(X,A), Z = f(H(1), A). (1)

In VGAE, the embedding (encoder output) is probabilis-
tic. Let zi be the embedding of node i. It is assumed to follow
the normal distribution:

q(zi|X,A) = N (μi, diag(σ2)), (2)

where μi and log σ are outputs from two GCNs that share the
first-layer weights. The distribution for all the embedding
vectors is then q(Z|X,A) =

∏N
i=1 q(zi|X,A).

Inner Product Decoder

The decoder is often a vanilla model based on the inner
product between the latent representations of two nodes. For
GAE, the graph adjacency matrix Â is reconstructed from
the inner product of two node embeddings as:

Â = σ(ZZT), (3)

where σ is the sigmoid activation function. For the VGAE,
the decoder is also based on inner products, but is proba-
bilistic:

p(Â|Z) =
N∏
i=1

N∏
j=1

p(Âij |zi, zj),

where p(Âij |zi, zj) = σ(zTi zj).

Triad Decoder

Based on triadic closure, the presence of a particular edge
in a triad is dependent on whether the other two edges are
present. Specifically, consider the triad Δ = (i, j, k). Let
Iij be the indicator function representing whether nodes i
and j are connected (i.e., Iij = 1, if i, j are connected;
and 0 otherwise). As the presence of edges (i, j), (i, k),
and (j, k) are interrelated, we propose to predict the three
edge probabilities {P (Iij |Δ), P (Iik|Δ), P (Ijk|Δ)} (de-
noted {eij(Δ), eik(Δ), ejk(Δ)}) together, using as inputs
the three embeddings zi, zj , zk, where zi’s are the latent rep-
resentations of the nodes learned by the graph encoder.

Structure

The structure of the proposed triad decoder is shown in Fig-
ure 1. First, we perform 1 × 1 convolution, which corre-
sponds to a linear transform, on the three node embeddings
zi, zj , zk. This is followed by the rectified linear (ReLU)
nonlinearity, producing the vector ztriplet. Its output for the
lth dimension is ReLU(wizil+wjzjl+wkzkl). Note that this
contains information from the whole triad. Vector ztriplet is
then further nonlinearly transformed by the fully connected
(FC) layer and another ReLU nonlinearity. The whole block,
which is denoted F , is finally merged with the three inner
products constructed from zi, zj , zk. This additional inner

907

Figure 1: Structure of the triad decoder.

product connections serve similarly as the residual connec-
tion in residual networks (He et al. 2016). The output of the
triad decoder is:

[eij(Δ), eik(Δ), ejk(Δ)]

= σ(F(zi, zj , zk) + [zTi zj , z
T
i zk, z

T
j zk]). (4)

When F outputs a zero mapping, it reduces to the standard
inner product decoder.

Model Training

The triad decoder can be readily used to replace the decoder
in any graph-based auto-encoder. In this paper, we incor-
porate this into the VGAE and GAE, leading to the triad
variational graph auto-encoder (TVGA) and the triad graph
auto-encoder (TGA), respectively (Figure 2).

The whole network can be trained end-to-end, and the
training procedure is shown in Algorithm 1. The total num-
ber of triads in the graph is

(
N
3

)
, which is large. As is com-

mon in deep learning, we use stochastic gradient descent
(SGD) or its variants for better scalability. In particular, the
popular Adam optimizer (Kingma and Ba 2014) will be em-
ployed in the experiments. In each iteration, we sample B
triads {Δ1, . . . ,ΔB} from the graph to form a mini-batch
B. The probability for the presence of a particular edge (i, j)
in the mini-batch is

ēij = Eij/Mij , (5)

where Eij =
∑B

m=1 eij(Δm), with eij(Δm) = 0 if (i, j) /∈
Δm. Mij is the total number of times (i, j) observed in the
mini-batch (i.e., Mij =

∑B
m=1 Iij(Δm), where Iij(Δm) =

1 if (i, j) ∈ Δm; and 0 otherwise).

Optimization Objective First, we consider TVGA. Let
Aij be the observed graph adjacency matrix. As in (Kipf and

Algorithm 1 Training the triad variational graph auto-
encoder (TVGA) and triad graph auto-encoder (TGA) using
SGD. Here, the encoder and decoder parameters are com-
bined and denoted by w. Lw({ēij}, A,X) is the loss func-
tion (for TVGA, it is the negative of (6); for TGA, it is (7)).

1: initialize w0;
2: t← 0;
3: while w not converged do
4: t← t+ 1;
5: encode the graph G to latent embedding Z using (1)

for TGA and (2) for TVGA;
6: sample B triads to form mini-batch B;
7: obtain ēij’s for the triads from (4) and (5);
8: wt ← wt−1 − α∇wLwt−1

({ēij}, A,X);
9: end while

10: return Z.

Welling 2016b), this variational model is trained by maxi-
mizing the variational lower bound:

∑
triad∈B

∑
(i,j)∈triad

(Aij log ēij + (1−Aij) log(1− ēij))

−DKL[q(Z|X,A)||p(Z)] (6)

w.r.t. the encoder parameters (W (1),W (2) of the GCN) and
decoder parameters. Here, the first term is the negative of
the graph reconstruction error, while the second term is
the Kullback-Leibler divergence between the encoder out-
put distribution for the embeddings (q(·) in (2)) and some
prior distribution p(·). In this paper, we assume that the la-
tent dimensions are i.i.d., and follow the standard normal
distribution: p(Z) =

∏N
i=1 p(zi) =

∏N
i=1N (0, I).

As for the non-variational version TGA, the Kullback-
Leibler divergence is removed from (6) as in (Pan et al.
2018), and only the following graph reconstruction error is
minimized:

−
∑

triad∈B

∑
(i,j)∈triad

(Aij log ēij+(1−Aij) log(1− ēij)). (7)

Sampling the Training Triads Real-world networks are
typically sparse. If triads are sampled randomly from the
graph in step 6 (of Algorithm 1), it is likely that most node
pairs in the training triads are disconnected. This resultant
high class imbalance can lead to severe performance deteri-
oration for most classifiers.

To alleviate this problem, we construct a more balanced
training data set by sampling each triad Δ = (i, j, k) as fol-
lows. First, a node i is randomly sampled from the graph. Let
N (i) be the set containing all neighbors of i. With probabil-
ity p, we sample the next node j fromN (i); and with proba-
bility 1−p, sample j from a faraway node not inN (i). After
sampling j, the last node k in the triad is similarly sampled
from N (j) with probability p; and from a node not in N (j)
with probability 1− p.

The class imbalance can be controlled by appropriately
setting p. First, note that the expected number of connected
edges in a triad Δ is E[Iij + Ijk + Iik] = E[Iij] +

908

Figure 2: Structure of the graph-based auto-encoder with a triad decoder.

E[Ijk]+E[Iik]. Using the above sampling scheme, E[Iij] =
E[Ijk] = p. As for E[Iik], this depends on the cases where
pairs (i, j) and/or (j, k) are connected (which are indepen-
dent based on the sampling scheme). Thus,

E[Iij + Ijk + Iik] =p+ p+ p2P (Iik|observed 2 edges)
+ 2p(1− p)P (Iik|observed 1 edge)

+ (1− p)2P (Iik|observed 0 edge).

P (Iik|observed 2 edges) can be estimated by the global
clustering coefficient (Wasserman and Faust 1994), which
is defined as the ratio of the number of closed triads (i.e.,
all three nodes in the triad are connected to each other) to
the total number of triads. For P (Iik|observed 1 edge) and
P (Iik|observed 0 edge), intuitively, the effect of the pres-
ence of one or zero edge on Iik is small. Thus, we simply
assume that both probabilities are the same as the prior prob-
ability P (Iik), which can be estimated from the graph den-
sity (Lawler 2001). Hence,

E[Iij + Ijk + Iik] = 2p+ p2 · (clustering coefficient)

+(1− p2)P (Iik).

To construct a balanced training set, the desired p can be
obtained by setting the above to 3/2.

Space Complexity VGAE/GAE (Kipf and Welling
2016b) and ARVGA/ARGA (Pan et al. 2018) take the
whole graph as input. The space complexities are both
O(N2), where N is the number of nodes. For large
graphs, the adjacency matrix may not even be able to
fit into memory. In contrast, the proposed algorithm is
trained on mini-batches of triads. The space complexity is
O(max(N,B)), which are much smaller than N2 and thus
much more scalable.

Inference

After training, the learned model can be used on a variety of
graph learning tasks. In this section, we focus on link pre-
diction, node clustering and graph generation.

Link Prediction

In link prediction, one wants to predict whether an edge ex-
ists between nodes i and j. Recall that the proposed triad
decoder predicts all three edges in the whole triad simulta-
neously, and so the three nodes need to be inputted together.
In constructing these triads during inference, intuitively a
node faraway from the node pair (i, j) carries little informa-
tion. Hence, instead of using both neighboring and faraway

nodes to construct triads as in training, we only aggregate
predictions from nodes k that are in N (i) ∪ N (j). For each
such k, the decoder predicts the probability for each (i, j)
edge using (4). The average probability over all these k’s is
taken as the final probability for the presence of an edge.

On using NetGAN for link prediction, one has to first gen-
erate a number of random walks and accumulate the cor-
responding transition counts to an N × N matrix, which
is then thresholded to produce the predicted links. Thus,
the space and time complexities are both O(N2). In con-
trast, the proposed algorithm predicts the edge directly by
(5) in O(1) time. With Nneighbr nodes in the union of neigh-
borhoods of i and j (typically, Nneighbr � N), the total
complexity is O(Nneighbr). Hence, the proposed algorithm
is much more efficient. On the other hand, VGAE/GAE and
ARVGA/ARGA only take O(1) space and time. However,
as will be seen in the experiments, their link prediction re-
sults are much inferior.

Node Clustering

With the learned node embedding, one can apply a standard
clustering algorithm to cluster the nodes. Recall that the en-
coder and decoder in a graph-based auto-encoder are trained
together in an end-to-end manner. Hence, though the de-
coder is not explicitly used in node clustering, an improved
decoder (such as the proposed triad decoder) can guide the
learning of better node representations in the embedding
space.

Graph Generation

TVGA, which is based on the VAE framework, can be used
to generate graphs. TGA, on the other hand, is not proba-
bilistic and cannot be used for graph generation.

Let N ′ be the target number of nodes to be generated. We
first randomly sample N ′ zi’s from the posterior (normal)
distribution of TVGA in the latent space. We then randomly
sample K triads from these zi’s. For each triad, (4) is used
to predict the probabilities for the three constituent edges.
Finally, the predictions are averaged over all K triads, and
stored in an estimated adjacency matrix Â. To ensure sym-
metry, we replace each entry Âij of Â by (Âij + Âji)/2.

We assume that the generated graph has to be con-
nected. Inspired by NetGAN, the following strategy is used
to generate such a graph from Â. First, for every node i,
we sample an edge eij to node j with probability pij =

Âij/
∑N

k=1 Âik, and add it to the graph if it is new. Af-
terwards, we continue adding edges to the graph until the

909

Table 1: Statistics for the (largest connected component of)
graph data sets used.

Cora Citeseer PubMed

number of nodes 2,485 2,120 19,717
number of edges 5,069 3,679 44,324
number of classes 7 6 3

feature dim 1,433 3,703 500
clustering coefficient 0.2376 0.1696 0.0602

graph density 0.0016 0.0016 0.0002

target number of edges have been generated. However, un-
like NetGAN which uses sampling, we simply add edges in
descending probability pij = Âij/

∑N
u=1

∑N
v=1 Âuv . Em-

pirically, this has better performance as the whole local triad
information is used in the proposed algorithm, and so pij is
more reliable.

Experiments

In this section, we demonstrate the performance of the pro-
posed algorithm on link prediction, node clustering and
graph generation. Experiments are performed on three stan-
dard benchmark citation graph data sets1 (Sen et al. 2008):
Cora, Citeseer, and Pubmed (Table 1). Each node represents
an article, and has a boolean feature vector whose entries
indicate whether a specific word occurs in the article. Each
node also has a label, indicating the class it belongs to. The
edges are citation links. We treat the graphs as undirected
graphs, and all self-loops are removed. Moreover, we only
use the largest connected component in each graph.

Link Prediction

In this experiment, 85% of the edges and non-edges (un-
connected nodes) from each graph are randomly selected to
form the training set, another 10% is used as the validation
set, and the remaining 5% as testing set. The proposed algo-
rithm uses a mini-batch size of 5,000. Adam (Kingma and
Ba 2014) is the optimizer, with a learning rate of 0.0005.
Both the hidden layer and embedding layer of the encoder
have 32 hidden units. The convolution layer in the triad de-
coder has 4 filters (i.e., the dimension of ztriplet is 1×32×4).

Triad Sampling Scheme First, we study how the pro-
posed sampling scheme alleviates the class imbalance prob-
lem. Figure 3 shows the proportion of existent edges in the
triads, with different sampling probabilities p.

With random sampling (yellow dot in the figure), the ra-
tio of existent edges is very small, and the data set is highly
imbalanced. As expected, using a larger p means that node j
is more likely to be connected to node i, and node k is more
likely to be connected to node j, leading to a higher propor-
tion of edges being observed in the sampled triads. The red
dot corresponds to the p value obtained by the proposed sam-
pling scheme. As can be seen, the ratios of existent edges are

1http://www.cs.umd.edu/∼sen/lbc-proj/LBC.html

Table 2: Link prediction accuracy (%). TVGA(rand) and
TGA(rand) are variants of TVGA and TGA, respectively,
that use random triad sampling.

Cora Citeseer PubMed
AUC AP AUC AP AUC AP

node2vec 86.9 88.7 88.1 89.2 92.2 92.3
SC 87.8 91.5 86.2 89.2 97.1 96.1

NetGAN 90.9 92.7 92.9 94.6 88.2 88.1
SEAL 93.3 94.6 92.8 93.4 95.8 96.3
VGAE 94.4 95.9 93.4 95.2 96.2 96.4
GAE 93.1 95.0 91.5 92.6 97.1 97.4

ARVGA 93.8 94.8 94.4 95.7 98.0 98.2
ARGA 94.2 95.6 93.5 95.0 95.5 96.0

TVGA(rand) 68.5 68.5 60.5 65.3 82.9 81.2
TVGA 96.0 96.3 96.2 96.5 98.5 98.7

TGA(rand) 76.3 76.9 69.2 69.1 89.6 88.7
TGA 95.6 96.2 96.5 97.0 98.2 98.4

all close to 0.5 on the three data sets, indicating that the pro-
posed sampling scheme has effectively alleviated the class
imbalance problem.

Comparison with the State-of-the-Art The proposed al-
gorithm (using both random triad sampling and the pro-
posed sampling scheme) is compared with the following
baselines: (i) node2vec (Grover and Leskovec 2016); (ii)
spectral clustering (SC) (Bruna et al. 2014); (iii) NetGAN2

(Bojchevski et al. 2018); (iv) SEAL (Zhang and Chen
2018); (v) variational graph auto-encoder (VGAE) (Kipf and
Welling 2016b); (vi) graph auto-encoder (GAE) (Kipf and
Welling 2016b); (vii) adversarially regularized variational
graph auto-encoder (ARVGA) (Pan et al. 2018); and (viii)
adversarially regularized graph auto-encoder (ARGA) (Pan
et al. 2018). SC and node2vec are only used to generate node
embeddings. The inner product decoder in (3) is then used to
obtain edge probabilities. NetGAN generates random walks
and accumulates the corresponding transition counts, which
are used to measure how likely there is an edge between two
nodes. Note that node2vec, SC and NetGAN do not make
use of node features. The other four baselines use the graph
convolutional network (Kipf and Welling 2016a) as encoder.
In particular, ARVGA and ARGA are modified from VGAE
and GAE, respectively, by adding a discriminator that are
trained adversarially.

For performance evaluation, we use the area under the
ROC curve (AUC) and average precision (AP) as in (Kipf
and Welling 2016b).

Results are shown in Table 2. As can be seen, node2vec,
SC and NetGAN, which do not utilize node features, have
the worst performance. TVGA and TGA outperform the
other VAE-based methods, showing that triad information
leads to more accurate predictions. Moreover, the pro-
posed triad sampling scheme performs significantly better
than random triad sampling (TVGA(rand) and TGA(rand)).
Hence, we will only experiment with the proposed triad

2NetGAN has two early stopping schemes. Here, we use VAL-
CRITERION as it is more related to generalization properties.

910

Figure 3: Ratio of existent edges in each triad, with different sampling probabilities p.

Table 3: Node clustering performance on Cora.
acc NMI F1 precision adj-RI

node2vec 0.674 0.475 0.658 0.689 0.422
SC 0.299 0.077 0.088 0.294 0.001

TADW 0.604 0.438 0.553 0.613 0.320
VGAE 0.662 0.482 0.639 0.648 0.433
GAE 0.602 0.460 0.591 0.591 0.389

ARVGA 0.616 0.457 0.599 0.608 0.378
ARGA 0.687 0.518 0.677 0.692 0.455

TVGA 0.753 0.591 0.731 0.781 0.560
TGA 0.728 0.558 0.711 0.747 0.512

sampling scheme in the sequel.

Node Clustering

In this section, we consider the unsupervised task of clus-
tering nodes in the graph. We perform clustering on the ob-
tained node embeddings using the K-means clustering al-
gorithm, where K is set to be the number of classes in Ta-
ble 1. The following baselines are compared with the pro-
posed algorithm: (i) node2vec; (ii) spectral clustering (SC);
(iii) text-associated DeepWalk (TADW) (Yang et al. 2015);
(iv) VGAE; (v) GAE; (vi) ARVGA; and (vii) ARGA. SC
is a general clustering algorithm, while TADW is designed
specifically for graphs. We do not compare with SEAL and
NetGAN, since they do not produce node embeddings for
clustering.

The node labels in Table 1 are used as ground-truth clus-
tering labels. For performance evaluation, we follow (Xia
et al. 2014) and first match the predicted labels with the
ground-truth labels using the Munkres assignment algorithm
(Munkres 1957), and then report the (i) accuracy (acc); (ii)
normalized mutual information (NMI); (iii) F1-score (F1);
(iv) precision; and (v) adjusted rand index (adj-RI). As in
(Pan et al. 2018), we only evaluate on the Cora and Citeseer
data sets.

Results on Cora and Citeseer are shown in Tables 3 and 4.
TVGA and TGA outperform the other methods on both data
sets across all metrics. SC does not perform well, as it does
not utilize node features and is not designed for graphs.

Table 4: Node clustering performance on Citeseer.
acc NMI F1 precision adj-RI

node2vec 0.478 0.291 0.461 0.531 0.235
SC 0.258 0.037 0.090 0.247 0.003

TADW 0.581 0.371 0.480 0.481 0.354
VGAE 0.515 0.332 0.486 0.551 0.273
GAE 0.430 0.245 0.421 0.555 0.118

ARVGA 0.580 0.337 0.530 0.547 0.322
ARGA 0.584 0.370 0.536 0.572 0.339

TVGA 0.591 0.365 0.544 0.565 0.339
TGA 0.611 0.401 0.564 0.600 0.387

Graph Generation

In this experiment, we train the model on an input graph, and
then try to generate similar graphs. Following (Bojchevski et
al. 2018), we only experiment on the Cora and Citeseer data
sets. Moreover, as NetGAN can only generate graphs with
the same number of nodes as the input graph, we set the
numbers of nodes and edges to be generated to be equal to
those in the input graph.

The following baselines are compared with the pro-
posed model: (i) configuration model (conf. model) (Mol-
loy and Reed 1995); (ii) degree-corrected stochastic block
model (DC-SBM) (Karrer and Newman 2011); (iii) Net-
GAN3; (iv) GraphRNN (You et al. 2018); (v) variational
graph auto-encoder (VGAE); and (vi) adversarially regu-
larized variational graph auto-encoder (ARVGA). The con-
figuration model and DC-SBM are classic graph genera-
tion algorithms, which model certain graph statistics di-
rectly. NetGAN generates graphs via accumulating random
walks. GraphRNN generates nodes sequentially. Besides,
note that the configuration model, DC-SBM, NetGAN and
GraphRNN do not utilize node features. Moreover, we do
not compare with GraphVAE (Simonovsky and Komodakis
2018) and the graph neural network based model in (Li et al.
2018), as they can only be used on very small graphs.

As in (Bojchevski et al. 2018), performance is evaluated
by a number of statistics measured on the generated graph.
These include the Gini coefficient, maximum degree, num-

3Here, we use the early stopping scheme EO-CRITERION. As
discussed in (Bojchevski et al. 2018), this gives the user control
over graph generation.

911

Table 5: Statistics for the generated graphs on Cora. Results are averaged over 5 runs.
Gini coeff. max degree triangle count assortativity power law exp. clustering coeff. charac. path len. avg rank

avg std avg std avg std avg std avg std avg std avg std

original input 0.397 168 1558 -0.071 1.885 4.24e-3 6.31

conf. model 0.397 ± 0.000 168 ± 0.00 113.6 ± 10.8 -0.019 ± 0.008 1.885 ± 0.000 3.09e-4 ± 2.94e-5 4.82 ± 0.01 3.57
DC-SBM 0.476 ± 0.003 123 ± 7.06 333 ± 25.5 -0.028 ± 0.007 1.854 ± 0.004 1.75e-3 ± 1.15e-4 4.88 ± 0.02 4.14
NetGAN 0.372 ± 0.003 131 ± 2.87 874.0 ± 13.5 -0.074 ± 0.003 1.861 ± 0.002 4.63e-3 ± 1.63e-4 5.86 ± 0.02 2.29

GraphRNN 0.315 ± 0.006 33 ± 6.11 65.0 ± 11.3 0.095 ± 0.055 1.845 ± 0.007 3.48e-3 ± 8.52e-4 5.70 ± 0.08 5.00
VGAE 0.509 ± 0.002 348 ± 2.58 3731.0 ± 22.4 -0.154 ± 0.001 2.055 ± 0.004 1.04e-3 ± 2.15e-5 5.04 ± 0.04 6.00

ARVGA 0.563 ± 0.001 239 ± 6.12 7511.0 ± 337.0 -0.141 ± 0.002 2.168 ± 0.005 4.67e-3 ± 2.56e-4 6.02 ± 0.07 5.00

TVGA 0.389 ± 0.002 152 ± 5.84 1258.6 ± 32.0 -0.053 ± 0.002 1.879 ± 0.002 4.26e-3 ± 3.29e-4 5.42 ± 0.03 2.00

Table 6: Statistics for the generated graphs on Citeseer. Results are averaged over 5 runs.
Gini coeff. max degree triangle count assortativity power law exp. clustering coeff. charac. path len. avg rank

avg std avg std avg std avg std avg std avg std avg std

original input 0.428 99 1084 0.008 2.071 1.30e-2 9.33

conf. model 0.428 ±0.000 99 ±0.00 43.2 ±8.4 -0.011 ±0.010 2.071 ±0.000 5.18e-4 ±1.01e-4 5.28 ±0.04 3.43
DC-SBM 0.514 ±0.006 90 ±3.56 158.2 ±11.3 0.020 ±0.006 1.957 ±0.008 2.20e-3 ±1.20e-4 5.09 ±0.03 4.29
NetGAN 0.365 ±0.003 73.2 ±4.31 592.8 ±27.5 -0.043 ±0.005 1.988 ±0.003 1.54e-2 ±1.60e-3 7.55 ±0.13 3.14
GraphRNN 0.313 ±0.005 17 ±1.85 89.2 ± 7.7 0.066 ±0.015 1.964 ±0.018 1.52e-2 ±1.71e-3 7.55 ±0.25 4.43
VGAE 0.495 ±0.003 196 ±4.17 4037 ±114.4 -0.035 ±0.006 2.221 ± 0.006 5.73e-3 ±3.27e-4 7.03 ±0.17 5.29
ARVGA 0.524 ±0.004 139 ±8.61 6126.8 ±194.3 0.017 ±0.018 2.293 ±0.012 1.99e-2 ±2.58e-3 7.90 ±0.18 4.43

TVGA 0.428 ±0.002 86 ±3.07 1288.2 ±40.0 0.033 ±0.007 2.068 ±0.004 1.78e-2 ±1.17e-3 6.35 ±0.06 2.71

Figure 4: An original subgraph from Cora, and the corre-
sponding subgraphs generated by various methods.

ber of triangles, assortativity (i.e., Pearson correlation of de-
grees of connected nodes), power law exponent (i.e., expo-
nent of the power law distribution for degrees), clustering
coefficient (as defined in NetGAN), and characteristic path
length (i.e., average number of steps along the shortest paths
for all node pairs).

Tables 5 and 6 show the results on Cora and Citeseer.
Though the configuration model and DC-SBM excel at some
metrics that they directly model (such as “maximum degree”
and “power law exponent”), they fail to reproduce others.
GraphRNN does not perform well. It has to be trained on
all breadth-first-search orderings (which can be in the or-
der of O(|V |!)). In (You et al. 2018), GraphRNN has only
been trained on small graphs with a maximum of 500 nodes
(while the Cora and Citeseer data sets here are much larger).
The rightmost columns in Tables 5 and 6 show the average
rank of each method over all statistics. TVGA, by utilizing
both pairwise node information and triadic structure, ranks
the highest and generates graphs with similar statistics to the

Figure 5: An original subgraph from Citeseer, and the corre-
sponding subgraphs generated by various methods.

original one (Hamilton, Ying, and Leskovec 2017).
Figures 4 and 5 show parts of the generated graphs. As

can be seen, the graphs generated by TVGA are more sim-
ilar to the original graphs than the others. For example, in
Figure 4, both the input and TVGA-generated graphs have
three dominant clusters. However, this is not obvious in the
other graphs generated. Similarly, in Figure 5, one can ob-
serve three dominant clusters (arranged in a triangle) in both
the input and TVGA-generated graphs, but not in the others.

Conclusion

In this paper, we proposed a novel triad decoder that uses the
whole local triad information, and is able to model the triadic
closure property that is fundamental in real-world networks.
It can be readily used in any graph-based auto-encoder. Ex-
perimental results show that the proposed decoder, when
used with the (variational) graph auto-encoder, outperforms
the state-of-the-art on link prediction, node clustering and
graph generation tasks.

912

Acknowledgement

This work was supported in part by Huawei PhD Fellowship.

References

Belanger, D., and McCallum, A. 2016. Structured prediction
energy networks. In International Conference on Machine
Learning, 983–992.
Bianconi, G.; Darst, R. K.; Iacovacci, J.; and Fortunato, S.
2014. Triadic closure as a basic generating mechanism
of communities in complex networks. Physical Review E
042806.
Bojchevski, A.; Shchur, O.; Zügner, D.; and Günnemann, S.
2018. NetGAN: Generating graphs via random walks. In
International Conference on Machine Learning, 609–618.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014.
Spectral networks and locally connected networks on
graphs. In International Conference on Learning Represen-
tations.
Caplow, T. 1968. Two against one: Coalitions in triads.
Prentice-Hall.
Globerson, A.; Roughgarden, T.; Sontag, D.; and Yildirim,
C. 2015. How hard is inference for structured prediction?
In International Conference on Machine Learning, 2181–
2190.
Goyal, P., and Ferrara, E. 2018. Graph embed-
ding techniques, applications, and performance: A survey.
Knowledge-Based Systems 78–94.
Granovetter, M. 1973. The strength of weak ties. American
Journal of Sociology 1360–1380.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In International Conference on
Knowledge Discovery and Data Mining, 855–864.
Hamilton, W.; Ying, R.; and Leskovec, J. 2017. Represen-
tation learning on graphs: Methods and applications. IEEE
Data Engineering Bulletin 52–74.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In International Conference
on Computer Vision and Pattern Recognition, 770–778.
Karrer, B., and Newman, M. 2011. Stochastic blockmodels
and community structure in networks. Physical Review E
83(1).
Kingma, D., and Ba, J. 2014. Adam: A method for stochas-
tic optimization. In International Conference on Learning
Representations.
Kingma, D., and Welling, M. 2014. Auto-encoding varia-
tional bayes. In International Conference on Learning Rep-
resentations.
Kipf, T., and Welling, M. 2016a. Semi-supervised classifi-
cation with graph convolutional networks. In International
Conference on Learning Representations.
Kipf, T., and Welling, M. 2016b. Variational graph auto-
encoders. In NIPS Workshop on Bayesian Deep Learning.
Lawler, E. L. 2001. Combinatorial optimization: Networks
and matroids. Dover.

Li, Y.; Vinyals, O.; Dyer, C.; Pascanu, R.; and Battaglia, P.
2018. Learning deep generative models of graphs. Preprint
arXiv:1803.03324.
Molloy, M., and Reed, B. 1995. A critical point for random
graphs with a given degree sequence. Random Structures &
Algorithms 6(2-3):161–180.
Munkres, J. 1957. Algorithms for the assignment and trans-
portation problems. Journal of the Society for Industrial and
Applied Mathematics 32–38.
Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; and Zhang,
C. 2018. Adversarially regularized graph autoencoder for
graph embedding. In International Joint Conferences on Ar-
tificial Intelligence.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI Magazine 93.
Simmel, G. 1908. Sociology: Investigations on the forms of
sociation.
Simonovsky, M., and Komodakis, N. 2018. GraphVAE:
Towards generation of small graphs using variational au-
toencoders. In International Conference on Artificial Neural
Networks, 412–422.
Wang, C.; Pan, S.; Long, G.; Zhu, X.; and Jiang, J. 2017.
MGAE: Marginalized graph autoencoder for graph cluster-
ing. In International Conference on Information and Knowl-
edge Management, 889–898.
Wang, Z.; Chen, C.; and Li, W. 2017. Predictive network
representation learning for link prediction. In International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 969–972.
Wasserman, S., and Faust, K. 1994. Social network analysis:
Methods and applications. Cambridge University Press.
Xia, R.; Pan, Y.; Du, L.; and Yin, J. 2014. Robust multi-view
spectral clustering via low-rank and sparse decomposition.
In AAAI Conference on Artificial Intelligence, 2149–2155.
Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; and Chang, E. 2015.
Network representation learning with rich text information.
In International Joint Conferences on Artificial Intelligence,
2111–2117.
You, J.; Ying, R.; Ren, X.; Hamilton, W.; and Leskovec, J.
2018. GraphRNN: Generating realistic graphs with deep
auto-regressive models. In International Conference on Ma-
chine Learning, 5694–5703.
Zhang, M., and Chen, Y. 2018. Link prediction based on
graph neural networks. In Advances in Neural Information
Processing Systems, 5165–5175.
Zhang, D.; Yin, J.; Zhu, X.; and Zhang, C. 2018. Network
representation learning: A survey. IEEE Transactions on Big
Data.
Zhou, L.; Yang, Y.; Ren, X.; Wu, F.; and Zhuang, Y. 2018.
Dynamic network embedding by modeling triadic closure
process. In AAAI Conference on Artificial Intelligence.

913

