Time and Space Efficient Spectral Clustering via Column Sampling

MuLi' Xiao-Chen Lian'

James T. Kwok?

Bao-Liang Lul-3

! Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
3MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems
Shanghai Jiao Tong University, Shanghai 200240, China

{limu.cn, lianxiaochen}@gmail.com, Jjamesk@cse.ust.hk, bllu@sjtu.edu.cn

Abstract

Spectral clustering is an elegant and powerful ap-
proach for clustering. However, the underlying eigen-
decomposition takes cubic time and quadratic space
w.r.t. the data set size. These can be reduced by the Nystrom
method which samples only a subset of columns from the
matrix. However, the manipulation and storage of these
sampled columns can still be expensive when the data set is
large. In this paper, we propose a time- and space-efficient
spectral clustering algorithm which can scale to very large
data sets. A general procedure to orthogonalize the approx-
imated eigenvectors is also proposed. Extensive spectral
clustering experiments on a number of data sets, ranging in
size from a few thousands to several millions, demonstrate
the accuracy and scalability of the proposed approach. We
further apply it to the task of image segmentation. For im-
ages with more than 10 millions pixels, this algorithm can
obtain the eigenvectors in 1 minute on a single machine.

1. Introduction

Spectral clustering has been widely used in diverse areas
such as data mining [10, 5], signal processing [1] and com-
puter vision [11, 12]. Given n data points, it is based on
the eigen-decomposition of an n X n matrix that is derived
from the pairwise similarities of these points. For exam-
ple, the normalized cut algorithm [12], which is the focus
of this paper, computes the eigenvectors corresponding to
the k& smallest eigenvalues of the normalized Laplacian ma-
trix. Using the k respective components of the data points
in these eigenvectors, another clustering algorithm (e.g., the
k-means) is then invoked to form the final clusters. How-
ever, the requirement of computing and storing the affin-
ity matrix, and the O(n3) complexity of decomposing the
Laplacian matrix, severely restrict the scalability of spectral
clustering to large data sets [12].

As only several eigenvectors are required in the proce-

2297

dure, a general approach to alleviate this problem is by
using low-rank matrix approximations, among which the
Nystrdm method [4, 17] is the most popular. It samples
m < n columns from the original n X n matrix, and then
forms a low-rank approximation of the full matrix by us-
ing the correlations between the sampled columns and the
remaining n — m columns. As only a portion of the full
matrix is computed and stored, the Nystrom method can re-
duce the time and space complexities significantly. Fowlkes
et al. successfully applied this to spectral clustering for im-
age segmentation [6]. Besides this, the Nystrom method has
also been popularly used for tasks such as Gaussian pro-
cesses [1 7] and manifold learning [15].

However, when the data set is huge, even the Nystrom
method can suffer from storage problems. Specifically,
since the sampled columns have to be frequently used in the
computational procedure, typically they have to be stored
in the main memory. For data sets containing millions of
samples, even storing only 1% of the columns (in double
precision) takes about 80GB.

Another problem with the Nystrém method is that the
eigenvectors obtained are not orthogonal in general. As has
been shown in [8], the lack of orthogonality can sometimes
adversely affect the approximation quality. Thus, an ad-
ditional orthogonalization step may have to be performed.
However, in image segmentation, this is further complicated
by that the affinity matrix used is typically sparsified and
not positive semidefinite (psd). The corresponding orthog-
onalization procedure proposed in [6] then takes cubic time,
making it impractical to implement in practice.

In this paper, we propose a time- and space-efficient
spectral clustering algorithm based on the Nystrom method.
However, in contrast to the approach in [6], we directly
compute a rank-k approximation of M = I — L (where [is
the identity matrix and L is the normalized Laplacian ma-
trix) using the sampled columns of the affinity matrix. With
just one single pass on the sampled columns, both the ap-
proximated eigenvectors of M and the affinity degrees can

be computed simultaneously. Thus, these sampled columns
no longer have to be stored, alleviating the storage prob-
lem when n is very large. We further propose a general
algorithm to orthogonalize the approximated eigenvectors,
irrespective of whether the underlying matrix is psd or not.

Our contributions are twofold. First, we reduce the time
and space complexities of the existing Nystrom-based spec-
tral clustering algorithm [6]. Theoretical analysis shows
that the proposed algorithm can exactly recover the degrees
of the sampled points. Experimentally, the algorithm can
scale to much larger data sets (with millions of samples)
than the existing algorithms. Second, we apply the pro-
posed algorithm to the segmentation of images with very
sparse affinity matrices. We demonstrate its scalability on
images with more than 10 million pixels. To our best knowl-
edge, this is the first attempt to scale spectral clustering to
such a large image segmentation task.

The rest of this paper is organized as follows. Section
2 briefly reviews spectral clustering and the Nystrom based
approach. Section 3 then describes the proposed algorithm.
Experimental results are presented in Section 4, and Section
5 gives some concluding remarks.

Notations. For a symmetric matrix A € R"*", we de-
note by Ay = UAU its rank-k approximation, where A
contains its k largest eigenvalues and U contains its & lead-
ing eigenvectors. Moreover, diag(v) is the matrix with the
elements of v on the main diagonal.

2. Related Works
2.1. Spectral Clustering

Spectral clustering is based on analyzing the affinity ma-
trix A = [a;;] € R™*"™ defined on a set of n data points
X ={x1,...,z,}, where a;; > 0 is the similarity / affin-
ity between x; and x;. In general, there are several ways
to group X into clusters [16]. In this paper, we focus on
the popular method of normalized cut [12]. It first com-
putes the normalized Laplacian L = I — D 2AD™% of
A, where D = diag(Al) is the degree matrix and 1 is the
vector of all ones. Next, the k trailing eigenvectors of L
are obtained, where k is usually not less than the number of
clusters. Finally, k-means clustering is performed on these
eigenvectors to obtain the clusters.

2.2, Nystrom Method

The Nystrom method [4, 17] has been commonly used
to construct low-rank matrix approximations. Given a sym-
metric matrix A € R™*" it first samples m < n columns
from A. Without loss of generality, we can assume these to
be the first m columns of A, and thus A can be rewritten as

A A2T1} [Au]
[AQI Ago| MM 4y | M

2298

where A.; € R™*™ is the submatrix containing the selected
columns, and Ay; € R™>*™ is the submatrix containing the
intersection of the selected rows and columns. The Nystrom
approximation of A is then given by

Anye = Aq AT AT)

2.3. Using Nystrom in Spectral Clustering

The normalized cut requires the computation of the &
trailing eigenvectors of the normalized Laplacian L = I —
D~ AD~%, which are the same as the k leading eigenvec-
tors of the 7 X n matrix

M =D 2AD" 2. 3)
The direct eigen-decomposition of M takes O(n?) time,
and can be expensive when 7 is large. In [6], this problem
is alleviated by using the Nystrom method to approximate
the eigenvectors as follows. First, to avoid using the whole
A, the degree matrix D is approximated as
D = diag(Anys1) = diag(A., A AL 1), (4)
by using the Nystrom approximation of A in (2). Let D.; =
diag(A%L1). The submatrices in M corresponding to A1;
and A.; are

My =D,°AnD.?, M,=D%A.D;*. (5
Using D, M. can then be approximated as
Ny~ D 34,05 = (M N,
and M as
M = My MM, ©)

where M., now contains the approximate eigenvectors of
M.

In general, M. .1 1s not orthogonal. To obtain better clus-
tering results, Fowlkes et al. [6] proposed the following or-
thogonalization procedure when A is psd. First, construct

_1 ~ _1

S = Myy + My, My, Moy My 2. (7)

Then, perform singular value decomposition (SVD) on S to

obtain U AT7:. The orthogonal decomposition of M can be

obtained as M = VAVT and VTV = I, where

V = MM, 2UA"z. (8)

The whole algorithm is summarized in Algorithm 1. When

A is not psd, a more complicated two-step orthogonaliza-
tion step has to be used [0].

The time complexity of Algorithm 1 is O(nm? + m?).
As for space, since A.; and M.; need to be accessed more
than once (e.g., in (4), (5), (6), (7), (8)), typically they have

Algorithm 1 Orthogonal Nystrom approximation for a psd
A6l
D « diag(A.1 A7 AT1) and D.; « diag(A.1).

~ ~ A _1
My = [MyM})|T « D=3 A1 Dy

1 ~ _1

S < Myy + My,> M Moy M.
SVD: § = UAT.

V o« MM 2UA" 3,

1:

to be stored in main memory so as to avoid duplicate com-
putations. However, this leads to O(nm) space complex-
ity. In large-scale applications, even the sampling of a small
subset of columns can result in the matrices A; and M .1 be-
ing too large to fit into main memory. Moreover, when A
is not psd, the two-step orthogonalization procedure, which
has a time complexity O(n?), is often impractical [6].

3. Proposed Approach

Recall that spectral clustering only needs the k trailing
eigenvectors of the normalized Laplacian L, or, equiva-
lently, the k leading eigenvectors of M = I — L. Therefore,
our goal is to find a rank-%k approximation Mj of M. Let
the eigen-decomposition of My, be UAUT, where A con-
tains the k largest eigenvalues of M, and U contains the
corresponding eigenvectors. As My = MM, 1M, so on
using (3), we have

My =D"'?AD= 3 M 'D~2 AT D'/?

=D 1248, ATD~1/2,)

where))
Sy=D"zM_'D 2 (10)

is a rank-k matrix. Note that although this M}, is the best

rank-k approximation of M, (9) requires the use of the

whole affinity matrix A. This can be too expensive for large
data sets.

3.1. A Good Approximate Degree Matrix

Note that AS 4 AT in (9) plays the role of the affinity ma-
trix A in (3). Since the handling of A is expensive for large
data sets, we consider in the following an approximation
which only involves the m sampled columns A.; as in the
Nystrom method. As will be seen, this resultant approxi-
mation is in the form of AS4 AT, and captures most of the
information available in A. A comparison with some other
possible approximations will be discussed in Section 3.4.

Recall that the definition of S4 in (10) relies on Mj,
which in turn is the rank-k approximation of M in (9).
Hence, we first define an analogous matrix M, € R™>*™
which is based on the submatrix A;;:

M, = D;*A,D; %, (11

2299

where D, = diag(Aj111). Analogous to the definition
of S4 in (10), we then define the following matrix S, €
R™*™ based on the rank-k approximation M, j of M,:
Se=D.*M_;D.*. (12)
Obviously, S, = S4 when m = n. Finally, define, in a
manner analogous to (9),
A=A4,5.A%. (13)
The following proposition shows that Acan exactly recover

the degrees of the m sampled columns. The proof is in Ap-
pendix A.

Proposition 1. Assume that graph G has no more than k
connected components. Then A.11 = A41.

In other words, this approximation A contains all the de-
gree information about the selected columns that is in A.
The assumption of Proposition 1 is reasonable since k is
typically chosen not less than the number of connected com-
ponents; otherwise we obtain k eigenvectors according to
the O eigenvalue of L and are not unique [16]. Moreover,
A also has a close relationship with the Nystrém approx-
imation Anys of A in (2). Specifically, when k& = m, we

N _1 _1 N
have A = A D, 2M_'D,? A% = A;lAﬁlAg = Anys
on using (11). Thus, A is similar to Anys, but with a further
rank-k approximation on M,.

3.2. Rank-% Approximation of M/

Let the eigen-decomposition of M, ; be VAVT, where

V e R™*F and A € R*** On combining this with (12)

and (13), we obtain A = QAQT, where
1

Q=A1D, VAL (14)

Since this A contains all the degree information about the

selected columns, we can approximate the degree matrix as

D = diag(A1) = diag(QAQT1).

Subsequently, a rank-k approximation of M can be ob-
tained as

M, =D 3AD"% = D=3QAQTD~% = UAUT, (15)

where U = D*%Q contains its eigenvectors. Note that
although the derivation of U above involves /1, it can be
directly obtained from @ without first forming A.

When the data set is large, storage of the affinity matrix
A, or even its submatrix A.q, can become infeasible. Fortu-
nately, note that, here, A.; is only needed once in the com-
putation of @ in (14). Thus, instead of storing the whole
A.; in memory, we can obtain () row by row. For its ith

row, we first compute the ith row of A,; (which contains
the affinities between pattern ¢ and the sampled patterns in

_1
A.1), and then multiply it by D, >VA~!, Only the n x k
matrix @) needs to be stored. The whole algorithm is shown
in Algorithm 2.

Algorithm 2 The proposed algorithm.

Input: Data points X {z1,...,z,} and m sampled
points Z = {z1,..., 2, } from X. Desired rank k.
Output: The approximated Mj,: M, = UAUT.
Form the affinity matrix A1; € R™*™ using Z.
D, + diag(Alll).
M, « D, ? Ay D, 2.
Perform partial eigen-decomposition of M,. Keep the
k largest eigenvalues in A and the k leading eigenvec-
torsin V.
5: B+ D,?>VA~L
for i = 1tondo
Form the affinity vector a € R*™ between x; and
points in Z.
Form the ith row of Q as aB.
end for
. D« diag(QAQT1).
U+ D z2Q.

B

3.3. Time and Space Complexities

Since only partial eigen-decomposition is used in Algo-
rithm 2, it takes O(nmk) time to compute k approximate
eigenvectors. In contrast, as the procedure in [6] needs to
compute A7, it will take O(nmk + m?) time instead.

As for the space complexity, when the matrix A.; is
small, it can be stored in main memory and so takes O(nm)
space. However, when n is large, A.; may not be able to fit
into memory. As discussed in the previous section, since
the proposed algorithm only needs to access A.; once, we
can compute it row by row. The space complexity is then
reduced to O(nk). On the other hand, Algorithm 1 needs
to use A.; more than once. To avoid computing A.; repeat-
edly, we will have to store it in memory, leading to O(nm)
space. A comparison of the time and space complexities be-
tween [60] and the proposed algorithm is shown in Table 1.

un-orthogonalized orthogonalized
Fowlkes et al. [6]| ours |Fowlkes efal. [6]| ours
time | O(nmk +m>) [O(nmk)| O(nm? + m?) [O(nmk)
space O(nm) O(nk) O(nm) O(nk)

Table 1. Time and space complexities for computing k approxi-
mate eigenvectors.

2300

3.4. Comparison with Other Approximations

Other ways to obtain a rank-k approximation of M
are possible. A straightforward approximation can be ob-
tained by first forming the rank-k Nystrom approximation
AW = AzlAf11,kA;7£ of A. Then, using (3), form a rank-
k approximation of M as M"Y = (DM)z AM(DM)z,
where D) = diag(A(M1) is the approximate degree ma-
trix. However, note that even when we sample all the n

columns from A to form A.;, M ,51) # M}, in general and
hence this cannot be expected to be a good approximation.

Another approximation, motivated from (10), is to use

1 1

S® =D M D3, (16)
instead of S, in (12). Here, D.; = diag(A.;11). It can be
shown that the corresponding approximation of M becomes
M,gz) =]\}Llel%k M?, which is similar to the Nystrom ap-
proximation of M in (6) except for using a rank-k approxi-
mation on M7;. However, with this approximation, we will
then need to access A.; twice, once to form D.; and an-
other to calculate @) in (14). Subsequently, to avoid com-
puting A.; twice, we will need A.; to be stored, which takes
O(nm) space and can be infeasible when n is large.

Moreover, unlike S, proposed in Section 3.1, these two
approximations may not recover the degrees of A.; (as in
Proposition 1). Empirical results in Section 4.2 confirm that
these two alternatives are less accurate.

3.5. Orthogonalizing the Approximate Eigenvectors

Note that the approximate eigenvectors U obtained in
(15) may not be orthogonal. In this section, we propose an
inexpensive orthogonalization procedure which can trans-
form any decomposition of the form T' = UAU” to T =
UAUT, such that U is orthogonal (i.e., UTU = I). Our
procedure is more general than Algorithm 1 in that it does
not require 7" or A to be psd.

The orthogonalization procedure is shown in Algo-
rithm 3. Note that P = U”TU is always psd and so it is
safe to use X2 and X~ 2. The following proposition shows
the correctness of Algorithm 3.

Proposition 2. In Algorithm 3, UNUT = UAUT and
VIV =1

It can be easily seen that the time complexity of Algo-
rithm 3 is O(nk?) and its space complexity is O(nk). Thus,
unlike the orthogonalization procedure in [6], this does not
increase the time complexity of the proposed algorithm (Ta-
ble 1).

Algorithm 3 Procedure to orthogonalize U, where T" =
UAUT,

Input: U € R™** A € RFXF,

Output: orthogonalized U and A.

1. P« UTU.

2: eigen-decomposition: P = VXV T,

3 B+ 2:VTAVS:,

4: eigen-decomposition: B = VAV Reorder the eigen-
values in A and according eigenvalues if necessary.

5: U+ UVE~3V.

4. Experiments
4.1. Spectral Clustering

In this section, we perform spectral clustering experi-
ments on a number of data sets with various sizes (Table 2).
The USPS, MNIST and MNIST8M! data sets contain hand-
written digit images, with the raw pixels as features. We se-
lect the digits 0—4 for MNIST and MNIST8M. The RCV1?
is an extensively used text data set. It contains categorized
news from Reuters, and each news article is represented by
a sparse log-transformed TF-IDF feature vector [9]. After
removing news categories with fewer than 1,000 articles,
we obtain 55 categories that are used in the experiment.
The ImageNet® is an image database containing images or-
ganized according to the WordNet hierarchy. Each image is
represented as a bag of words based on the SIFT features.
We select the 100 largest categories from the training set.
Each of these contains an average of 2,000 images.

For the ImageNet data set, we use the histogram intersec-
tion kernel [14], which has been commonly used on SIFT
features, to construct the affinity matrix. For the other data
sets, we use the Gaussian kernel exp(—pul|x — y||?), where
1 s set to the inverse of the average distance among all data

pairs (i.e. p~ ! = # Zij zi — 2;]?).
size data #samples dim #clusters
small USPS 9,298 256 10
MNIST 35,735 784 5
medium | RCV1 160,633 | 47,236 55
image-net 191,050 1,000 100
large MNISTSM | 4,130,460 784 5

Table 2. Data sets used in the spectral clustering experiments.

"http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

Zhttp://alumni.cs.ucsb.edu/~wychen/sc

3http://www.image-net.org/challenges/LSVRC/
2010/download-public

2301

4.1.1 Setup

The following spectral clustering methods will be com-
pared:

1.
2.

Normalized cut algorithm [12] (denoted ncut).

k-means-based approximate spectral clustering [
(denoted kasp).

]

Standard Nystrom-based spectral clustering [6] (de-
noted psc).

4. The proposed algorithm (denoted ours).

The kasp is implemented4 in R, while the others are in Mat-
lab. The implementation for psc is from the highly opti-
mized code used in [2]°. The kasp and psc implementations
can directly output the clustering results. For ncut and ours,
after dropping the leading eigenvector of M, we perform
k-means clustering using the remaining c leading eigenvec-
tors, and with each data row normalized to unit norm. As
the c+ 1 leading eigenvectors are required, we set k = c+1
for ours.

Recall that both psc and ours are based on column sam-
pling. The number of sampled columns is fixed at m
1,000, and these columns are selected by uniform sampling
without replacement.

The following measures are used for performance eval-
uation: (1) accuracy; (2) normalized mutual information
(NMD) [13], whose value is always between zero and one,
and the higher the better; and (3) time. Moreover, we follow
the common practice of permuting the obtained clusters to
best match the ground truth. To reduce statistical variabil-
ity, results for all the methods are averaged over 10 repe-
titions. All experiments, including the image segmentation
in Sec. 4.2, are performed on a machine with Intel Xeon
X5540 CPU and 16GB memory.

4.1.2 Results on Small and Medium-Sized Data Sets

Table 3 shows the results on the small data sets. The vari-
ances of the time measurements are very small and so are
not reported. Moreover, only the orthogonalized versions
of psc and ours are shown. Those for the un-orthogonalized
versions are similar. As can be seen, the three methods sc,
psc and ours, yield very similar accuracies and NMI values,
while kasp is much inferior. This may be due to that a fixed
kernel parameter (1) has been used in our experiment, while
the kasp experiments in [18] search y over a range of pos-
sible values. As for the time, ours is faster than the others.
Recall that the kasp implementation is in R while the others
are in Matlab. Hence, the time comparison for kasp is for
reference only.

4http://www.stat .berkeley.edu/~dhyan/fasp.html
5http://alumni.cs.ucsb.edu/*wvchen/sc.html

data method | accuracy (%) NMI t.1m6 (sec)
eig [total
ncut 70.32 + 0.13 | 0.658 + 0.001 4.2 8.5
USPS kasp 45.63 + 3.83 | 0.395 + 0.013 - 8 min
psc 68.14 = 0.11 | 0.634 +0.001 | 28.9 30.0
ours 70.00 & 0.61 | 0.654 +0.009 | 2.9 3.5
ncut 81.37 + 0.15 | 0.636 + 0.001 | 51.4 289.4
MNIST kasp 59.08 &+ 6.25 | 0.439 £ 0.045 - | 40 min
psc 80.62 =0.18 | 0.619 £ 0.001 | 39.1 46.2
ours 80.88 == 1.42 | 0.624 £ 0.015 2.5 6.7

Table 3. Clustering results on the small data sets. Here, “eig” is the time spent on computing the eigenvectors of the normalized Laplacian.

On the medium-sized data sets, ncut fails to run be-
cause of insufficient memory. As for kasp, its implemen-
tation does not allow use of the sparse data format and his-
togram intersection kernel. Hence, it is also dropped from
the comparison. Results comparing the orthogonalized and
un-orthogonalized versions of psc and ours are shown in Ta-
ble 4. As can be seen, the use of orthogonalized eigenvec-
tors improves the clustering results. However, this nearly
doubles the time for psc, while that for ours is only in-
creased by a very small fraction.

4.1.3 Results on Large Data Sets

The proposed method is particularly useful on large data
sets. Using the MNIST8M data set, Figure 1 shows how the
time for computing the orthogonalized approximate eigen-
vectors scales with number of samples n. As can be seen,
ours grows much slower than psc. Moreover, psc suffers
from insufficient memory when n > 106. These agree with
the complexity results discussed in Table 1. Detailed clus-
tering results on a subset of 10 samples and on the full set
are shown in Table 5.

300
—©—ours
—E—psc ||

n
a
=)

computational time (sec.)

0 1 2 3 4

data size (n) x10°

Figure 1. Time for computing the approximate eigenvectors versus
data set size.

4.2. Image Segmentation

In this section, we evaluate our method on image seg-
mentation. The approach in [7] is adopted to compute
the affinity matrix. It uses a multi-layer graph G*
(V*, E*,W*), where the nodes V* = VU {VD}L area

2302

set of pixels V and the sets of regions {V W} || E* is the
edge set and TW* is the weights on E*. The node subset V()
at the [th layer corresponds to the over-segmentation result
generated by the mean shift algorithm [3]. Different lay-
ers has different mean shift parameters. An undirected edge
e;; € I exists if (1) two pixels 7, j are within a neigh-
borhood of radius «; or (2) two regions i, j € V) share a
common boundary at the same layer; or (3) a pixel : € V
is included in its corresponding region j € V(). This edge
ei; then has the following weight w;; € W*:

exp(—=fg | gi—g;), @,jeV&|zi—z;l<a
wi; = § exp(—by || g; —9;), i,5¢€ Vo

v, iceV,jev®,

an

where x;, and g; are the position and color of pixel ¢, re-
spectively, g, is the mean color of inner pixels of region ¢,
and 6, is a constant that controls the strength of the weight.
Note that in (17), the boundary cue is implicitly incorpo-
rated in the third case and controls the trade-off between
color and boundary cues. To perform segmentation, we ap-
ply the proposed method on W*. We use grid sampling
with step size o on images. Region nodes are not involved
in the sampling step so as to avoid zero rows in the resulting
matrix.

We first compare the qualities of the three approxima-
tion schemes: S, defined in (12), Al_ll) w and S (2) defined
in (16), by using the Berkeley image database. It contains
300 images with ground truth segmentation results. As in
[7], we construct a three-layer graph G* with the same set-
ting for mean-shift parameters and 6,. The neighborhood
radius « is set to 3 pixels. Following [7], we also man-
ually chose the number of segments for each image. The
inter-layer edge weight y in (17) is empirically chosen as 3.
For quantitative evaluation, the following four measures are
used (as in [7]): Probabilistic Rand Index (PRI), Variation
of Information (VoI), Global Consistency Error (GCE), and
Boundary Displacement Error (BDE). For PRI, the larger
the better, while for the other three, the smaller the better.

Table 6 shows the results. As can be seen, S, outper-
forms the other two on all four measures. For benchmark-

data method accuracy (%) NMI tl.me (sec)
eig | total
psc (orthogonalized) 25.05 +0.60 | 0.255 £0.007 | 86.7 | 121.5
RCV1 ours (orthogonalized) 2472 +0.85 | 0.253£0.008 | 5.8 | 274
psc (un-orthogonalized) | 22.98 £ 0.95 | 0.239 £0.009 | 30.7 | 64.2
ours (un-orthogonalized) | 22.54 £1.23 | 0.236 = 0.011 | 4.9 | 26.5
psc (orthogonalized) 10.56 + 0.08 | 0.196 = 0.002 | 83.9 | 179.2
ImaceNet ours (orthogonalized) 10.56 + 0.10 | 0.196 + 0.002 | 5.8 85.8
& psc (un-orthogonalized) | 9.42 +£0.31 | 0.169 £ 0.003 | 28.2 | 114.0
ours (un-orthogonalized) | 9.18 £0.11 | 0.163 £ 0.002 54 85.3
Table 4. Clustering results on the medium-sized data sets.
#samples used | method | accuracy(%) NMI tnpe (sec.)

eig | total

1,000,000 psc 78.68 + 0.18 | 0.555 £0.002 | 245.0 | 391.8

1,000,000 ours 79.07 £ 0.62 | 0.564 + 0.002 49 | 101.5

4,130,460 ours 7791 +0.78 | 0.551 £0.002 | 13.4 | 407.0

Table 5. Clustering results on the MNIST8M data set.

ing, we also show the results reported in [7], which are com-
parable to ours.

[method | PRI [Vol [GCE | BDE |
ours (S,) | 0.8205 | 1.9517 [0.1998 [12.09
ours (Ay1,) | 0.7814 | 2.4519 | 0.2718 | 13.61
ours (S@) | 0.7598 | 2.6852 | 0.3093 | 14.38
Kim eral. [7] | 0.8146 | 1.8545 | 0.1809 | 12.21

Table 6. Comparison of different S’s and the method in [7] on the
Berkeley image database.

To further demonstrate the scalability of the proposed
method, we perform segmentation on several very large im-
ages downloaded from the web. We manually select the
parameter « and y for each image. Results are shown in
Figure 2.The first row is the original image and the second
row shows the segmentation results and the corresponding
computation time. As can be seen, on the 4752 x 3168 im-
age, computing the eigenvectors only takes 23 seconds.

5. Conclusion

In this paper, we proposed a time- and space-efficient
spectral clustering algorithm. We directly estimate the rank-
k approximation of M = I — L (L is the normalized Lapla-
cian) to avoid storing the sampled affinity matrix, which al-
lows the proposed algorithm scaling to very large scale data
sets. A general procedure is also proposed to orthogonalize
the approximated eigenvectors suitable for both psd and not
psd affinity matrices. We performed extensive experiments
to show the accuracy and time efficiency of our algorithms
and demonstrated the scalability on spectral clustering with

2303

several millions data points
10 million pixels scale.

and image segmentation with

Acknowledgments

This research was supported in part by the Na-
tional Natural Science Foundation of China (Grant No.
90820018),the National Basic Research Program of China
(Grant No. 2009CB320901), the Science and Technol-
ogy Commission of Shanghai Municipality (Grant No.
09511502400), and the Research Grants Council of the
Hong Kong Special Administrative Region (Grant 614508).

References

[1] F. Bach and M. Jordan. Learning spectral clustering, with ap-
plication to speech separation. Journal of Machine Learning
Research, 7:1963-2001, 2006.

W. Chen, Y. Song, H. Bai, C. Lin, and E. Chang. Parallel
spectral clustering in distributed systems. I[EEE Transactions
on Pattern Analysis and Machine Intelligence, 2010.

(2]

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5):603-619, 2002.

P. Drineas and M. Mahoney. On the Nystrom method for ap-
proximating a Gram matrix for improved kernel-based learn-
ing. Journal of Machine Learning Research, 6:2153-2175,
2005.

F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens.
Random-walk computation of similarities between nodes of
a graph with application to collaborative recommendation.
IEEE Transactions on Knowledge and Data Engineering,
19:355-369, March 2007.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral
grouping using the Nystrom method. IEEE Transactions on

(4]

(5]

(6]

(a) 1.8 x 10° pixels, 1600 x 1122

(b) 107 pixels, 4152 x 2467

(e) 4 segments, 5.9 sec.

(f) 18 segments, 18.9 sec.

(c) 107 pixels, 3872 x 2592

(d) 1.5 x 107 pixels, 4752 x 3168

¢

(g) 5 segments, 16.8 sec.

(h) 8 segments, 22.6 sec.

Figure 2. Image segmentation on very large images. The first row shows the image, its size, and the number of pixels. The second row
shows the segmentation result and the time used on computing the eigenvectors.

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]
[15]
(16]
(7]

(18]

Pattern Analysis and Machine Intelligence, pages 214-225,
2004.

T. Kim and K. Lee. Learning full pairwise affinities for spec-
tral segmentation. In CVPR, pages 2101-2108, 2010.

S. Kumar, M. Mohri, and A. Talwalkar. On sampling-based
approximate spectral decomposition. In /CML, pages 585—
592, 2009.

D. Lewis, Y. Yang, T. Rose, and F. Li. Rcvl: A new bench-
mark collection for text categorization research. Journal of
Machine Learning Research, 5:361-397, 2004.

B. Long, Z. M. Zhang, X. WA, and P. S. Yu. Spectral cluster-
ing for multi-type relational data. In ICML, pages 585-592,
2006.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In NIPS, pages 849-856, 2001.
J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888-905, 2002.

A. Strehl and J. Ghosh. Cluster ensembles — A knowledge
reuse framework for combining multiple partitions. Journal
of Machine Learning Research, 3:583-617, 2003.

M. Swain and D. Ballard. Color indexing. International
Journal of Computer Vision, 7(1):11-32, 1991.

A. Talwalkar, S. Kumar, and H. Rowley. Large-scale mani-
fold learning. In CVPR, pages 1-8, 2008.

U. Von Luxburg. A tutorial on spectral clustering. Statistics
and Computing, 17(4):395-416, 2007.

C. Williams and M. Seeger. Using the Nystrom method to
speed up kernel machines. In NIPS, 2001.

D. Yan, L. Huang, and M. Jordan. Fast approximate spectral
clustering. In KDD, pages 907-916, 20009.

A. Proof of Proposition 1

First we introduce the following lemma.

2304

Lemma 3. Assume that graph G has no more than k con-
1 1
nected components, then diag(D=z M D21) = D.

Proof. Let L = I — M be the normalized Laplacian matrix
of W. Then L is psd and has exactly c zero eigenvalues,
where c is the number of connected components of G [16].
Therefore, the c largest eigenvalues of M are equal to 1. As
M;, keeps the k largest eigenvalues of M and k > ¢, My,
also keeps the eigenspace which is spanned by the eigenvec-
tors with eigenvalue 1. As M(Dz1) = D~ 2W1 = D=1,
so Dz1isan eigenvector of M with eigenvalue 1. Thus, it
is also an eigenvector of Mj,. Hence, My (Dz1) = D21
and the result follows. O
Proof. (Proposition 1) Let D, = diag(A;11) and M, =

1

D;%AllD;z. Then
_1 1 1
DM D, %Al
R U _1 1, =1 11
= A'DZ (D, ? A D ?)M, (DL > A D, ?)D2 1
1 1
= A'D? M, MM, D21
— AT'DZM, DI 1= A7 A1 =1,

where the second last equation is from Lemma 3. Therefore,

Aul = Ay D2 MIEDI? Al = Aql. O
B. Proof of Proposition 2

Proof. Note that UAUT =
(UVS—2)WAVT(UVE~2)T = UAUT. Moreover, U is
orthogonal as UTU = VIS :VT(VEVT)VE "2V =
VIV =1. O

