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Abstract—Low-rank modeling has a lot of important ap-
plications in machine learning, computer vision and social
network analysis. While the matrix rank is often approximated
by the convex nuclear norm, the use of nonconvex low-rank
regularizers has demonstrated better recovery performance.
However, the resultant optimization problem is much more
challenging. A very recent state-of-the-art is based on the
proximal gradient algorithm. However, it requires an expensive
full SVD in each proximal step. In this paper, we show that
for many commonly-used nonconvex low-rank regularizers, a
cutoff can be derived to automatically threshold the singular
values obtained from the proximal operator. This allows the use
of power method to approximate the SVD efficiently. Besides,
the proximal operator can be reduced to that of a much smaller
matrix projected onto this leading subspace. Convergence,
with a rate of O(1/T ) where T is the number of iterations,
can be guaranteed. Extensive experiments are performed on
matrix completion and robust principal component analysis.
The proposed method achieves significant speedup over the
state-of-the-art. Moreover, the matrix solution obtained is more
accurate and has a lower rank than that of the traditional
nuclear norm regularizer.

Keywords-Low-rank matrix, Nonconvex optimization, Prox-
imal gradient, Matrix completion, Robust PCA

I. INTRODUCTION

The learning of low-rank matrices is a central issue

in many machine learning problems. For example, matrix

completion [1], which is one of the most successful ap-

proaches in collaborative filtering, assumes that the target

ratings matrix is low-rank. Besides collaborative filtering,

matrix completion has also been used on tasks such as

sensor networks [2], social network analysis [3], and image

processing [4, 5].

Another important use of low-rank matrix learning is

robust principal component analysis (RPCA) [6], which

assumes the target matrix is low-rank and also corrupted

by sparse data noise. It is now popularly used in various

computer vision applications, such as shadow removal of

aligned faces and background modeling of surveillance

videos [6, 7]. Besides, low-rank minimization has also been

used in tasks such as multilabel learning [8] and multitask

learning [9].

However, rank minimization is NP-hard. To alleviate this

problem, a common approach is to use instead a convex

surrogate such as the nuclear norm (which is the sum of

singular values of the matrix). It is known that the nuclear

norm is the tightest convex lower bound of the rank. Besides,

there are theoretical guarantees that the incomplete matrix

can be recovered with nuclear norm regularization [1, 6].

Moreover, though the nuclear norm is non-smooth, the re-

sultant optimization problem can often be solved efficiently

using modern tools such as accelerated proximal gradient

descent [10], Soft-Impute [11], and active subspace selection

methods [12].

Despite its success, recently there have been numerous

attempts that use nonconvex surrogates to better approx-

imate the rank function. The key idea is that the larger,

and thus more informative, singular values should be less

penalized. Example nonconvex low-rank regularizers include

the capped-�1 penalty [13], log-sum penalty (LSP) [14],

truncated nuclear norm (TNN) [15], smoothly clipped ab-

solute deviation (SCAD) [16], and minimax concave penal-

ty (MCP) [17]. Empirically, these nonconvex regularizers

achieve better recovery performance than the convex nuclear

norm regularizer.

However, the resultant nonconvex optimization problem

is much more challenging. One approach is to use the

concave-convex procedure [18], which decomposes the non-

convex regularizer into a difference of convex functions

[13, 15]. However, a sequence of relaxed problems have

to be solved, and can be computationally expensive [19]. A

more efficient method is the recently proposed iteratively re-

weighted nuclear norm (IRNN) algorithm [20]. It is based

on the observation that existing nonconvex regularizers are

all concave and their super-gradients are non-increasing.

Though IRNN still has to iterate, each of its iterations only

involves computing the super-gradient of the regularizer and

a singular value decomposition (SVD). However, performing

SVD on a m×n matrix (where m ≥ n) still takes O(mn2)
time, and can be expensive when the matrix is large.

Recently, the proximal gradient algorithm has also been

used on this nonconvex low-rank minimization problem

[7, 15, 20, 21]. However, it requires performing the full SVD

in each proximal step, which is expensive for large-scale

applications. To alleviate this problem, we first observe that

for the commonly-used nonconvex low-rank regularizers, the

singular values obtained from the corresponding proximal

operator can be automatically thresholded. One then only
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needs to find the leading singular values/vectors in order to

generate the next iterate. By using the power method [22],

a fast and accurate approximation of such a subspace can

be obtained. Moreover, instead of computing the proximal

operator on a large matrix, one only needs to compute

that on its projection onto this leading subspace. The size

of the matrix is significantly reduced and the proximal

operator can be made much more efficient. In the context of

matrix completion problems, further speedup is possible by

exploiting a special “sparse plus low-rank” structure of the

matrix iterate.

The rest of the paper is organized as follows. Section II

reviews the related work. The proposed algorithm is present-

ed in Section III; Experimental results on matrix completion

and RPCA are shown in Section IV, and the last section

gives some concluding remarks.

In the sequel, the transpose of vector/matrix is denoted by

the superscript (·)�. For a m×n matrix X , tr(X) is its trace,

‖X‖F = tr(X�X) is the Frobenius norm, and ‖X‖∗ =∑m
i=1 σi is the nuclear norm. Given x = [xi] ∈ R

m, Diag(x)
constructs a m × m diagonal matrix whose ith diagonal

element is xi. Moreover, I denotes the identity matrix. For

a differentiable function f , we use ∇f for its gradient. For

a nonsmooth function, we use ∂f for its subdifferential.

II. BACKGROUND

A. Proximal Gradient Algorithms

In this paper, we consider composite optimization prob-

lems of the form

min
x

F (x) ≡ f(x) + λr(x), (1)

where f is smooth and r is nonsmooth. In many machine

learning problems, f is the loss and r a low-rank regularizer.

In particular, we make the following assumptions on f .

A1. f , not necessarily convex, is differentiable with

ρ-Lipschitz continuous gradient, i.e., ‖∇f(X1) −
∇f(X2)‖F ≤ ρ‖X1 −X2‖F . Without loss of general-

ity, we assume that ρ ≤ 1.

A2. f is bounded below, i.e., inf f(X) > −∞.

In recent years, proximal gradient algorithms [23] have been

widely used for solving (1). At each iteration t, a quadratic

function is used to upper-bound the smooth f at the current

iterate xt, while leaving the nonsmooth r intact. For a given

stepsize τ , the next iterate xt+1 is obtained as

argmin
x
∇f(xt)�(x− xt) +

τ

2
‖x− xt‖2 + λr(x)

= argmin
x

1

2
‖x− zt‖2 + λ

τ
r(x) ≡ proxλ

τ r(z
t),

where zt = xt − 1
τ∇f(xt), and proxλ

τ r(·) is the proximal

operator [23]. Proximal gradient algorithms can be further

accelerated, by replacing zt with a proper linear combination

of xt and xt−1. In the sequel, as our focus is on learning

low-rank matrices, x in (1) becomes a m× n matrix X .1

B. Convex and Nonconvex Low-Rank Regularizers

An important factor for the success of proximal gradient

algorithms is that its proximal operator proxμr(·) can be

efficiently computed. For example, for the nuclear norm

‖X‖∗, the following Proposition shows that its proximal

operator has a closed-form solution.

Proposition II.1. [24] proxμ‖·‖∗(X) = U (Σ− μI)+ V �,
where UΣV � is the SVD of X , and (Z)+ = [max(Zij , 0)].

While the convex nuclear norm makes the low-rank opti-

mization problem easier, it may not be a good approximation

of the matrix rank [7, 15, 20, 21]. As mentioned in Section I,

a number of nonconvex surrogates for the rank have been

recently proposed. In this paper, we make the following

assumption on the low-rank regularizer r in (1).

A3. r is possibly non-smooth and nonconvex, and of the

form r(X) =
∑m

i=1 r̂(σi), where σ1 ≥ · · · ≥ σm ≥ 0
are singular values of X , and r̂(σ) is a concave and

non-decreasing function of σ ≥ 0 with r̂(0) = 0.

All nonconvex low-rank regularizers introduced in Section I

satisfy this assumption. Their corresponding r̂’s are shown

in Table I.

Table I
r̂’S FOR SOME POPULAR NONCONVEX LOW-RANK REGULARIZERS. FOR

THE TNN REGULARIZER, θ ∈ {1, . . . , n} IS THE NUMBER OF LEADING

SINGULAR VALUES THAT ARE NOT PENALIZED.

μr̂(σi)

capped-�1 μmin(σi, θ), θ > 0

LSP μ log
(σi

θ
+ 1

)
, θ > 0

TNN

{
μσi i > θ

0 i ≤ θ

SCAD

⎧⎪⎪⎨
⎪⎪⎩
μσi σi ≤ μ
−σ2

i +2θμσi−μ2

2(θ−1)
μ < σi ≤ θμ

(θ+1)μ2

2
σi > θμ

, θ > 2

MCP

{
μσi − σ2

i
2θ

σi ≤ θμ
θμ2

2
σi > θμ

, θ > 0

The Iteratively Reweighted Nuclear Norm (IRNN) algo-

rithm [20] is a state-of-the-art solver for nonconvex low-

rank minimization. It is based on upper-bounding the non-

convex r, and approximates the matrix rank by a weighted

version of the nuclear norm ‖X‖w =
∑m

i=1 wiσi, where

0 ≤ w1 ≤ · · · ≤ wm, Intuitively, ‖X‖w imposes a smaller

penalty on the larger (and more informative) singular values.

Other solvers that are designed only for specific nonconvex

low-rank regularizers include [7] (for the capped-�1), [15]

(for the TNN), and [25] (for the MCP). All these (including

IRNN) need SVD in each iteration. It takes O(m2n) time,

and thus can be slow.

1In the following, we assume m ≤ n.
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While proximal gradient algorithms have mostly been

used on convex problems, recently they are also applied to

nonconvex ones [7, 15, 20, 21]. In particular, in the very re-

cent generalized proximal gradient (GPG) algorithm [21], it

is shown that for any nonconvex r satisfying assumption A3,

its proximal operator can be computed by the following

generalized singular value thresholding (GSVT) operator.

Proposition II.2. [21] proxμr(X) = UDiag(y∗)V �, where
UΣV � is the SVD of X , and y∗ = [y∗i ] with

y∗i ∈ arg min
yi≥0

1

2
(yi − σi)

2
+ μr̂(yi). (2)

In GPG, problem (2) is solved by a fixed-point iteration

algorithm. Indeed, closed-form solutions exist for the regu-

larizers in Table I [19]. While the obtained proximal operator

can then be immediately plugged into a proximal gradient

algorithm, Proposition II.2 still involves SVD.

III. PROPOSED ALGORITHM

In this section, we show that the GSVT operator proxμr(·)
can be computed more efficiently. It is based on two ideas.

First, the singular values in proxμr(·) are automatically

thresholded. Second, proxμr(·) can be obtained from the

proximal operator on a smaller matrix.

A. Automatic Thresholding of Singular Values

The following Proposition shows that y∗i in (2) becomes

zero when σi is smaller than a regularizer-specific threshold.

Because of the lack of space, proofs will be reported in a

longer version of this paper.

Proposition III.1. For any r̂ satisfying Assumption A3, there
exists a threshold γ > 0 such that y∗i = 0 when σi ≤ γ.

By examining the optimality conditions of (2), simple

closed-form solutions can be obtained for the nonconvex

regularizers in Table I.

Corollary III.2. For the nonconvex regularizers in Table I,
their γ values are equal to
• capped-�1: γ = min

(
μ, θ + μ

2

)
;

• LSP: γ = min
(
μ
θ , θ

)
;

• TNN: γ = max (μ, σθ+1);
• SCAD: γ = μ;
• MCP: γ =

√
θμ if 0 < θ < 1, and μ otherwise.

Proposition III.1 suggests that in each proximal iteration t,
we only need to compute the leading singular values/vectors

of the matrix iterate Zt. The power method (Algorith-

m 1) [22] is a fast and accurate algorithm for obtaining

an approximation of such a subspace. Besides the power

method, algorithms such as PROPACK [26] have also been

used [27]. However, the power method is more efficient

than PROPACK [22]. It also allows warm-start, which is

particularly useful because of the iterative nature of the

proximal gradient algorithm.

Algorithm 1 Power method to obtain an approximate left

subspace of Z.

Require: matrix Z ∈ R
m×n, R ∈ R

n×k.

1: Y 1 ← ZR;

2: for t = 1, 2, . . . , Tpm do
3: Qt+1 = QR(Y t); // QR decomposition

4: Y t+1 = Z(Z�Qt+1);
5: end for
6: return QTpm+1.

B. Proximal Operator on a Smaller Matrix

Assume that Zt has k̂ ≤ n singular values larger than γ,

and its rank-k̂ SVD is Uk̂Σk̂V
�
k̂

. The following Proposition

shows that proxμr(Z
t) can be obtained from the proximal

operator on a smaller matrix.

Proposition III.3. Assume that Q ∈ R
m×k, where k ≥ k̂, is

orthogonal and span(Uk̂) ⊆ span(Q). Then, proxμr(Z
t) =

Q · proxμr(Q
�Zt).

Though SVD is still needed to obtain proxμr(Q
�Zt),

Q�Zt is much smaller than Zt (k×n vs m×n). This smaller

SVD takes O(nk2) time, and the other matrix multiplication

steps take O(mnk) time. Thus, the time complexity for this

SVD step is reduced from O(m2n) to O((m+ k)nk).

C. Complete Procedure

The complete procedure (Algorithm 2) will be called

FaNCL (Fast NonConvex Lowrank). The core steps are 9–

16. We first use the power method to efficiently obtain an

approximate Q, whose singular values are then thresholded

according to Corollary III.2. With k ≥ k̂, the rank of X̃p

will be equal to that of proxμr(Z
t). In each iteration, we

ensure a sufficient decrease of the objective:

F (Xt+1) ≤ F (Xt)− c1‖Xt+1 −Xt‖2F , (3)

where c1 = τ−ρ
4 ; otherwise, the power method is restarted.

Moreover, similar to [12, 27], steps 6-7 use the column

spaces of the previous iterates (V t and V t−1) to warm-

start the power method. For further speedup, we employ

a continuation strategy as in [11, 20, 27]. Specifically, λt is

initialized to a large value and then decreases gradually.

Algorithm 2 can also be used with the nuclear norm. It

can be shown that the threshold γ is equal to λ/τ , and y∗i
in step 15 has the closed-form solution max(σi − λt/τ, 0).
However, since our focus is on nonconvex regularizers, using

Algorithm 2 for nuclear norm minimization will not be

further pursued in the sequel.

The power method has also been recently used to approx-

imate the SVT in nuclear norm minimization [12]. However,

[12] is based on active subspace selection (which uses SVT

to update the active row and column subspaces of the current

solution), and is thus very different from the proposed
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Algorithm 2 FaNCL (Fast NonConvex Low-rank).

1: choose τ > ρ, c1 = τ−ρ
4 , λ0 > λ and ν ∈ (0, 1);

2: initialize V0, V1 ∈ R
n×k as random Gaussian matrices,

and X1 = 0;

3: for t = 1, 2, . . . T do
4: λt ← (λt−1 − λ)ν + λ;

5: Zt ← Xt − 1
τ∇f(Xt);

6: V t−1 ← V t−1 − V t(V t�V t−1), and

remove any zero columns;

7: R1 ← QR([V t, V t−1]);
8: for p = 1, 2, . . . do
9: Q← PowerMethod(Zt, Rp);

10: [Up
A,Σ

p
A, V

p
A ]← SVD(Q�Zt);

11: k̂ ← number of σA’s are > γ in Corollary III.2;

12: Ũp ← k̂ leading columns of Up
A;

13: Ṽ p ← k̂ leading columns of V p
A ;

14: for i = 1, 2, . . . , k̂ do
15: obtain y∗i from (2) with μ = 1/τ and λt;

16: end for
17: X̃p ← (QŨp)Diag(y∗1 , . . . , y

∗
k̂
)(Ṽ p)�;

18: if F (X̃p) ≤ F (Xt)− c1‖X̃p −Xt‖2F then
19: Xt+1 ← X̃p, V t+1 ← Ṽ p;

20: break;

21: else
22: Rp+1 = V p

A ;

23: end if
24: end for
25: end for
26: return XT+1.

algorithm (which is a proximal gradient algorithm). In Sec-

tion IV, it will be shown that the proposed method has better

empirical performance. Moreover, [12] is only designed for

nuclear norm minimization, and cannot be extended for the

nonconvex regularizers considered here.

A breakdown of the time complexity of Algorithm 2 is as

follows. For simplicity, assume that Xt’s always have rank

k. Step 5 takes O(mn) time; step 6 and 7 take O(nk2) time;

step 9 and 10 take O(mnkTpm) time; step 17 takes O(mnk)
time; and step 18 takes O(mn) time. Thus, the per-iteration

time complexity is O(mnkpTpm). In the experiment, we set

Tpm = 3 and p = 1. Empirically, this setting is enough to

guarantee (3). In contrast, SVDs in GPG and IRNN take

O(m2n) time, and are thus much slower as k � m.

D. Convergence Analysis

The following Proposition shows that {Xt} from Algo-

rithm 2 converges to a limit point X∞ = limt→∞Xt.

Proposition III.4.
∑∞

t=1 ‖Xt+1 −Xt‖2F <∞.

The following shows that it is also a critical point.2

Theorem III.5. {Xt} converges to a critical point X∗ of
problem (1) in a finite number of iterations.

By combining with Proposition III.4, the following shows

that ‖Xt+1 −Xt‖2F converges to zero at a rate of O(1/T ).

Corollary III.6. mint=1,...,T ‖Xt+1 − Xt‖2F ≤
1

c1T

[
F (X1)− F (X∗)

]
.

E. Further Speedup for Matrix Completion

In matrix completion, one attempts to recover a low-rank

matrix O ∈ R
m×n by observing only some of its elements.

Let the observed positions be indicated by Ω ∈ {0, 1}m×n,

such that Ωij = 1 if Oij is observed, and 0 otherwise. It

can be formulated as an optimization problem in (1), with

f(X) = 1
2‖PΩ(X−O)‖2F , where [PΩ(A)]ij = Aij if Ωij =

1 and 0 otherwise, and r is a low-rank regularizer.

It can be easily seen that step 5 in Algorithm 2 becomes

Zt = Xt− 1
τPΩ(X

t−O). By observing that Xt is low-rank

and 1
τPΩ(X

t −O) is sparse, Mazumder et al. [11] showed

that this “sparse plus low-rank” structure allows matrix

multiplications of the form ZA and Z�B to be efficiently

computed. Here, this trick can also be directly used to speed

up the computation of Z(Z�Qt+1) in Algorithm 1. Since

‖Ω‖1 is very sparse, this step takes O(kTpm‖Ω‖1) time

instead of O(mnkTpm), thus is much faster.

The following Proposition shows that ‖X̃p − Xt‖2F in

step 18 of Algorithm 2 can also be easily computed.

Proposition III.7. Let the reduced SVD of X be UΣV �,
and P,Q be orthogonal matrices such that span(U) ⊆
span(P ) and span(V ) ⊆ span(Q). Then ‖X‖F =
‖P�XQ‖F .

Let the reduced SVDs of X̃p and Xt be Ũ Σ̃Ṽ �

and U tΣtV t�, respectively. Let P = QR([Ũ , U t]) and

Q = QR([Ṽ , V t]). Using Proposition III.7, ‖X̃p −
Xt‖F = ‖P�(X̃p − Xt)Q‖F = ‖(P�Ũ)Σ̃(Ṽ �Q) −
(P�U t)Σt(V t�Q)‖F . This takes O(nk2) instead of O(mn)
time. The per-iteration time complexity is reduced from

O(mnkTpm) to O((nk + Tpm|Ω|1)k) and is much faster.

Table II compares the per-iteration time complexities and

convergence rates for the various low-rank matrix comple-

tion solvers used in the experiments (Section IV-A).

F. Handling Multiple Matrix Variables

The proposed algorithm can be extended for optimization

problems involving N matrices X1, . . . , XN :

minF (X1, . . . , XN )≡f(X1, . . . , XN )+
N∑
i=1

λiri(Xi). (4)

2Since r is nonconvex and its subdifferential for points in its domain
may be empty, we define X∗ as a critical point by extending the definition
in [19], namely that 0 ∈ ∇f(X∗) + λ∂r1(X∗) − λ∂r2(X∗), where
r(X) = r1(X)− r2(X), and r1 and r2 are convex.
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Table II
COMPARISON OF THE PER-ITERATION TIME COMPLEXITIES AND

CONVERGENCE RATES OF VARIOUS MATRIX COMPLETION SOLVERS.
HERE, ν ∈ (0, 1) IS A CONSTANT.

regularizer method complexity rate

(convex) APG [10, 27] O(mnk) O(1/T 2)

nuclear Soft-Impute [11] O(k‖Ω‖1) O(1/T )

norm active ALT [12] O(kTin‖Ω‖1) O(νT )

fixed-rank LMaFit [28] O(k‖Ω‖1) —

factorization R1MP [29] O(‖Ω‖1) O(νT )

nonconvex IRNN [20] O(m2n) —

GPG [21] O(m2n) —

FaNCL O(k‖Ω‖1) O(1/T )

Assumptions A1-A3 are analogously extended. In particular,

A1 now assumes that ‖∇fi(X) − ∇fi(Y )‖F ≤ ρi‖X −
Y ‖F for some ρi, where fi(X) is the function obtained by

keeping all the Xj’s (where i = j) in f fixed.

Many machine learning problems can be cast into this

form. One example that will be considered in Section IV

is robust principal component analysis (RPCA) [6]. Given

a noisy data matrix O, RPCA assumes that O can be

approximated by the sum of a low-rank matrix X plus sparse

data noise Y . Mathematically, we have

min
X,Y

F (X,Y ) ≡ f(X,Y ) + λr(X) + β‖Y ‖1, (5)

where f(X,Y ) = 1
2‖X + Y − O‖2F , r is a low-rank

regularizer on X , and ‖Y ‖1 encourages Y to be sparse.

Since both r and the �1 regularizer ‖ ·‖1 are nonsmooth, (5)

does not fit into formulation (1). Besides RPCA, problems

such as subspace clustering [30], multilabel learning [8] and

multitask learning [9] can also be cast as (4).

For simplicity, we focus on the case with two parameter

blocks. Extension to multiple blocks is straightforward. To

solve the two-block problem in (5), we perform alternating

proximal steps on X and Y at each iteration t:

Xt+1 = argminX
1
2‖X − Zt

X‖2F + λ
τ r(X) = proxλ

τ r(Z
t
X),

Y t+1 = argminY
1
2‖Y − Zt

Y ‖2F + β
τ ‖Y ‖1 = prox β

τ ‖·‖1(Z
t
Y ),

where Zt
X = Xt − 1

τ∇f(Xt, Y t), and Zt
Y = Y t −

1
τ∇f(Xt+1, Y t). Y t+1 can be easily obtained as Y t+1

ij =

sign ([Zt
Y ]ij)

(
|[Zt

Y ]ij | − β
τ

)
+

, where sign(x) denotes the

sign of x. Similar to (3), we ensure a sufficient decrease of

the objective in each iteration:

FY t(Xt+1) ≤ FY t(Xt)− c1‖Xt+1 −Xt‖2F ,
FXt+1(Y t+1) ≤ FXt+1(Y t)− c1‖Y t+1 − Y t‖2F ,

where FY (X) = f(X,Y ) + λr(X), and FX(Y ) =
f(X,Y ) + β‖Y ‖1. The resultant algorithm is similar to

Algorithm 2.

When F is convex, convergence of this alternating min-

imization scheme has been well studied [31]. However,

here F is nonconvex. We extend the convergence results

in Section III-D to the following.

Theorem III.8. With N parameter blocks and
{(Xt

1, . . . , X
t
N )} generated by the algorithm, we have

1)
∑∞

t=1

∑N
i=1 ‖Xt+1

i −Xt
i‖2F <∞;

2) {(Xt
1, . . . , X

t
N )} converges to a critical point

(X∗
1 , . . . , X

∗
N ) of (4) in a finite number of iterations;

3) mint=1,...,T

∑N
i=1 ‖Xt+1

i − Xt
i‖2F ≤

1
c1T

[F (X1
1 , . . . , X

1
N )− F (X∗

1 , . . . , X
∗
N )].

IV. EXPERIMENTS

A. Matrix Completion

We compare a number of low-rank matrix completion

solvers, including models based on (i) the commonly used

(convex) nuclear norm regularizer; (ii) fixed-rank factoriza-

tion models [28, 29], which decompose the observed matrix

O into a product of rank-k matrices U and V . Its opti-

mization problem can be written as: minU,V
1
2‖PΩ(UV −

O)‖2F + λ
2 (‖U‖2F +‖V ‖2F ); and (iii) nonconvex regularizers,

including the capped-�1 (with θ in Table I set to 2λ), LSP

(with θ =
√
λ), and TNN (with θ = 3).

The nuclear norm minimization algorithms to be com-

pared include:

1) Accelerated proximal gradient (APG)3 algorithm [10,

27], with the partial SVD by PROPACK [26];

2) Soft-Impute4 [11], which iteratively replaces the miss-

ing elements with those obtained from SVT. The

“sparse plus low-rank” structure of the matrix iterate

is utilized to speed up computation (Section III-E);

3) Active alternating minimization5 (denoted “active AL-

T”) [12], which adds/removes rank-one subspaces

from the active set in each iteration. The nuclear norm

optimization problem is then reduced to a smaller

problem defined only on this active set.

We do not compare with the Frank-Wolfe algorithm [32]

and stochastic gradient descent [33], as they have been

shown to be less efficient [12]. For the fixed-rank factor-

ization models (where the rank is tuned by the validation

set), we compare with the two state-of-the-art algorithms:

1) Low-rank matrix fitting (LMaFit) algorithm6 [28]; and

2) Rank-one matrix pursuit (R1MP) [29], which pursues

a rank-one basis in each iteration.

We do not compare with the concave-convex procedure [13,

15], since it has been shown to be inferior to IRNN [19].

For models with nonconvex low-rank regularizers, we

compare the following solvers:

1) Iterative reweighted nuclear norm (IRNN)7 [20];

3http://perception.csl.illinois.edu/matrix-rank/Files/apg partial.zip
4http://cran.r-project.org/web/packages/softImpute/index.html
5http://www.cs.utexas.edu/∼cjhsieh/nuclear active 1.1.zip
6http://www.caam.rice.edu/∼optimization/L1/LMaFit/download.html
7https://sites.google.com/site/canyilu/file/2014-CVPR-IRNN.zip?

attredirects=0&d=1
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Table III
MATRIX COMPLETION PERFORMANCE ON THE SYNTHETIC DATA. HERE, NMSE IS SCALED BY ×10−2 , AND CPU TIME IS IN SECONDS.

m = 500 m = 1000 m = 1500 m = 2000
(observed: 12.43%) (observed: 6.91%) (observed: 4.88%) (observed: 3.80%)

NMSE rank time NMSE rank time NMSE rank time NMSE rank time

nuclear APG 3.95±0.16 49 4.8 3.90±0.05 59 59.5 3.74±0.02 71 469.3 3.69±0.04 85 1383.3
norm Soft-Impute 3.95±0.16 49 64.9 3.90±0.05 59 176.0 3.74±0.02 71 464.4 3.69±0.04 85 1090.2

active ALT 3.95±0.16 49 17.1 3.90±0.05 59 81.9 3.74±0.02 71 343.8 3.69±0.04 85 860.1

fixed LMaFit 2.63±0.10 5 0.6 2.85±0.10 5 1.7 2.54±0.09 5 4.5 2.40±0.09 5 7.1
rank R1MP 22.72±0.63 39 0.3 20.89±0.66 54 0.8 20.04±0.66 62 1.4 19.53±0.61 63 3.4

capped IRNN 1.98±0.07 5 8.5 1.89±0.04 5 75.5 1.81±0.02 5 510.8 1.80±0.02 5 1112.3
�1 GPG 1.98±0.07 5 8.5 1.89±0.04 5 72.4 1.81±0.02 5 497.0 1.80±0.02 5 1105.8

FaNCL 1.98±0.07 5 0.3 1.89±0.04 5 0.9 1.81±0.02 5 2.6 1.80±0.02 5 4.1
LSP IRNN 1.98±0.07 5 21.8 1.89±0.04 5 223.9 1.81±0.02 5 720.9 1.80±0.02 5 2635.0

GPG 1.98±0.07 5 21.2 1.89±0.04 5 235.3 1.81±0.02 5 687.4 1.80±0.02 5 2612.0
FaNCL 1.98±0.07 5 0.5 1.89±0.04 5 2.2 1.81±0.02 5 3.3 1.80±0.02 5 7.6

TNN IRNN 1.98±0.07 5 8.5 1.89±0.04 5 72.6 1.81±0.02 5 650.7 1.80±0.02 5 1104.1
GPG 1.98±0.07 5 8.3 1.89±0.04 5 71.7 1.81±0.02 5 655.3 1.80±0.02 5 1098.2

FaNCL 1.98±0.07 5 0.3 1.89±0.04 5 0.8 1.81±0.02 5 2.7 1.80±0.02 5 4.2

2) Generalized proximal gradient (GPG) algorithm [21],

with the underlying problem (2) solved more efficient-

ly using the closed-form solutions in [19];

3) The proposed FaNCL algorithm (Tpm = 3, p = 1).

All algorithms are implemented in Matlab. The same

stopping criterion is used, namely that the algorithm stops

when the difference in objective values between consecutive

iterations is smaller than a given threshold. Experiments are

run on a PC with i7 4GHz CPU and 24GB memory.

1) Synthetic Data: The observed m×m matrix is generat-

ed as O = UV +G, where the elements of U ∈ R
m×k, V ∈

R
k×m (with k = 5) are sampled i.i.d. from the normal

distribution N (0, 1), and elements of G sampled from

N (0, 0.1). A total of ‖Ω‖1 = 2mk log(m) random elements

in O are observed. Half of them are used for training, and

the rest as validation set for parameter tuning. Testing is

performed on the non-observed (missing) elements.

For performance evaluation, we use (i) the

normalized mean squared error NMSE =√∑
(i,j)�∈Ω(Xij − [UV ]ij)2/

√∑
(i,j)�∈Ω[UV ]2ij , where

X is the recovered matrix; (ii) rank of X; and (iii) training

CPU time. We vary m in the range {500, 1000, 1500, 2000}.
Each experiment is repeated five times.

Results are shown in Table III. As can be seen, the non-

convex regularizers (capped-�1, LSP and TNN) lead to much

lower NMSE’s than the convex nuclear norm regularizer and

fixed-rank factorization. Moreover, as is also observed in

[33], the nuclear norm needs to use a much higher rank than

the nonconvex ones. In terms of speed, FaNCL is the fastest

among the nonconvex low-rank solvers. Figure 1 shows its

speedup over GPG (which in turn is faster than IRNN). As

can be seen, the larger the matrix, the higher is the speedup.

Recall that the efficiency of the proposed algorithm comes

from (i) automatic singular value thresholding; (ii) comput-

ing the proximal operator on a smaller matrix; and (iii)

exploiting the “sparse plus low-rank” structure in matrix

completion. Their individual contributions are examined in

Table IV. The baseline is GPG, which uses none of these;

Figure 1. Speedup of FaNCL over GPG at different matrix sizes.

while the proposed FaNCL uses all. As all the variants

produce the same solution, the obtained NMSE and rank

values are not shown. As can be seen, tricks (i), (ii) and (iii)

lead to average speedups of about 6, 4, and 3, respectively;

and are particularly useful on the large data sets.

Table IV
EFFECTS OF THE THREE TRICKS ON CPU TIME (IN SECONDS) USING

THE SYNTHETIC DATA. (I) AUTOMATIC SINGULAR VALUE

THRESHOLDING; (II) COMPUTING THE PROXIMAL OPERATOR ON A

SMALLER MATRIX; AND (III) “SPARSE PLUS LOW-RANK” STRUCTURE.

solver 500 1000 1500 2000
capped baseline (GPG) 8.5 72.4 497.0 1105.8
�1 � i 5.4 37.6 114.8 203.7

� i, ii 0.6 3.2 11.4 25.6
� i, ii, iii (FaNCL) 0.3 0.9 2.6 6.8

LSP baseline (GPG) 21.2 235.3 687.4 2612.0
� i 4.9 44.0 70.0 154.9

� i, ii 1.0 9.7 14.8 31.1
� i, ii, iii (FaNCL) 0.5 2.2 3.3 8.2

TNN baseline (GPG) 8.3 71.7 655.3 1098.2
� i 5.4 32.5 122.3 194.1

� i, ii 0.6 2.8 10.3 15.8
� i, ii, iii (FaNCL) 0.3 0.8 2.7 3.3

2) MovieLens: Experiment is performed on the popular

MovieLens8 data set (Table V), which contain ratings of

different users on movies. We follow the setup in [29],

8http://grouplens.org/datasets/movielens/
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(a) capped-�1. (b) LSP. (c) TNN.

Figure 2. Objective value vs CPU time for the various nonconvex low-rank regularizers on the MovieLens-100K data set.

and use 50% of the observed ratings for training, 25%
for validation and the rest for testing. For performance

evaluation, we use the root mean squared error on the test

set Ω: RMSE =
√‖PΩ(X −O)‖2F /‖Ω‖1, where X is the

recovered matrix. The experiment is repeated five times.

Table V
RECOMMENDATION DATA SETS USED IN THE EXPERIMENTS.

#users #movies #ratings
MovieLens 100K 943 1,682 100,000

1M 6,040 3,449 999,714
10M 69,878 10,677 10,000,054

netflix 480,189 17,770 100,480,507
yahoo 249,012 296,111 62,551,438

Results are shown in Table VI. Again, nonconvex reg-

ularizers lead to the lowest RMSE’s. Moreover, FaNCL

is also the fastest among the nonconvex low-rank solvers,

even faster than the state-of-the-art. In particular, it is the

only solver (among those compared) that can be run on the

MovieLens-10M data. Table VII examines the usefulness of

the three tricks. The behavior is similar to that as observed in

Table IV. Figures 2 and 3 compare the objective and RMSE

vs CPU time for the various methods on the MovieLens-

100K data set. As can be seen, FaNCL decreases the

objective and RMSE much faster than the others.

Table VII
EFFECTS OF THE THREE TRICKS ON CPU TIME (IN SECONDS) ON THE

MOVIELENS DATA.

solver 100K 1M 10M

capped baseline (GPG) 523.6 > 104 > 105

�1 � i 212.2 1920.5 > 105

� i, ii 29.2 288.8 > 105

� i, ii, iii (FaNCL) 3.2 29.4 634.6
LSP baseline (GPG) 192.8 > 104 > 105

� i 35.8 2353.8 > 105

� i, ii 5.6 212.4 > 105

� i, ii, iii (FaNCL) 0.7 25.6 616.3
TNN baseline (GPG) 572.7 > 104 > 105

� i 116.9 1944.8 > 105

� i, ii 15.4 256.1 > 105

� i, ii, iii (FaNCL) 1.9 25.8 710.7

Figure 3. RMSE vs CPU time on the MovieLens-100K data set.

(a) netflix.

(b) yahoo.

Figure 4. RMSE vs CPU time on the netflix and yahoo data sets.

3) Netflix and Yahoo: Next, we perform experiments

on two very large recommendation data sets, Netflix9 and

9http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
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Table VI
MATRIX COMPLETION RESULTS ON THE MOVIELENS DATA SETS (TIME IS IN SECONDS).

MovieLens-100K MovieLens-1M MovieLens-10M
RMSE rank time RMSE rank time RMSE rank time

nuclear norm APG 0.879±0.001 36 18.9 0.818±0.001 67 735.8 — — > 105

Soft-Impute 0.879±0.001 36 13.8 0.818±0.001 67 311.8 — — > 105

active ALT 0.879±0.001 36 4.1 0.818±0.001 67 133.4 0.813±0.001 119 3675.2
fixed rank LMaFit 0.884±0.001 2 3.0 0.818±0.001 6 39.2 0.795±0.001 9 650.1

R1MP 0.924±0.003 5 0.1 0.862±0.004 19 2.9 0.850±0.008 29 37.3

capped-�1 IRNN 0.863±0.003 3 558.9 — — > 104 — — > 105

GPG 0.863±0.003 3 523.6 — — > 104 — — > 105

FaNCL 0.863±0.003 3 3.2 0.797±0.001 5 29.4 0.783±0.002 8 634.6
LSP IRNN 0.855±0.002 2 195.9 — — > 104 — — > 105

GPG 0.855±0.002 2 192.8 — — > 104 — — > 105

FaNCL 0.855±0.002 2 0.7 0.786±0.001 5 25.6 0.777±0.001 9 616.3
TNN IRNN 0.862±0.003 3 621.9 — — > 104 — — > 105

GPG 0.862±0.003 3 572.7 — — > 104 — — > 105

FaNCL 0.862±0.003 3 1.9 0.797±0.004 5 25.8 0.783±0.002 8 710.7

Yahoo10 (Table V). We randomly use 50% of the observed

ratings for training, 25% for validation and the rest for

testing. Each experiment is repeated five times.

Results are shown in Table VIII. APG, Soft-Impute,

GPG and IRNN cannot be run as the data set is large.

Figure 4 shows the objective and RMSE vs time for the

compared methods.11 Again, the nonconvex regularizers

converge faster, yield lower RMSE’s and solutions of much

lower ranks. Moreover, FaNCL is fast.

B. Robust Principal Component Analysis

1) Synthetic Data: In this section, we first perform ex-

periments on a synthetic data set. The observed m × m
matrix is generated as O = UV + Ỹ + G, where elements

of U ∈ R
m×k, V ∈ R

k×m (with k = 0.01m) are sampled

i.i.d. from N (0, 1), and elements of G are sampled from

N (0, 0.1). Matrix Ỹ is sparse, with 1% of its elements

randomly set to 5‖UV ‖∞ or −5‖UV ‖∞ with equal prob-

abilities. The sparsity regularizer is the standard �1, while

different convex/nonconvex low-rank regularizers are used.

For performance evaluation, we use (i) NMSE = ‖(X +
Y ) − (UV + Ỹ )‖F /‖UV + Ỹ ‖F , where X and Y are the

recovered low-rank and sparse components, respectively in

(5); (ii) accuracy on locating the sparse support of Ỹ (i.e.,

percentage of entries that both Ỹij and Yij are nonzero or

zero together); and (iii) the recovered rank. We vary m in

{500, 1000, 1500, 2000}. Each experiment is repeated five

times.

Note that IRNN and the active subspace selection method

cannot be used here. Their objectives are of the form “s-

mooth function plus low-rank regularizer”, while RPCA has

a nonsmooth �1 regularizer besides its low-rank regularizer.

Similarly, Soft-Impute is for matrix completion only.

10http://webscope.sandbox.yahoo.com/catalog.php?datatype=c
11On these two data sets, R1MP easily overfits as the rank increases.

Hence, the validation set selects a rank which is small (relative to that
obtained by the nuclear norm) and R1MP stops earlier. However, as can be
seen, its RMSE is much worse.

Results are shown in Table IX. The accuracy on locating

the sparse support are always 100% for all methods, and

thus are not shown. As can be seen, while both convex

and nonconvex regularizers can perfectly recover the matrix

rank and sparse locations, the nonconvex regularizers have

lower NMSE’s. Moreover, as in matrix completion, FaNCL

is again much faster. The larger the matrix, the higher is the

speedup.

2) Background Removal on Videos: In this section, we

use RPCA to perform video denoising on background re-

moval of corrupted videos. Four benchmark videos12 in

[6, 7] are used (Table X), and example image frames are

shown in Figure 5. As discussed in [6], the stable image

background can be treated as low-rank, while the foreground

moving objects contribute to the sparse component.

Table X
VIDEOS USED IN THE EXPERIMENT.

bootstrap campus escalator hall
#pixels / frame 19,200 20,480 20,800 25,344
total #frames 9,165 4,317 10,251 10,752

(a) bootstrap. (b) campus. (c) escalator. (d) hall.
Figure 5. Example image frames in the videos.

Each image frame is reshaped as a column vector, and

all frames are then stacked together to form a matrix. The

pixel values are normalized to [0, 1], and Gaussian noise

from N (0, 0.15) is added. The experiment is repeated five

times.

For performance evaluation, we use the commonly used

peak signal-to-noise ratio [34]: PSNR = −10 log10(MSE),
where MSE = 1

mn

∑m
i=1

∑n
j=1 (Xij −Oij)

2
, X ∈ R

m×n

is the recovered video, and O ∈ R
m×n is the ground-truth.

12http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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Table VIII
RESULTS ON THE NETFLIX AND YAHOO DATA SETS (CPU TIME IS IN HOURS).

netflix yahoo
RMSE rank time RMSE rank time

nuclear norm active ALT 0.814± 0.001 399 47.6 0.680± 0.001 221 118.9
fixed rank LMaFit 0.813± 0.003 16 2.4 0.667± 0.002 10 6.6

R1MP 0.861± 0.006 31 0.2 0.810± 0.005 92 0.3

capped-�1 FaNCL 0.799± 0.001 15 2.5 0.650± 0.001 8 5.9
LSP FaNCL 0.793± 0.002 13 1.9 0.650± 0.001 9 6.1
TNN FaNCL 0.798± 0.001 17 3.3 0.655± 0.002 8 6.2

Table IX
RPCA PERFORMANCE OF THE VARIOUS METHODS ON SYNTHETIC DATA. THE STANDARD DEVIATIONS OF NMSE ARE ALL SMALLER THAN 0.0002

AND SO NOT REPORTED. CPU TIME IS IN SECONDS.

m = 500 m = 1000 m = 1500 m = 2000
NMSE rank time NMSE rank time NMSE rank time NMSE rank time

nuclear norm APG 0.46 5 1.5 0.30 10 9.7 0.25 15 33.9 0.18 20 94.7

capped-�1 GPG 0.36 5 0.9 0.25 10 6.7 0.21 15 18.7 0.15 20 60.4
FaNCL 0.36 5 0.2 0.25 10 1.4 0.21 15 2.7 0.15 20 6.5

LSP GPG 0.36 5 2.7 0.25 10 18.5 0.21 15 111.2 0.15 20 250.2
FaNCL 0.36 5 0.4 0.25 10 1.8 0.21 15 3.9 0.15 20 7.1

TNN GPG 0.36 5 0.8 0.25 10 6.0 0.21 15 23.1 0.15 20 51.4
FaNCL 0.36 5 0.2 0.25 10 1.2 0.21 15 2.9 0.15 20 5.8

(a) original. (b) nuclear norm. (c) capped-�1. (d) LSP. (e) TNN.

Figure 6. Example foreground images in bootstrap, as recovered by using various low-rank regularizers.

Results are shown in Table XI. As can be seen, the non-

convex regularizers lead to better PSNR’s than the convex

nuclear norm. Moreover, FaNCL is more than 10 times faster

than GPG. Figure 6 shows an example of the recovered

foreground in the bootstrap video. As can been seen, the

nonconvex regularizers can better separate foreground from

background. Figure 7 shows the PSNR vs time on bootstrap.

Again, FaNCL converges much faster than others.

Figure 7. PSNR vs CPU time on the bootstrap data set.

V. CONCLUSION

In this paper, we considered the challenging problem of

nonconvex low-rank matrix optimization. The key obser-

vations are that for the popular low-rank regularizers, the

singular values obtained from the proximal operator can

be automatically thresholded, and also that the proximal

operator can be computed on a smaller matrix. For matrix

completion, extra speedup can be achieved by exploiting

the “sparse plus low-rank” structure of the matrix estimate

in each iteration. The resultant algorithm is guaranteed to

converge to a critical point of the nonconvex optimization

problem. Extensive experiments on matrix completion and

RPCA show that the proposed algorithm is much faster

than the state-of-art convex and nonconvex low-rank solvers.

It also demonstrates that nonconvex low-rank regularizers

outperform the convex nuclear norm regularizer in terms of

recovery accuracy and the rank obtained.
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