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Abstract—In high-dimensional models, hierarchical and
structural relationships among features are often used to
constrain the search for the more important interactions. These
relationships may come from prior knowledge or traditional
design principles, such as that low-order effects should have
larger contributions than higher-order ones and should be
included into the model earlier. However, these structural con-
straints also make the optimization problem more challenging.
In this paper, we propose the use of the alternating direc-
tion method of multipliers (ADMM) and accelerated gradient
methods. In particular, we show that ADMM can be used to
either directly solve the problem or serve as a key building
block. Experimental results on a number of synthetic and
real-world data sets demonstrate that the proposed algorithm
is efficient and flexible. Moreover, the use of the hierarchical
relationships consistently improves generalization performance
and parameter estimation.

Keywords-Structural sparsity, Heredity, Alternating direction
method of multipliers, Accelerated gradient methods

I. INTRODUCTION

The linear model f(x) Oo + Z;l:l x;6; has been
widely used in classification and regression. Here, x =
[€1,...,24]7 with 21,...,24 being the input variables
(also called main effects), and 6;’s are the corresponding
coefficients. Despite its popularity, this simple model does
not capture the interactions that may exist among the inputs.
To alleviate this problem, one often extends the model by
incorporating all possible pairwise interactions (or effects),
leading to

ijxk,@jk, (1)
J#k

where O, is the contribution from the pairwise interaction
between x; and xj. More generally, higher-order interac-
tions can be similarly incorporated.

However, this myriad of main effects and interactions
may make the model very complicated, especially when
d is large. Prior knowledge can be used to guide the
search for important components. For example, in molecular
genetics, it is estimated that about 5 — 10% of the human
genes contribute to oncogensis [1]. In training a cancer
prediction model, it is thus reasonable to assume that the
known cancer genes (also called susceptibility genes) should

d
1
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have larger contributions than the other genes. For factorial
design and data analysis with interaction models, two design
principles, namely effect heredity and hierarchical ordering,
have also been commonly used to locate the more important
interactions.

The effect heredity (or heredity) principle states that low-
order effects should be included into the model before
higher-order ones [2], [3], [4]. These dependencies among
effects can be represented by a directed acyclic graph (DAG)
G(V, E), where V (resp. E) is the set of nodes (resp. edges).
Each node in V' corresponds to an effect, and there is an edge
eqy € F from a € V to b € V if and only if b depends on a.
An example is shown in Figure 1. The heredity dependency
comes in two popular flavors: (i) strong heredity, in which
an effect can be included only after all its parents have been
included; and (ii) weak heredity, in which an effect can be
included if at least one of its parents has been included. For
the model in (1), these imply

(strong heredity) ©,; # 0 = 6; # 0 and 6, # 0,

(weak heredity) ©,r # 0= 0; # 0 or 05 # 0. 2)

In general, heredity allows the model to have better physical
interpretation. In particular, strong heredity, which will be
the focus in this paper, also ensures the model to be invariant
to linear transformations of the inputs. In a large meta-
analysis of 113 data sets, Li er. al. [5] observed that the
data strongly support heredity (especially strong heredity).

;;%;;

Figure 1. Example with three input variables x1, z2, 3, and the two-
factor, three-factor interactions.

The second, closely related, principle is hierarchical or-
dering (or hierarchy) [2]. It states that low-order effects
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are more important than high-order ones. Specifically, the
main effects are usually larger than two-factor interactions,
which in turn are larger than three-factor interactions, and
so on. In the DAG induced by heredity above, let w,, wp
be coefficients corresponding to the nodes a and b. The
hierarchy principle then implies the constraints

|wg| > |wp| if eqp € E. 3)

Again, this is also empirically supported by the meta-
analysis in [5].

While the standard linear model can be trained with
a variety of loss functions and regularizers [6], learning
becomes more challenging with the additional constraints
imposed by prior knowledge and/or heredity/hierarchy prin-
ciples. For example, previous attempts are limited to ¢-
regularization. Bien ez. al. [4] proposed two lasso-like proce-
dures (called strong/weak hierarchical lasso) corresponding
to strong/weak heredity. In particular, it replaces (2) with a
convex relaxation of

1©;ll1 <10;], forj=1,....d, )

where [|©;|; = ZZ=1 |©;x|. Alternatively, by assuming
that the regression coefficients are all non-negative, and that
the heredity-induced DAG is indeed a tree, Liu et. al. [7]
developed a novel solver called Atda for this restricted setup.
A central operation in Atda is the following projection step:

Twe > wy if eqp € . 5)

o1 2
min —|lw —ul|
weRY 2
for some given u. The efficiency of Atda stems from the
observation that (5) admits an analytic solution.

While the existing approaches are limited to the ¢;-
regularizer (and with further restrictions on the tree for [7]),
we propose in this paper three solvers that can be used
with a variety of structured sparsity regularizers {2 and with
constraints ordered on a general DAG. The first solver is
based on a combination of the accelerated gradient method
FISTA [8] and the simple but powerful alternating direction
method of multipliers (ADMM) [9]; while the other two
solvers are based purely on ADMM. Empirically, the FISTA-
ADMM hybrid is the most efficient and outperforms existing
solvers.

The rest of this paper is organized as follows. Section II
gives a brief review on the accelerated gradient method
and ADMM. Sections III and IV then present the various
proposed solvers. Experimental results are presented in Sec-
tion V, and the last section gives some concluding remarks.

II. RELATED WORK

A. Accelerated Gradient Methods

Accelerated gradient methods [8], [10] have been widely
used for composite optimization [6], [11] of the form

min £(w) 4+ Q(w),

wEeE

(6)
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where W is the domain, ¢ is a convex and smooth function,
while € is also convex but possibly nonsmooth. In the tth
iteration, it computes the following proximal step:

i _whT &
nin (w—w)Eve(w'))

+ %vafvv“)ll2 +Q(w), (1)
where L is the Lipschitz constant! of V£. The objective in
(7) is a linear approximation of the smooth component ¢(w)
at some w(®), while leaving the nonsmooth component Q(w)
intact. Without loss of generality, we assume that L = 1 by
absorbing L into Q(w) with an appropriate scaling. It is
well-known that (7) can then be rewritten as

1 2
in —||w— Q
mnin o flw —uf* + Q(w), ®)
where u = w(t) — V¢(w®).
In this paper, we adopt a popular accelerated gradient
algorithm called FISTA (Algorithm 1) [8]. While standard

gradient methods have a slow convergence rate of O (ﬁ)
where T is the number of iterations, FISTA is more advanta-
geous in that it converges as O (7 ). However, for FISTA to
be useful, the proximal step has to be solved efficiently. This
is the case, for example, when WW = R" and () is “simple”
(e.g., QUw) = ||w]|1, ||w W||oo and some mixed norms)

[12].

2
25

Algorithm 1 The FISTA algorithm [8].
1: Imitialize: W' « w°, 7 < 1, « 1.
2: repeat

update w(*) as in (8);
1 1+471?

Teyp VAT \/2+t :

WD w4 (r;l) (w(t) — wt=D);

Tt41

t+t+ 1
until convergence.
: Output w'.

[95]
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B. ADMM

In recent years, ADMM has been popularly used in
diverse fields such as machine learning, data mining and
image processing [9]. It can be used to solve optimization
problems of the form

a{nlg P(w1) + Y(ws2) 1 Awi +Bws =c,

where ¢, are convex functions, and A, B (resp. c) are

constant matrices (resp. vector) of appropriate sizes. As in

the method of multipliers, ADMM considers the augmented

Lagrangian

= o(w1) +¥(wa) + v (Awi + Bws —¢)
+§HAw1 + Bw; — c||?,

L(wy,ws, V)

'In other words, ||V&(w1) — VA(wa2)|| < L|jwi — wa|| for every
W1, Wa.



where v is the vector of Lagrangian multipliers, and p > 0
is a penalty parameter. At the tth iteration, the values of w;
and ws (denoted wy) and wét)) are updated by minimizing
L(w1,ws2,v) W.rt. wy and wo in an alternating manner. This
allows ADMM to more easily decompose the optimization
problem when ¢ and v are separable. Using the scaled dual
variable r = v/p, the ADMM update can be expressed as:

ngl) =arg Igin d(wr) + gHA‘-"l + ng) —c+r®)%9)
1

wétJrl) =arg 13}1211 (wa) + gHAngl)JrBwQ —c+r® W))

N () —l—AwgtH) +ng+l) e

)

In case (9) is difficult to solve, one may replace ¢(w1)
with its first-order approximation at w? . The update rule
then becomes

. L
wi "V = argmin Vo(w”) (w1 — wi) + Fllwr - wf|
1

+2)Aw) + Buf) — o+ x| an

where Vd)(wgt)) is the gradient of ¢ at wgt), and I is the
Lipschitz parameter of V¢. This linearized version has been
recently studied in [13], [14].

Sometimes, (10) is also difficult to solve. In this case, one
can replace §||Aw§t+1) + Bwy — ¢ + r)||? by its Taylor
approximation at the current iterate wgt). This is called the
split inexact Uzawa method [15] (or “prox-linear” in [16]),
and has been very useful in image restoration problems [17].
It can be shown that (10) then becomes

p)‘max(BTB)

w§t+1) 5

~ (t

@2,
(12)

where Apmax (BT B) is the largest eigenvalue of BYB, and

o BT(Aw!™ + Buf) —c+1)
2 Amax(BTB)
III. ALGORITHM BASED ON FISTA AND ADMM

Let w € R"™ be the vector that concatenates all the
regression coefficients (f;’s and ©;;’s) together. With the
use of a convex and smooth loss function [, a convex but
possibly nonsmooth regularizer €2, and a set of samples
{(x1,91),-.-, (Xn,yn)}, the training process involves the
following composite optimization problem:

= argmin ¢ (ws) + |wa —
w2

(.T.:gt) =w

(13)

N
1
min — ZZ<WTXi’ ¥i) + Q(w),
i=1

wew N (14)

where W C R” is the feasible region on w as defined by
prior knowledge, heredity and/or hierarchy principles. In the
sequel, given a DAG G(V, E) that encodes the structural
relationship among the elements of w, we consider W of

the form
) > 1
Wq = Wy 1feab€E}7 (15)

W = {W = [wa] € R™: wq € [B1, Bs)
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where B; < B; € R. Note that problem (14) is of the
form in (6) (with £(w) = & SN I(f(x;),%:)) and hence
can be solved by FISTA. As discussed in Section II-A, it
is important to ensure that the proximal step in (8) can be
efficiently computed.

In Sections III-A and III-B, we first show that the form
in (15) is quite general. In particular, for the feasible region
defined by hierarchy constraints in (3), the corresponding

proximal step

. 1
Milycgn iHW —u?+Q(w) (16)

s.t. |wa| > |ws] if eqp € E,

can be reduced to a proximal step (8) with the W in (15).
The same also holds when the feasible region is defined
by heredity constraints. Then, in Section III-C, we show
that such a flexible WV still allows the proximal step to be
efficiently computed.

A. Proximal Step with Hierarchy Constraints (3)

Assume that Q(w) in (16) is invariant to the sign of
w = [w,], ie., Q(w) = Q(|w]|), where |w| is the vec-
tor with entries |w,|’s. Many popular regularizers, such
as ||wl|1, ||[w||? and ||w||s, satisfy this condition. As the
constraints in (16) are also invariant to the sign, the optimal
w, must have the same sign as u,, (fora = 1,...,n). Hence,
we can first solve

ming cgn

1
3 2 (0 = [ua])’ + Q%) A7)

st Wy > 1y if e, € B,

W, >0, a=1,...,n,

and then recover w, as wW,sign(u,). Obviously, (17) is a
proximal step and its feasible region is of the form in (15).

B. Proximal Step with Heredity Constraints

In the sequel, we focus on model (1) with pairwise inter-
actions. Extension to models with higher-order interactions
is straightforward. Recall that Bien et al. [4] enforces the
heredity principle by using the constraints in (4). Here,
instead of aggregating the interactions {|©;x|}¢_, together
into ||®,||1, we enforce strong heredity by the constraints

Okl <1051, 10| < [0k, (18)
which are more direct and intuitive. Bien et al. also requires
an additional constraint @ = ©7 for strong heredity. We
avoid this by simply redefining the model in (1) as f(x) =
0o + Z?Zl z;0; + Zj<k 22,0 ;. With the feasible region
defined by (18), the proximal step is then

. 1
MMy — (9T T |7 cR" §||W —uf? +Q(w)
105 > 19k, 10k] > |O;1|. (19)
As in Section III-A, the absolute signs in (19) can be

removed by reformulation, and the proximal step reduces
to one with the feasible region defined in (15).

S.t.



Algorithm 2 The RIA (Regularized Isotonic Regression
with ADMM) algorithm for computing the proximal step
with W in (15).

1: convert problem (14) to (21);

2: t « 0; set 20, w9, 10 < 0;

3: repeat

4 20D argmingez ¢(z) + L)z — Qw®) + 1?2,
where the elements of Q are as defined in (20);
50wt argmingern ¥(w) + £[z0F) — Qw +

]2
6 T o p®) 4 7)) _ Qwttl),
7. t<+—t+1;

8: until convergence;
9: return w(®),

C. Computing the Proximal Step with W in (15)

When W = R” (i.e., no constraints are imposed on w),
efficient computation of the proximal step has been well-
studied [12]. However, this becomes more challenging when
constraints are present. In particular, V¥V contains two types
of constraints: (i) simple box constraints; and (ii) pairwise
constraints w, > wp that are defined w.r.t. a DAG. When
B; = 0 and By oo, W reduces to that in (5). When
Q(w) = 0, the proximal step, with W defined in (15), is a
(bounded) isotonic regression problem [18] (the constraints
{wq > wp} are called isotonic constraints), and a number
of solvers have been proposed [19]. However, the more
interesting case with Q(w) # 0 is much more difficult.

In this section, we propose a novel algorithm for solving
this proximal step. We first convert the DAG (on which the
pairwise constraints in WV reside) to a tree, and then use the
ADMM algorithm on the transformed problem. As reviewed
in Section II-B, the key issue in ADMM is how to update the
two variables w; and wy. We will show that one of these
can be reduced to a standard isotonic regression problem,
while the other can be reduced to a standard proximal
step. The whole procedure, called RIA (Regularized Isotonic
Regression with ADMM), is shown in Algorithm 2.

1) Convert the DAG to a Tree: Without loss of generality,
we assume that the DAG G(V, E) has a single root. Other-
wise (as in Figure 1), we add a pseudo-root and connect
it to all the original roots (Figure 2(a)). The conversion
procedure is simple. It checks every node v, € V. If its
number of parents npar(a) is greater than 1, v, is duplicated
(npar(@) — 1) times and edges are added such that each of
its parents is connected to a copy of v,. At the end, a tree
T is formed (Figure 2(b)).

For any w € R"™ defined on V, the correspond-
ing vector defined on the nodes of 7 is denoted

— T
z = [21,1722,1a22,27 cee BERZ7% R Zn,npa,(n)]

s Z2,npm(2)a

Npar(2) times

Here, we assume that the root has index 1.

Npar(n) times

e RIEIHL
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(a) adding a pseudo-
root.

(b) tree obtained after the conversion.

Figure 2. Converting a DAG to a tree.

Moreover, for notational simplicity, we set np, (1) = 1, and
thus z1,; = wy. By construction, if w satisfies the isotonic
constraints in (G, z also satisfies the isotonic constraints in
T'. Moreover, it can be easily seen that z and w are related
as z = Qw, where Q € RUEITDX" hag rows indexed in
the same order as z, and

Qcc_{

where e = ey, € F is an edge from v, to vp.
With this reformulation, the proximal step, with W in
(15), can be rewritten as

1
0

b=c

otherwise, (20)

n npur(a)

. Zap
Q(w) (21
zezn,lvlv%w +Z Z 2npdr +\(,_)/ @D
iy ()
#(z)
s.t. z = Qw,

where Z = [By, By]!PI*!, and 6(z) = 0 if z satisfies the
isotonic constraints in 7°; and oo otherwise.

2) Updating of z: Using ADMM, we first show that
the update of z reduces to a standard isotonic regression
problem. Specifically, with ¢ as defined in (21), update rule
(9) can be rewritten as

: 14
mingez ¢(z) + sz —Qw! + I‘(t)”Q
n "’p\r("z (f) (f)
Ra,p — P(Za,p —Wa’ +Tap)’
= mingecz Z Z
P o 2npdr(a 2
+4(z)
n Npar(a)
. 2
= mingez Z Z Na,p (Za,p — Qap) 22)
a=1 p=1
s.t. z satisfies the isotonic constraint in 7,
o 14wl _ uatnpu(a)p(w —rl))
where 17,, = o :(a) , Qap ome(a) 2

G

and the elements rq)’s of r(") are ordered in the same
way as z. This is a standard (bounded) isotonic regression
problem with tree-ordered constraints. As shown in [18], its
optimal solution can be obtained by first dropping the bound
constraints in Z, solve the unbounded isotonic regression
problem with algorithms in [7], [20], and then project the
solution back onto Z.



3) Updating of w: Next, we show that the update of w
can be reformulated as a proximal step. Specifically, with 1)
as defined in (21), the update rule (10) can be rewritten as

i Py t+1) _ )2
Iin P(w) + 2 Qw +r'||
n npa(a) p
_ . t+1 t 1) \2
= min QW)+, > Sl —wld )
a=1 p=1
—  min Q(w)+ zn: Proul@) (g 2 (23)
weRn? a1 2 “ o
npar(a) _(t41) | (t)
where 3, = 2pm nZ“(‘;’) tTap This is of the same form
par

as the proximal step in (8), and closed-form solutions are
readily available for popular €2’s, including:

1) Q(w) = \||w||1, where X is the regularization parame-
ter: As the ¢1-norm is separable, the optimal w* of (23)
can be obtained by soft-thresholding at each dimension
[21], i.e.,

. {sgn(/m (181
w, = 0

_ A

. A
pnpar(a)

RS
otherwise.

2) Q(w) = 3||w||3: By setting the gradient of the objec-
tive in (23) to zero, we obtain w} = %
par
3) Q(w) = A|W||oo: Without loss of generality, we as-

sume that |31| > |B2| > -+ > |S,| (otherwise, one can
rearrange the indices). Using a derivation similar to that
in [12], it can be shown that if p>""'_ | npar(a)|Ba| < A,
then the optimal w* = 0; otherwise,
. p Zl,gb* Mpar (0) [ Bo [ =X
_ {Sgn([))a,) P Ebgh* npm_(b) )
0.

a < b*

*
a

a > b*,

where b* is the smallest b € {1,2,...,n} such that
P2 o<p Mpar(Q)|Be]—A > 1Bosal.
> c<p Prpar(€) +1
For regularizers {2 that do not lead to an easy solution
for (23), we use the split inexact Uzawa method [15] as
discussed in Section II-B. Let Q., be the ath column of
Q. Note from (20) that Q., contains ny(a) 1’s, and the n
columns of Q are linearly independent. Hence, Q7'Q is a
diagonal matrix with the largest diagonal element np,, =
max,—1, . n Mpar(@), aNd Apax (QT Q) = Npax. From (12),
the linearized problem is then

1 Timax
i Q(w) -+ E5 fw = o (24)
where
e = w® — QL (Qwt) — z(t+1) — y(®))
: ' nmax
t Npar (@ 41 ‘
IR OIS D C AR )
’ nmax
MO
= w®— npar(@) (wa” — Ba)

nmax
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Note that (24) is now a proximal step, and thus can be solved
efficiently if €2 is “simple”.

In the following, we provide a concrete example, namely,
group lasso with non-overlapping groups. Given a set of
non-overlapping groups G defined on the dimensions of w,
we have Q(w) = A} . [lwgl, where wy is the sub-
vector of w restricted to a group g € G. With this €,
solving (23) is difficult, while solving (24) is surprisingly
easy. Specifically, as the groups in G are non-overlapping,
we can decompose (24) into smaller subproblems, one for
each group: miny, 3 [lw, —~,[I> + pn’\max w,||. This admits
a closed-form solution [22]:

1—
w;_{’yg(

0

4) Time Complexity: The conversion from DAG to tree
takes O(|E|) time. Since ¢ is strongly convex (due to
the quadratic term) and Q has full column rank, both
the standard ADMM and its split inexact Uzawa variant
converge linearly, i.e., it takes O (log %) iterations to obtain
an e-approximate solution? [16]. In each iteration, updating
z takes O(|F|log|E|) time for the unbounded isotonic
regression problem with tree-ordered constraints [20], and
O(|E|) time for the projection onto Z. As for the update
of w, one has to first obtain the §,’s, which takes O(|F|)
time (but is subsumed by the O(|E|log|E|) time above).
Next, the proximal step for [[wl|1, [[wl]|3, or > g [lw,]
takes tpox = O(n) time; while that for ||wﬁoc takes
torox = O(nlogn) time [12]. Hence, Algorithm 2 takes a
total of O (log L(|E|log|E| + tpox)) time.

pnnmx/\\|‘7g|\> ) P”maxH'Yg” > A

otherwise.

IV. SOLVERS BASED ON ONLY ADMM

Instead of using a combination of (outer) FISTA and
(inner) ADMM iterations as in Section III, we show in this
section that problem (14) can also be solved by using only
ADMM. In Section IV-A, we first propose a naive approach,
which is then improved by a more refined approach in
Section I'V-B.

A. Naive ADMM Approach

We rewrite problem (14) as

min
WER" wo €R27

N
1 .
¥ 2 W i, i) +3(wh) + Q(w)
i=1 M
P(w2)

B(w)

s.t. Aw = wo, 25)

where wy = [xl} LA

2
{ 0 Wi € W
Note that while the original works in [8], [10] require the proximal step

oo otherwise
to be solved exactly, this has been recently relaxed to allow the proximal
step to be only approximately solved (see [23] and references therein).

{H I is the identity matrix, and

o(wy) = . From (10), the ADMM update



Algorithm 3 Naive ADMM for solving (25).
1: t <+ 0; set w0 wl, r® + 0;
2: repeat
3 update w('1) using (26);

W§t+1)

2
5

4: < arg ming, ew

[wi — (wl+D) 4 ()]

5: W§t+1)
Q(WQ);
6 r+D o p() 4 AW _ w§t+1);
7 t+t+1;

8: until convergence;

9: return w®),

:

— arg Miny,crn 4§ HWQ — (w4 rét))

rule for w is

S UwT X,y

(t+1) _ :
W =ar min
& N

wEeR”

(26)

Depending on the form of [, this may require the use

of a nonlinear solver such as L-BFGS. However, for the

commonly used square loss [(WTx;,y;) = 2(wTx; — ;)%
a closed-form solution of (26) can be easily obtained as

)+g HAW - wg—f—r(t)H .

+

2

XTX “l/xT
W(t+1) = (N + [)ATA) (]Vy + /)AT<(_‘;§) — I‘(t)))
(27
where X = [x1,X2,...,xn] and y = [y1,¥2,...,yn]".

As for the update of ws, we have from (9),
wgﬂ) _

argming,ecgze  0(wi) + Q(wa)
(t+1) (t)
pll[w w1 r;
+3 [W(t+1)} - {WJ + L,;t)

where ry (resp. rs) is the subvector in r corresponding to
w1y (resp. wa). Obviously, w; and wy can be optimized in-
dependently. The subproblem involving w; can be rewritten
as

min
wieW

Jswr = w0
This is an isotonic regression problem with DAG-ordered
constraints [18], and can be solved by algorithms in [24],
[19]. On the other hand, the subproblem involving wg is

2
[sws = (w60 20+ 2w

_p
min —
wo ER™ 2

(28)
This is a proximal step, and can be solved efficiently in
closed-form for “simple” €2 [12]. The whole procedure is
shown in Algorithm 3.

From [15], [25], ADMM requires O (1) iterations to
obtain an e-accurate solution. In each ADMM iteration, the

computational cost is dominated® by the update of w, which

3In general, the update of w in (26) can also be expensive. Nevertheless,
for the square loss considered in this experiments, the update in (27)
xTx

N

—1
is cheap, assuming that ( + pATA) can be pre-computed and

stored.

|
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takes O(n*) time [24], [19]. This is expensive even for

moderate values of n. The total complexity of the algorithm
4

is 0 (),

B. Linearized ADMM with Transformed Tree Constraints

The previous ADMM approach involves solving an ex-
pensive isotonic regression problem on DAG ordering. In
this section, we alleviate this problem by converting the
DAG constraints to tree constraints as in Section III-C.
Problem (14) can then be reformulated as

i 3 WTX' i z \'%
NZZ( zayz)+6( )+Q( 1)

min
wER™ &y ERIEI+1+n 1
1=

¢ (@2)

d(w)

S.t. Aw = (:)2, (29)

where A = Q} and wy = { z ], 0(z) = 0 if z satisfies
I W1

the isotonic constraints in 7" and z; € [By, Bs], Vi; and oo
otherwise. Note the similarity with (25), except that (29) has
d(z) (defined w.r.t. the tree-ordered constraints) instead of
d(w) (defined w.r.t. the DAG-ordered constraints).

1) Updating of w: Note that ¢ in (29) is the same as
in (25). Hence, the update rule of w is also the same,
which involves a matrix inversion even when [ is the
square function. In this section, we alleviate this problem
by linearizing ¢. Specifically, for (29), the linearized update
rule in (11) can be rewritten as

L Lllw = w2 + pll Aw — &5 +r 0|2

min Vo(w®)T'w 5

WERn

= min ) na(we — fo)?, (30)
a=1
where L is the Lipschitz constant of V¢,
L+ p(1 + npu(a))
Tla 9 )
G~ Lol = (VoW + p(wi e = [ef]a)
‘ L+ p(1 + npa(a))
npar(a) (1) (t)
i Za,p — Yz |a,p
Pzp_1 = [r27]ay ’ 31)

L+ p(1 + npur(a))

rg) (resp. r;t)) is the subvector in r*) corresponding to w
(resp. z), and [rg)}w,’s are the elements of r;f') ordered in

the same way as z. Hence, w1  which is the optimal
(t+1)

solution in (30), is simply given by wy, = B, for all a.
2) Updating of w-: From (9), we have
L:Jét+1) = argming, d(z) + Q(w)
ollfQ] w21 O
ol ] fwet | 7w | T r{"




Algorithm 4 Linearized ADMM with transformed tree
constraints.

1: convert problem (14) to (29);

2: t <+ 0; set wl wl r¥ < 0;

3: repeat 5 3
4: w[(LtH) + B, for all a, where (3, is given in (31);

5. update z1) as in (32);

2
6: W§t+1) ¢ arg Miny, cgn § le — (wt+D) 4 rgt))H n
Q(w1);
7. plFD)  p) L AW &§t+1);
8 t+t+1;

9: until convergence;
10: return z(®).

As in Section IV-A, z and w; can be optimized indepen-
dently. In particular, the update of w; is exactly the same
as in (28), whereas the update of z can be rewritten as

min 6(z) + £ QY —z+ 20|

N npar(a)
: 2
= 1y Z Z (%a,p — Qa,p)
a=1 p=1
s.t.  z satisfies the isotonic constraint in 7',
Za,p S [Bla BQ]a (32)
where ag ), = wi™ [r;t)]a’p. This is a bounded isotonic

regression problem with tree-ordered constraints, and can be
solved by the algorithms in [20], [7]. The whole procedure
is shown in Algorithm 4.

3) Time Complexity: The conversion from DAG to tree
takes O(|E|) time. In each ADMM iteration, updating w
takes O(|E|) time to compute J3,’s; updating w; takes
tprox time; while updating of z involves an isotonic re-
gression problem with tree-ordered constraints, which takes
O(|E|log |E|) time [20]. The linearized ADMM algo-
rithm has the same convergence rate as standard AD-
MM, i.e., O(%) [13]. Hence, the total complexity is
O M), which is much better than the naive
ADMM formulation in Section IV-A.

While the original problem in (14) has only n unknowns,
|E| + 1 auxiliary unknowns are introduced in (29). In the
convergence results on ADMM (e.g., [13], [15]), the error
bound involves 1|jw9 — w3||?, where w3 is the optimal
wy. Consequently, the more auxiliary variables there are,
the higher the dimensionality of ws, and the larger the
error. Indeed, in order to achieve the same accuracy, it
needs O (%) times more iterations than the naive AD-
MM. This detrimental effect will be observed empirically
in Section V-D. Interestingly, while Algorithm 2 also has
as many auxiliary variables as Algorithm 4, it does not
suffer from the same problem due to its linear convergence
rate. Let the optimal solution be (wj,ws3,r*). Its error
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(t) X
Wy —wy

bound is of the form wg) —wil < oppeope < e
(®) * v
Y —-r t times
2
w} — wi
where € = ||w) —w3|| , and 0 < p < 1. Consequently,
(0] *
r’—r
the number of iterations required to converge to an e-

approximate solution is O (log %) When |E|+ 1 auxiliary

|E|®
n 2

unknowns are introduced, we have &0 = (’)( and

|E]e
ne

O (log %) +0 (1og |2l ) Hence, only O (log M) extra

n n
1E]
n

the number of required iterations becomes O (log

iterations, instead of (9( times more iterations, are

needed.

V. EXPERIMENTS

In this section, experiments are performed on a number
of synthetic and real-world data sets. The FISTA-based
approach* proposed in Section III (which is faster) is used
in Sections V-A, V-B and V-C. Comparison with the purely-
ADMM-based approaches will be presented in Section V-D.

A. Prior Knowledge on Coefficients

In this experiment, we demonstrate that prior knowledge
on the relative magnitudes of regression coefficients can
improve performance. The setup is similar to that in [7].
The data is generated from the model y = w’'x + ¢, where
x € R, ¢ ~ N(0,1) and W is the ground truth parameter.
The W vector is divided into 3 equal-sized groups w1, W2
and wg3. Each element of wyy is drawn from A(0,1),
while W2 = Wy3 = 0. As for the generation of x, we use
two setups: (i) the features of x are sampled independently
from N(0,1); (ii) the features of x are correlated with the
correlation coefficient uniformly distributed drawn from the
uniform distribution ¢/[0, 1].

Prior knowledge is added in the form of isotonic con-
straints as follows. From each group in w, we create a
constraint w, > wp on the parameter estimate w if (i)
Wq > Wp; or (i) w, = w, and a < b. In general, the
resultant set of constraints leads to a DAG. We vary the
number of training samples from 10 to 100, and compare
the standard lasso/group lasso with those using 30% or
80% of the isotonic constraints as side information. The
regularization parameter A is chosen using a validation set
of size 100.

Note that though our setup is similar to [7], it is more
general as (i) the w;’s are not constrained to be non-negative;
(ii) there is a regularizer (namely, the (;-regularizer); and

“The (outer) FISTA iteration is stopped when the relative change in the
objectives from two consecutive iterations is less than 10~°. The (inner)
RIA iteration is stopped when both the primal and dual residuals are less
than 105,



(iii) the isotonic constraints are ordered on a DAG, not a
tree. Hence, the Atda algorithm proposed in [7] cannot be
used.

Figure 3 shows the relative model error H‘;\ averaged
over 10 runs. As expected, group lasso outperforms lasso,
and the use of isotonic information helps both lasso and
group lasso regardless of sample size. Moreover, increasing
the amount of isotonic information further improves the
accuracy of model parameter estimation.

[w—wl|

—*—lasso
—+—glLasso
1* 2—lasso (isotonic 30%)
4 —&—lasso (isotonic 80%)
5 0.8 —e—glasso (isotonic 30%)
% ) glasso (isotonic 80%)
“2’ 0.6\
=
Cos
0.2} +
o ;
20 40 60 80 100
. sample size
(a) independent inputs.
—*—lasso
—+—glLasso
1 >—lasso (isotonic 30%)
—=—lasso (isotonic 80%)
5 0.8 —©—glasso (isotonic 30%)
% A glasso (isotonic 80%)
gos
5
204
02 ¥
]
o . . .
20 40 60 80 100
sample size
(b) correlated inputs.
Figure 3. Relative errors obtained by the various models.

B. Hierarchical Interactions

Next, we perform experiments on six nucleoside reverse
transcriptase inhibitors (NRTIs) data sets that have been
used in [4] (Table I). The task is to predict the drug’s
susceptibility (a measure of drug resistance) based on the
location of mutation. We compare the proposed algorithm
with (i) the main-effect-lasso (MEL), which is standard lasso
using the main effects only; (ii) all-pairs lasso (APL), which
adds all the pairwise interactions to the lasso; (iii) weak
hierarchical lasso (WHL); and (iv) strong hierarchical lasso
(SHL), both of which are proposed in [4] to handle heredity
relationships’. Using the notation in (1), isotonic constraints
|6;] > |©;%| and |0;| > |©,| are imposed for every (j, k).
Given d original features, we have d(d—1) features for the
second-order interaction, and d(d — 1) isotonic constraints.
As not all pairwise interactions are likely to be useful, we

5The codes of WHL and SHL are provided by their authors.

904

also experiment with variants (suffixed with -S, for “subset”)
that only construct interactions from the 30 features having
the largest regression coefficients in the MEL model. We
use 50% of the data for training, 25% for validation and the
remaining 25% for testing.

Table 1
A SUMMARY OF THE NRTI DATA SETS.

# original | # 2nd-order | # isotonic
data set | # samples features features constraints
3TC 1,057 217 23,436 46,872
ABC 1,005 211 22,155 44,310
AZT 1,067 218 23,653 47,306
D4AT 1,073 218 23,653 47,306
DDI 1,073 218 23,653 47,306
TDF 784 216 23,220 46,440

Table II shows the root mean square error (RMSE)
averaged over 10 runs. As can be seen, on D4T, DDI
and TDF, MEL performs similarly as the proposed model,
indicating that there may be little pairwise interactions on
these data sets. WHL performs even worse than MEL, which
is also observed in [4]. On the other hand, the proposed
models clearly outperform all others on 3T7C, ABC and AZT.
Moreover, although the optimization problem is nonconvex
(because of the constraints |6;] > |©,| and [0;] > |©;k]).
we do not observe any empirical convergence problem for
FISTA.

C. Constraints of the form |wa| > |wp|

In this section, we perform experiments on the breast can-
cer data set® [26], which contains 8,141 genes in 295 tumors.
We use a varying number of genes that are most correlated
to the output. From the supplementary information of [27],
some of the genes are breast cancer susceptibility genes.
As discussed in Section I, we assume that these genes have
larger contributions than the others (i.e., |w,| > |wy| if @
is a cancer susceptibility gene and b is not). A summary of
the number of genes, and the number of pairwise constraints
generated, is shown in Table III. In particular, note that when
all the genes are used, there are close to 485, 000 constraints.

Following [26], we reduce class imbalance by duplicating
the positive samples twice. Different amounts (10%, 20%
and 40%) of the data are then used for training, another
40% for testing, and the rest for validation. We compare
three lasso models: (i) using the susceptibility genes only
(denoted “susc-only”); (ii) using all the genes (denoted
“without”); and (iii) using all the genes and also with
the prior knowledge that susceptibility genes have larger
contributions (denoted “with”).

Table IV shows the classification accuracies averaged over
10 runs. As can be seen, the use of prior knowledge helps
prediction in all cases. Using the susceptibility genes only

Shttp://cbio.ensmp.fr/~ljacob/



Table IT
RMSE ON THE NRTI DATA SETS. THE BEST AND COMPARABLE RESULTS (ACCORDING TO THE PAIRWISE T-TEST WITH 95% CONFIDENCE) ARE

HIGHLIGHTED.
data MEL APL APL-S WHL SHL ours ours-S
3TC 0.2564-0.021 0.195+0.024  0.192+0.021 0.20940.040  0.201+£0.021 0.20140.023  0.187+0.021
ABC | 0.21840.017 0.210£0.019  0.2154+0.023  0.222+0.024  0.2134+0.018  0.199+0.024  0.20940.020
AZT 0.6061+0.043  0.592+0.039  0.585+0.043  0.592+0.053  0.6284+0.029  0.583+0.048  0.580+0.040
DAT 0.1834+0.012 0.195+£0.012  0.190£0.012  0.196+0.025  0.191£0.012  0.185+0.009  0.185+0.011
DDI 0.1324+0.007  0.143+0.014  0.138+0.011 0.14240.011 0.138+0.010  0.137+0.014  0.136+0.009
TDF 0.2941+0.026  0.326+0.028  0.3074+0.023  0.306+0.023  0.31440.026  0.294+0.027  0.298+0.026
Table III

A SUMMARY OF THE BREAST CANCER DATA SET. 7 s 1 s

ADMM (tree) ADMM (tree)

—o~FISTA-ADMM 135 —o~FISTA-ADMM

#genes #susceptibility genes #pairwise constraints
300 6 1,764
500 9 4,419
1,000 10 9,900
8,141 60 484,860

(essentially performing feature selection) is also a useful
way to constrain model complexity when the training data
is limited and the available set of features is large.

D. Comparison with the ADMM Approaches in Section IV

In this section, we compare the efficiencies of the solvers
proposed in (i) Section III (denoted “FISTA-ADMM”); (ii)
Section IV-A (denoted “ADMM(DAG)”); and (iii) Sec-
tion IV-B (denoted “ADMM(tree)”). The setup is similar
that in Section V-A. The data is generated from the model
y = wix + ¢, where x ~ N(0,1) and € ~ N(0,9). The
vector w is divided into 3 equal-sized groups Wy, Wgo
and wg3. Each element of W,y is drawn from N(0,1),
and Wy = Wgg = 0. Moreover, 30% of the isotonic
constraints (which are generated as in Section V-A) are
used. We experimented with two settings: (i) 300 training
samples, with x € R?%; and (ii) 1000 training samples,
with x € R3000,

Figures 4(a) and 4(b) show the optimization objective
versus CPU time (averaged over 10 runs). As can be seen,
the naive ADMM method (“ADMM(DAG)”) is the slowest
because of its high computational cost per iteration. The
linearized ADMM with transformed tree constraints (“AD-
MM(tree)”) is comparable with the FISTA-ADMM based
approach (“FISTA-ADMM”) for x € R, but is slower
for x € R3%%0, This is due to the large number of auxiliary
variables introduced, and the larger number of iterations
required (Figures 4(c) and 4(d)).

VI. CONCLUSION

In this paper, we considered models with hierarchical
relationships among features, and three optimization solver-
s are proposed. In particular, we focus on the efficient
computation of the proximal step, which serves as a core

objective
objective
I
&

4
0 2 4 6 8 10 0 5 10 15 20 25 30

cpu time (s) cpu time (s)

(a) Objective versus CPU time. (b) Objective versus CPU time.

~—ADMM (DAG)
ADMM (tree)
—o~FISTA-ADMM 135

——ADMM (DAG)
ADMM (tree)
—o~FISTA-ADMM

objective
objective
I
&

5

0 20 40 60 80 100 0 20 40 60 80 100
number of iterations number of iterations

(c) Objective versus number of iter- (d) Objective versus number of it-
ations. erations.

Figure 4. Convergence of the various proposed solvers. Left: x € R900;
Right: x € R3000,

building block in accelerated gradient methods. With the
use of the ADMM, both update steps can be reduced to
simple standard optimization problems. Experimental results
on a number of data sets demonstrate the efficiency of
the proposed solver, and the usefulness of the hierarchical
relationships in improving generalization performance and
parameter estimation.
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