
Published as a conference paper at ICLR 2019

ANALYSIS OF QUANTIZED MODELS

Lu Hou1, Ruiliang Zhang1,2, James T. Kwok1

1Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Hong Kong
{lhouab,jamesk}@cse.ust.hk

2TuSimple
ruiliang.zhang@tusimple.ai

ABSTRACT

Deep neural networks are usually huge, which significantly limits the deployment
on low-end devices. In recent years, many weight-quantized models have been
proposed. They have small storage and fast inference, but training can still be
time-consuming. This can be improved with distributed learning. To reduce the
high communication cost due to worker-server synchronization, recently gradi-
ent quantization has also been proposed to train deep networks with full-precision
weights. In this paper, we theoretically study how the combination of both weight
and gradient quantization affects convergence. We show that (i) weight-quantized
models converge to an error related to the weight quantization resolution and
weight dimension; (ii) quantizing gradients slows convergence by a factor related
to the gradient quantization resolution and dimension; and (iii) clipping the gra-
dient before quantization renders this factor dimension-free, thus allowing the use
of fewer bits for gradient quantization. Empirical experiments confirm the theo-
retical convergence results, and demonstrate that quantized networks can speed up
training and have comparable performance as full-precision networks.

1 INTRODUCTION

Deep neural networks are usually huge. The high demand in time and space can significantly limit
deployment on low-end devices. To alleviate this problem, many approaches have been recently
proposed to compress deep networks. One direction is network quantization, which represents each
network weight with a small number of bits. Besides significantly reducing the model size, it also
accelerates network training and inference. Many weight quantization methods aim at approximat-
ing the full-precision weights in each iteration (Courbariaux et al., 2015; Lin et al., 2016; Rastegari
et al., 2016; Li & Liu, 2016; Lin et al., 2017; Guo et al., 2017). Recently, loss-aware quantization
minimizes the loss directly w.r.t. the quantized weights (Hou et al., 2017; Hou & Kwok, 2018; Leng
et al., 2018), and often achieves better performance than approximation-based methods.

Distributed learning can further speed up training of weight-quantized networks (Dean et al., 2012).
A key challenge is on reducing the expensive communication cost incurred during synchronization
of the gradients and model parameters (Li et al., 2014a;b). Recently, algorithms that sparsify (Aji &
Heafield, 2017; Wangni et al., 2017) or quantize the gradients (Seide et al., 2014; Wen et al., 2017;
Alistarh et al., 2017; Bernstein et al., 2018) have been proposed.

In this paper, we consider quantization of both the weights and gradients in a distributed envi-
ronment. Quantizing both weights and gradients has been explored in the DoReFa-Net (Zhou et al.,
2016), QNN (Hubara et al., 2017), WAGE (Wu et al., 2018) and ZipML (Zhang et al., 2017). We dif-
fer from them in two aspects. First, existing methods mainly consider learning on a single machine,
and gradient quantization is used to reduce the computations in backpropagation. On the other hand,
we consider a distributed environment, and use gradient quantization to reduce communication cost
and accelerate distributed learning of weight-quantized networks. Second, while DoReFa-Net, QNN
and WAGE show impressive empirical results on the quantized network, theoretical guarantees are
not provided. ZipML provides convergence analysis, but is limited to stochastic weight quantiza-
tion, square loss with the linear model, and requires the stochastic gradients to be unbiased. This can

1

Published as a conference paper at ICLR 2019

be restrictive as most state-of-the-art weight quantization methods (Rastegari et al., 2016; Lin et al.,
2016; Li & Liu, 2016; Guo et al., 2017; Hou et al., 2017; Hou & Kwok, 2018) are deterministic, and
the resultant stochastic gradients are biased.

In this paper, we relax the restrictions on the loss function, and study in an online learning set-
ting how the gradient precision affects convergence of weight-quantized networks in a distributed
environment. The main findings are:

1. With either full-precision or quantized gradients, the average regret of loss-aware weight quanti-
zation does not converge to zero, but to an error related to the weight quantization resolution ∆w

and dimension d. The smaller the ∆w or d, the smaller is the error (Theorems 1 and 2).
2. With either full-precision or quantized gradients, the average regret converges with a O(1/

√
T)

rate to the error, where T is the number of iterations. However, gradient quantization slows
convergence (relative to using full-precision gradients) by a factor related to gradient quantization
resolution ∆g and d. The larger the ∆g or d, the slower is the convergence (Theorems 1 and 2).
This can be problematic when (i) the weight quantized model has a large d (e.g., deep networks);
and (ii) the communication cost is a bottleneck in the distributed setting, which favors a small
number of bits for the gradients, and thus a large ∆g .

3. For gradients following the normal distribution, gradient clipping renders the speed degradation
mentioned above dimension-free. However, an additional error is incurred. The convergence
speedup and error are related to how aggressive clipping is performed. More aggressive clipping
results in faster convergence, but a larger error (Theorem 3).

4. Empirical results show that quantizing gradients significantly reduce communication cost, and
gradient clipping makes speed degradation caused by gradient quantization negligible. With
quantized clipped gradients, distributed training of weight-quantized networks is much faster,
while comparable accuracy with the use of full-precision gradients is maintained (Section 4).

Notations. For a vector x,
√
x is the element-wise square root, x2 is the element-wise square,

Diag(x) returns a diagonal matrix with x on the diagonal, and x�y is the element-wise multiplica-
tion of vectors x and y. For a matrix Q, ‖x‖2Q = x>Qx. For a matrix X,

√
X is the element-wise

square root, and diag(X) returns a vector extracted from the diagonal elements of X.

2 PRELIMINARIES

2.1 ONLINE LEARNING

Online learning continually adapts the model with a sequence of observations. It has been commonly
used in the analysis of deep learning optimizers (Duchi et al., 2011; Kingma & Ba, 2015; Reddi
et al., 2018). At time t, the algorithm picks a model with parameter wt ∈ S, where S is a convex
compact set. The algorithm then incurs a loss ft(wt). After T rounds, the performance is usually
evaluated by the regret R(T) =

∑T
t=1 ft(wt) − ft(w∗) and average regret R(T)/T , where w∗ =

arg minw∈S
∑T
t=1 ft(w) is the best model parameter in hindsight.

2.2 WEIGHT QUANTIZATION

In BinaryConnect (Courbariaux et al., 2015), each weight is binarized using the sign function either
deterministically or stochastically. In ternary-connect (Lin et al., 2016), each weight is stochastically
quantized to {−1, 0, 1}. Stochastic weight quantization often suffers severe accuracy degradation,
while deterministic weight quantization (as in the binary-weight-network (BWN) (Rastegari et al.,
2016) and ternary weight network (TWN) (Li & Liu, 2016)) achieves much better performance.

In this paper, we will focus on loss-aware weight quantization, which further improves performance
by considering the effect of weight quantization on the loss. Examples include loss-aware binariza-
tion (LAB) (Hou et al., 2017) and loss-aware quantization (LAQ) (Hou & Kwok, 2018). Let the
full-precision weights from all L layers in the deep network be w. The corresponding quantized
weight is denoted Qw(w) = ŵ, where Qw(·) is the weight quantization function. At the (t + 1)th
iteration, the second-order Taylor expansion of ft(ŵ), i.e., ft(ŵt) +∇ft(ŵt)

>(ŵ− ŵt) + 1
2 (ŵ−

ŵt)
>Ht(ŵ − ŵt) is minimized w.r.t. ŵ, where Ht is the Hessian at ŵt. A direct computation of

2

Published as a conference paper at ICLR 2019

Ht is expensive. In practice, this is approximated by Diag(
√
v̂t), where v̂t is the moving average:

v̂t = βv̂t−1 + (1− β)ĝ2
t =

∑t

j=1
(1− β)βt−j ĝ2

j , (1)

with gt the stochastic gradient, β ' 1, and is readily available in popular deep network optimizers
such as RMSProp and Adam. Diag(

√
v̂t) is also an estimate of Diag(

√
diag(H2

t)) (Dauphin et al.,
2015). Computationally, the quantized weight is obtained by first performing a preconditioned gra-
dient descent wt+1 = wt − ηtDiag(

√
v̂t)
−1ĝt, followed by quantization via solving the following

problem:

ŵt+1 = Qw(wt+1) = arg min
ŵ
‖wt+1 − ŵ‖2Diag(

√
v̂t)

s.t. ŵ = αb, α > 0, b ∈ (Sw)d. (2)

For simplicity of notations, we assume that the same scaling parameter α is used for all layers. Ex-
tension to layer-wise scaling is straightforward. For binarization, Sw = {−1,+1}, the weight quan-
tization resolution is ∆w = 1, and a simple closed-form solution is obtained in (Hou et al., 2017).
For m-bit linear quantization, Sw = {−Mk, . . . ,−M1,M0,M1, . . . ,Mk}, where k = 2m−1 − 1,
0 = M0< · · ·<Mk are uniformly spaced, with weight quantization resolution ∆w = Mr+1 −Mr.
An efficient approximate solution of (2) is obtained in (Hou & Kwok, 2018).

2.3 GRADIENT QUANTIZATION

In a distributed learning environment with data parallelism, the main bottleneck is often on the com-
munication cost due to gradient synchronization. By quantizing the gradients before synchronization
(Seide et al., 2014; Wen et al., 2017; Alistarh et al., 2017), this cost can be significantly reduced. For
example, assuming that the full-precision gradient is 32-bit, the communication cost can be reduced
32/m times when gradients are quantized to m bits.

Most recent gradient quantization methods (Wen et al., 2017; Alistarh et al., 2017; Zhang et al.,
2017) require the quantized gradient to be unbiased, and thus use stochastically quantized gradients.
On the other hand, deterministic gradient quantization makes the quantized gradient biased, and the
resultant analysis more complex. In this paper, we consider the more general m-bit stochastic linear
quantization (Alistarh et al., 2017):

Qg(gt) = st · sign(gt)� qt, (3)

where st = ‖gt‖∞, qt ∈ (Sg)d, and Sg = {−Bk, . . . ,−B1, B0, B1, . . . , Bk}, with k = 2m−1− 1,
0 = B0 < B1 < · · · < Bk are uniformly spaced. The gradient quantization resolution is
defined as ∆g = Br+1 − Br. The ith element qt,i in qt is equal to Br+1 with probability
(|gt,i|/st −Br) /(Br+1 − Br), and Br otherwise. Here, r is an index satisfying Br ≤ |gt,i|/st <
Br+1. Note that Qg(gt) is an unbiased estimator of gt.

3 PROPERTIES OF A QUANTIZED MODEL

In this section, we consider quantization of both weights and gradients in a distributed environ-
ment with N workers using data parallelism. For easy illustration, we use the parameter server
model (Li et al., 2014b) in Figure 1, though it also holds for other configurations such as the AllRe-
duce model (Rabenseifner, 2004). At the tth iteration, worker n ∈ {1, 2, . . . , N} computes the
full-precision gradient ĝ(n)

t w.r.t. the quantized weight and quantizes ĝ
(n)
t to g̃

(n)
t = Qg(ĝ

(n)
t).

The quantized gradients are then synchronized and averaged at the parameter server as: g̃t =
1
N

∑N
n=1 g̃

(n)
t . The server updates the second moment ṽt based on g̃t, and also the full-precision

weight as wt+1 = wt − ηtDiag(
√
ṽt)
−1g̃t. The weight is quantized using loss-aware weight quan-

tization to produce ŵt+1 = Qw(wt+1), which is then sent back to all the workers.

3.1 ASSUMPTIONS

Analysis on quantized deep networks has only been performed on models with (i) full-precision
gradients and weights quantized by stochastic weight quantization (Li et al., 2017; De Sa et al.,
2018), or simple deterministic weight quantization using the sign (Li et al., 2017); (ii) full-precision
weights and quantized gradients (Alistarh et al., 2017; Wen et al., 2017; Bernstein et al., 2018);

3

Published as a conference paper at ICLR 2019

Parameter server

1. Gradient descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 𝐷𝑖𝑎𝑔(෤𝑣𝑡)
−1 ෤𝑔𝑡

2. Weight quantization: ෝ𝑤𝑡+1 = 𝑄𝑤 𝑤𝑡+1

Worker 1

Gradient quantization: ෤𝑔t
(1)

= Qg(ො𝑔t
(1)
)

෤𝑔t
(2)෤𝑔t

(1) ෤𝑔t
(N)

Worker 2

Gradient quantization: ෤𝑔t
(2)

= Qg(ො𝑔t
(2)
)

Worker N

Gradient quantization: ෤𝑔t
(N)

= Qg(ො𝑔t
(N)

)

ෝ𝑤𝑡+1
ෝ𝑤𝑡+1 ෝ𝑤𝑡+1

Figure 1: Distributed weight and gradient quantization with data parallelism.

(iii) quantized weights and quantized gradients (Zhang et al., 2017), but limited to stochastic weight
quantization, square loss on linear model (i.e., ft(wt) = (x>t wt−yt)2) in Section 2.1), and unbiased
gradient.

In this paper, we study the more advanced loss-aware weight quantization, with both full-precision
and quantized gradients. As it is deterministic and has biased gradients, the above analysis do not
apply here. Moreover, we do not assume a linear model, and relax the assumptions on ft as:

(A1) ft is convex;
(A2) ft is twice differentiable with Lipschitz-continuous gradient; and
(A3) ft has bounded gradient, i.e., ‖∇ft(w)‖ ≤ G and ‖∇ft(w)‖∞ ≤ G∞ for all w ∈ S.

These assumptions have been commonly used in convex online learning (Hazan, 2016; Duchi et al.,
2011; Kingma & Ba, 2015) and quantized networks (Alistarh et al., 2017; Li et al., 2017). Obviously,
the convexity assumption A1 does not hold for deep networks. However, this facilitates analysis of
deep learning models, and has been used in (Kingma & Ba, 2015; Reddi et al., 2018; Li et al., 2017;
De Sa et al., 2018). Moreover, as will be seen, it helps to explain the empirical behavior in Section 4.

As in (Duchi et al., 2011; Kingma & Ba, 2015; Li et al., 2017), we assume that ‖wm −wn‖ ≤ D
and ‖wm − wn‖∞ ≤ D∞ for all wm,wn ∈ S. Moreover, the learning rate ηt decays as η/

√
t,

where η is a constant (Hazan, 2016; Duchi et al., 2011; Kingma & Ba, 2015; Li et al., 2017).

For simplicity of notations, we denote the full-precision gradient ∇ft(wt) w.r.t. the full-precision
weight by gt, and the full-precision gradient ∇ft(Qw(wt)) w.r.t. the quantized weight by ĝt. As
ft is twice differentiable (Assumption A2), using the mean value theorem, there exists p ∈ (0, 1)
such that gt − ĝt = ∇ft(wt) − ∇ft(ŵt) = ∇2ft (ŵt + p(wt − ŵt)) (wt − ŵt). Let H′t =
∇2ft(ŵt+p(wt− ŵt)) be the Hessian at ŵt+p(wt− ŵt). Moreover, let α = max{α1, . . . , αT },
where αt is the scaling parameter in (2) at the tth iteration.

3.2 WEIGHT QUANTIZATION WITH FULL-PRECISION GRADIENT

When only weights are quantized, the update for loss-aware weight quantization is

wt+1 = wt − ηtDiag(
√

v̂t)
−1ĝt,

where v̂t is the moving average of the (squared) gradients ĝ2
t in (1).

Theorem 1. For loss-aware weight quantization with full-precision gradients and ηt = η/
√
t,

R(T) ≤ D2
∞
√
dT

2η

√∑T

t=1
(1− β)βT−t‖ĝt‖2 +

ηG∞
√
d√

1− β

√∑T

t=1
‖ĝt‖2

+
√
LD

∑T

t=1

√
‖wt − ŵt‖2H′t , (4)

R(T)

T
≤ O

(
d√
T

)
+ LD

√
D2 +

dα2∆2
w

4
. (5)

For standard online gradient descent with the same learning rate scheme, R(T)/T converges to zero
at the rate of O(1/

√
T) (Hazan, 2016). From Theorem 1, the average regret converges at the same

rate, but only to a nonzero error LD
√
D2 +

dα2∆2
w

4 related to the weight quantization resolution
∆w and dimension d.

4

Published as a conference paper at ICLR 2019

3.3 WEIGHT QUANTIZATION WITH QUANTIZED GRADIENT

When both weights and gradients are quantized, the update for loss-aware weight quantization is

wt+1 = wt − ηtDiag(
√

ṽt)
−1g̃t,

where g̃t is the stochastically quantized gradient Qg(∇ft(Qw(wt))). The second moment ṽt is
the moving average of the (squared) quantized gradients g̃2

t . The following Proposition shows that
gradient quantization significantly blows up the norm of the quantized gradient relative to its full-
precision counterparts. Moreover, the difference increases with the gradient quantization resolution
∆g and dimension d.

Proposition 1. E(‖g̃t‖2) ≤ (1+
√

2d−1
2 ∆g + 1)‖ĝt‖2.

Theorem 2. For loss-aware weight quantization with quantized gradients and ηt = η/
√
t,

E(R(T)) ≤ D2
∞
√
dT

2η

√∑T

t=1
(1− β)βT−tE(‖g̃t‖2) +

ηG∞
√
d√

1− β

√∑T

t=1
E(‖g̃t‖2)

+
√
LD

∑T

t=1
E(
√
‖wt − ŵt‖2H′t), (6)

E

(
R(T)

T

)
≤ O

√1 +
√

2d− 1

2
∆g + 1 · d√

T

+ LD

√
D2 +

dα2∆2
w

4
. (7)

The regrets in (4) and (6) are of the same form and differ only in the gradient used. Simi-
larly, for the average regrets in (5) and (7), quantizing gradients slows convergence by a factor

of
√

1+
√

2d−1
2 ∆g + 1, which is a direct consequence of the blowup in Proposition 1. These obser-

vations can be problematic as (i) deep networks typically have a large d; and (ii) distributed learning
prefers using a small number of bits for the gradients, and thus a large ∆g .

3.4 WEIGHT QUANTIZATION WITH QUANTIZED CLIPPED GRADIENTS

To reduce convergence speed degradation caused by gradient quantization, gradient clipping has
been proposed as an empirical solution (Wen et al., 2017). The gradient ĝt is clipped to Clip(ĝt),
where

Clip(ĝt,i) =

{
ĝt,i |ĝt,i| ≤ cσ,
sign(ĝt,i) · cσ otherwise.

Here, c is a constant clipping factor, and σ is the standard deviation of elements in ĝt. The update
then becomes

wt+1 = wt − ηtDiag(
√
v̌t)
−1ǧt,

where ǧt ≡ Qg(Clip(ĝt)) ≡ Qg(Clip(∇ft(Qw(wt)))) is the quantized clipped gradient. The
second moment v̌t is computed using the (squared) quantized clipped gradient ǧ2

t .

As shown in Figure 2(a) of (Wen et al., 2017), the distribution of gradients before quantization is
close to the normal distribution. Recall from Section 3.3 that the difference between E(‖g̃t‖2) of
the quantized gradient g̃t and the full-precision gradient ‖ĝt‖2 is related to the dimension d. The
following Proposition shows that E(‖ǧt‖2)/E(‖ĝt‖2) becomes independent of d if ĝt follows the
normal distribution and clipping is used.

Proposition 2. Assume that ĝt followsN (0, σ2I), we have E(‖ǧt‖2) ≤ ((2/π)
1
2 c∆g+1)E(‖ĝt‖2).

However, the quantized clipped gradient may now be biased (i.e., E(ǧt) = Clip(ĝt) 6= ĝt). The
following Proposition shows that the bias is related to the clipping factor c. A larger c (i.e., less
severe gradient clipping) leads to smaller bias.

Proposition 3. Assume that ĝt follows N (0, σ2I), we have E(‖Clip(ĝt) − ĝt‖2) ≤
dσ2(2/π)

1
2F (c), where F (c) = −ce− c

2

2 +
√

π
2 (1 + c2)(1− erf(c√

2
)), and erf(z) = 2√

π

∫ z
0
e−t

2

dt

is the error function.

5

Published as a conference paper at ICLR 2019

Theorem 3. Assume that ĝt followsN (0, σ2I). For loss-aware weight quantization with quantized
clipped gradients and ηt = η/

√
t,

E(R(T)) ≤ D2
∞
√
dT

2η

√∑T

t=1
(1− β)βT−tE(‖ǧt‖2) +

ηG∞
√
d√

1− β

√∑T

t=1
E(‖ǧt‖2)

+
√
LD

∑T

t=1
E(
√
‖wt − ŵt‖2H′t) +D

∑T

t=1
E(
√
‖Clip(ĝt)− ĝt‖2), (8)

E

(
R(T)

T

)
≤ O

(√
(2/π)

1
2 c∆g + 1

d√
T

)
+ LD

√
D2 +

dα2∆2
w

4
+
√
dDσ(2/π)

1
4

√
F (c). (9)

Note that terms involving g̃t in Theorem 2 are replaced by ǧt. Moreover, the regret has an addi-
tional term D

∑T
t=1 E(

√
‖Clip(ĝt)− ĝt‖2) over that in Theorem 2. Comparing the average re-

grets in Theorems 1 and 3, gradient clipping before quantization slows convergence by a factor

of
√

(2/π)
1
2 c∆g + 1, as compared to using full-precision gradients. This is independent of d as

the increase in E(‖ǧt‖2) is independent of d (Proposition 2). Hence, a ∆g larger than the one in
Theorem 2 can be used, and this reduces the communication cost in distributed learning.

Figure 2: F (c) vs clipping factor c.

A larger c (i.e., less severe gradient clipping) makes F (c) smaller (Figure 2). Compared with (6)
in Theorem 2, the extra error

√
dDσ(2/π)

1
4

√
F (c) in (9) is thus smaller, but convergence is also

slower. Hence, there is a trade-off between the two.
Remark 1. There are two scaling schemes in distributed training with data parallelism: strong
scaling and weak scaling (Snavely et al., 2002). In this work, we consider weak scaling, which is
more popular in deep network training. In weak scaling, the same data set size is used for each
worker. The gradients are averaged over the N workers as1 gt = 1

N

∑N
n=1 g

(n)
t . If the gradients

before averaging are independent random variables with zero mean, and ‖g(n)
t ‖2 is bounded byG2,

then E(‖gt‖2) = E(‖ 1
N

∑N
n=1 g

(n)
t ‖2) = 1

N2E(
∑N
n=1 ‖g

(n)
t ‖2) ≤ G2/N . From Theorems 1-3,

the convergence speed with one worker is determined by D2
∞
√
dT

2η

√∑T
t=1(1− β)βT−tE(‖gt‖2) +

ηG∞
√
d√

1−β

√∑T
t=1 E(‖gt‖2) ≤ D2

∞
√
d

2η

√
TG2 + ηG∞

√
d√

1−β

√
TG2 ≤ (

D2
∞
√
d

2η + ηG∞
√
d√

1−β)
√
TG2 , while

with N workers by (
D2
∞
√
d

2η + ηG∞
√
d√

1−β)
√
TG2/N = (

D2
∞
√
d

2η + ηG∞
√
d√

1−β)
√

(T/N)G2. Thus, with
N workers, the number of iterations for convergence is subsequently reduced by a factor of 1/N as
compared to using a single worker.

4 EXPERIMENTS

4.1 SYNTHETIC DATA

In this section, we first study the effect of dimension d on the convergence speed and final error of a
simple linear model with square loss as in (Zhang et al., 2017). Each entry of the model parameter

1With a slight abuse of notation, gt here can be the full-precision gradient or quantized gradient with/without
clipping.

6

Published as a conference paper at ICLR 2019

is generated by uniform sampling from [−0.5, 0.5]. Samples xi’s are generated such that each entry
of xi is drawn uniformly from [−0.5, 0.5], and the corresponding output yi fromN (x>i w

∗, (0.2)2).
At the tth iteration, a mini-batch of B = 64 samples are drawn to form Xt = [x1, . . . ,xB] and
yt = [y1, . . . , yB]>. The corresponding loss is ft(wt) = ‖X>t wt − yt‖2/2B. The weights are
quantized to 1 bit using LAB. The gradients are either full-precision (denoted FP) or stochastically
quantized to 2 bits (denoted SQ2). The optimizer is RMSProp, and the learning rate is ηt = η/

√
t,

where η = 0.03. Training is terminated when the average training loss does not decrease for 5000
iterations.

Figure 3(a) shows2 convergence of the average training loss
∑T
t=1 ft(wt)/T , which differs from

the average regret only by only a constant. As can be seen, for both full-precision and quantized
gradients, a larger d leads to a larger loss upon convergence. Moreover, convergence is slower for
larger d, particularly when the gradients are quantized. These agree with the results in Theorems 1
and 2.

(a) Linear model. (b) Multi-layer perceptron. (c) Cifarnet.

Figure 3: Convergence of the weight-quantized models with different d’s.

4.2 CIFAR-10

In this experiment, we follow (Wen et al., 2017) and use the same train/test split, data preprocessing,
augmentation and distributed Tensorflow setup.

4.2.1 VARYING d

We first study the effect of d on deep networks. Experiments are performed on two neural network
models. The first one is a multi-layer perceptron with one layer of d hidden units (Reddi et al., 2016).
The weights are quantized to 3 bits using LAQ3. The gradients are either full-precision (denoted
FP) or stochastically quantized to 3 bits (denoted SQ3). The optimizer is RMSProp, and the learning
rate is ηt = η/

√
t, where η = 0.1. The second network is the Cifarnet (Wen et al., 2017). We set

d to be the number of filters in each convolutional layer. The gradients are either full-precision or
stochastically quantized to 2 bits (denoted SQ2). Adam is used as the optimizer. The learning rate
is decayed from 0.0002 by a factor of 0.1 every 200 epochs as in (Wen et al., 2017).

Figures 3(b) and 3(c) show convergence of the average training loss for both networks. As can be
seen, similar to that in Section 4.1, a larger d leads to larger convergence degradation of the quantized
gradients as compared to using full-precision gradients. However, unlike the linear model, a larger
d does not necessarily lead to a larger loss upon convergence.

4.2.2 WEIGHT QUANTIZATION RESOLUTION ∆w

We use the same Cifarnet model as in (Wen et al., 2017), with d = 64. Weights are quantized to 1
bit (LAB), 2 bits (LAQ2), or m bits (LAQm). The gradients are full-precision (FP) or stochastically
quantized to m = {2, 3, 4} bits (SQm) without gradient clipping. Adam is used as the optimizer.
The learning rate is decayed from 0.0002 by a factor of 0.1 every 200 epochs. Two workers are used
in this experiment. Figure 4 shows convergence of the average training loss with different numbers of
bits for the quantized weight. With full-precision or quantized gradients, weight-quantized networks
have larger training losses than full-precision networks upon convergence. The more bits are used,
the smaller is the final loss. This agrees with the results in Theorems 1 and 2. Table 1 shows the test

2Legend “W(LAB)-G(FP)” means that weights are quantized using LAB and gradients are full-precision.

7

Published as a conference paper at ICLR 2019

set accuracies. Weight-quantized networks are less accurate than their full-precision counterparts,
but the degradation is small when 3 or 4 bits are used.

(a) G(FP). (b) G(SQ2). (c) G(SQ3). (d) G(SQ4).

Figure 4: Convergence with different numbers of bits for the weights on CIFAR-10. The gradient is
full-precision (denoted G(FP)) or m-bit quantized (denoted G(SQm)) without gradient clipping.

Table 1: Testing accuracy (%) on CIFAR-10 with two workers.

gradient
weight FP LAB LAQ2 LAQ3 LAQ4

FP 83.74 80.37 82.11 83.14 83.35
SQ2 (no clipping) 81.40 78.67 80.27 81.27 81.38
SQ2 (clip,c = 3) 82.99 80.25 81.59 83.14 83.40

SQ3 (no clipping) 83.24 80.18 81.63 82.75 83.17
SQ3 (clip, c = 3) 83.89 80.13 81.77 82.97 83.43
SQ4 (no clipping) 83.64 80.44 81.88 83.13 83.47
SQ4 (clip, c = 3) 83.80 79.27 81.42 82.77 83.43

4.2.3 GRADIENT QUANTIZATION RESOLUTION ∆g

We use the same Cifarnet model as in (Wen et al., 2017). Adam is used as the optimizer. The learning
rate is decayed from 0.0002 by a factor of 0.1 every 200 epochs. Figure 5 shows convergence of
the average training loss with different numbers of bits for the quantized gradients, again without
gradient clipping. Using fewer bits yields a larger final error, and using 2- or 3-bit gradients yields
larger training loss and worse accuracy than full-precision gradients (Figure 5 and Table 1). The
fewer bits for the gradients, the larger the gap. The degradation is negligible when 4 bits are used.
Indeed, 4-bit gradient sometimes has even better accuracy than full-precision gradient, as its inherent
randomness encourages escape from poor sharp minima (Wen et al., 2017). Moreover, using a larger
m results in faster convergence, which agrees with Theorem 2.

(a) W(LAB) (b) W(LAQ2). (c) W(LAQ3). (d) W(LAQ4).

Figure 5: Convergence with different numbers of bits for the gradients on CIFAR-10. The weight is
binarized (denoted W(LAB)) or m-bit quantized (denoted W(LAQm)). Gradients are not clipped.

4.2.4 GRADIENT CLIPPING

In this section, we perform experiments on gradient clipping, with clipping factor c in {1, 2, 3},
using the Cifarnet (Wen et al., 2017). LAQ2 is used for weight quantization and SQ2 for gradient
quantization. Adam is used as the optimizer. The learning rate is decayed from 0.0002 by a factor of
0.1 every 200 epochs. Figure 6(a) shows histograms of the full-precision gradients before clipping.
As can be seen, the gradients at each layer before clipping roughly follow the normal distribution,
which verifies the assumption in Section 3.4. Figure 6(b) shows the average ‖g̃t‖2/‖ĝt‖2 (for non-
clipped gradients) and ‖ǧt‖2/‖ĝt‖2 (for clipped gradients) over all iterations. The dimensionalities
(d) of the various Cifarnet layers are “conv1”: 1600, “conv2”: 1600, “fc3”: 884736, “fc4”: 73728,

8

Published as a conference paper at ICLR 2019

(a) Histograms of gradients before clipping. (b) ‖g̃t‖
2

‖ĝt‖2
or ‖ǧt‖

2

‖ĝt‖2
. (c) Training curve.

Figure 6: Results for LAQ2 with SQ2 on CIFAR-10 with two workers. (a) Histograms of gradients
at different Cifarnet layers before clipping (visualized by Tensorboard); (b) Average ‖g̃t‖2/‖ĝt‖2
(for non-clipped gradients) and ‖ǧt‖2/‖ĝt‖2 (for clipped gradients); and (c) Training curves.

“softmax”: 1920. Layers with large d have large ‖g̃t‖2/‖ĝt‖2 values, which agrees with Proposi-
tion 1. With clipped gradients, ‖ǧt‖2/‖ĝt‖2 is much smaller and does not depend on d, agreeing
with Proposition 3. Figure 6(c) shows convergence of the average training loss. Using a smaller
c (more aggressive clipping) leads to faster training (at the early stage of training) but larger final
training loss, agreeing with Theorem 3.

Figure 7 shows convergence of the average training loss with different numbers of bits for the quan-
tized clipped gradient, with c = 3. By comparing3 with Figure 5, gradient clipping achieves faster
convergence, especially when the number of gradient bits is small. For example, 2-bit clipped gra-
dient has comparable speed (Figure 7) and accuracy (Table 1) as full-precision gradient.

(a) W(LAB). (b) W(LAQ2). (c) W(LAQ3). (d) W(LAQ4).

Figure 7: Convergence with different numbers of bits for gradients (with c = 3) on CIFAR-10.

4.2.5 VARYING THE NUMBER OF WORKERS

In Remark 1, we showed that using multiple workers can reduce the number of training iterations
required. In this section, we vary the number of workers in a distributed learning setting with weak
scaling, using the Cifarnet (Wen et al., 2017). We fix the mini-batch size for each worker to 64, and
set a smaller number of iterations when more workers are used.

We use 3-bit quantized weight (LAQ3), and gradients are full-precision or stochastically quantized to
m = {2, 3, 4} bits (SQm). Table 2 shows the testing accuracies with varying number of workers N .
Observations are similar to those in Section 4.2.4. 2-bit quantized clipped gradient has comparable
performance as full-precision gradient, while the non-clipped counterpart requires 3 to 4 bits for
comparable performance.

Table 2: Testing accuracy (%) on CIFAR-10 with varying number of workers (N).
weight gradient N = 4 N = 8 N = 16

FP FP 83.28 83.38 83.76
FP 82.92 82.93 83.12

SQ2 (no clipping) 81.53 81.08 81.30
SQ2 (clip, c = 3) 83.01 82.94 82.73

LAQ3 SQ3 (no clipping) 82.64 82.42 82.27
SQ3 (clip, c = 3) 82.93 83.16 82.54
SQ4 (no clipping) 83.03 82.53 82.61
SQ4 (clip, c = 3) 82.51 83.07 82.52

3The curves for full-precision gradient are the same in Figures 5 and 7, and can be used as a common
baseline.

9

Published as a conference paper at ICLR 2019

4.3 IMAGENET

In this section, we train the AlexNet on ImageNet. We follow (Wen et al., 2017) and use the same
data preprocessing, augmentation, learning rate, and mini-batch size. Quantization is not performed
in the first and last layers, as is common in the literature (Zhou et al., 2016; Zhu et al., 2017; Polino
et al., 2018; Wen et al., 2017). We use Adam as the optimizer. We experiment with 4-bit loss-aware
weight quantization (LAQ4), and the gradients are either full-precision or quantized to 3 bits (SQ3).

Table 3 shows the accuracies with different numbers of workers. Weight-quantized networks have
slightly worse accuracies than full-precision networks. Quantized clipped gradient outperforms the
non-clipped counterpart, and achieves comparable accuracy as full-precision gradient.

Table 3: Top-1 and top-5 accuracies (%) on ImageNet.

weight gradient N = 2 N = 4 N = 8
top-1 top-5 top-1 top-5 top-1 top-5

FP FP 55.08 78.33 55.45 78.57 55.40 78.69
FP 53.79 77.21 54.22 77.53 54.73 78.12

LAQ4 SQ3 (no clipping) 52.48 75.97 52.87 76.40 53.18 76.62
SQ3 (clip, c = 3) 54.13 77.27 54.23 77.55 54.34 78.07

Figure 8 shows the speedup in distributed training of a weight-quantized network with
quantized/full-precision gradient compared to training with one worker using full-precision gra-
dient. We use the performance model in (Wen et al., 2017), which combines lightweight profiling
on a single node with analytical communication modeling. We use the AllReduce communication
model (Rabenseifner, 2004), in which each GPU communicates with its neighbor until all gradients
are accumulated to a single GPU. We do not include the server’s computation effort on weight quan-
tization and the worker’s effort on gradient clipping, which are negligible compared to the forward
and backward propagations in the worker. As can be seen from the Figure, even though the number
of bits used for gradients increases by one at every aggregation step in the AllReduce model, the pro-
posed method still significantly reduces network communication and speeds up training. When the
bandwidth is small (Figure 8(a)), communication is the bottleneck, and using quantizing gradients
is significantly faster than the use of full-precision gradients. With a larger bandwidth (Figure 8(b)),
the difference in speedups is smaller. Moreover, note that on the 1Gbps Ethernet with quantized
gradients, its speedup is similar to those on the 10Gbps Ethernet with full-precision gradients.

(a) 1Gbps Ethernet. (b) 10Gbps Ethernet.

Figure 8: Speedup of ImageNet training on a 16-node GPU cluster. Each node has 4 1080ti GPUs
with one PCI switch.

5 CONCLUSION

In this paper, we studied loss-aware weight-quantized networks with quantized gradient for efficient
communication in a distributed environment. Convergence analysis is provided for weight-quantized
models with full-precision, quantized and quantized clipped gradients. Empirical experiments con-
firm the theoretical results, and demonstrate that quantized networks can speed up training and have
comparable performance as full-precision networks.

ACKNOWLEDGMENTS

We thank NVIDIA for the gift of GPU card.

10

Published as a conference paper at ICLR 2019

REFERENCES

A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. In International
Conference on Empirical Methods in Natural Language Processing, pp. 440–445, 2017.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient SGD
via gradient quantization and encoding. In Advances in Neural Information Processing Systems,
pp. 1707–1718, 2017.

J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: Compressed optimisa-
tion for non-convex problems. In International Conference on Machine Learning, 2018.

M. Courbariaux, Y. Bengio, and J. P. David. BinaryConnect: Training deep neural networks with
binary weights during propagations. In Advances in Neural Information Processing Systems, pp.
3105–3113, 2015.

Y. Dauphin, H. de Vries, and Y. Bengio. Equilibrated adaptive learning rates for non-convex opti-
mization. In Advances in Neural Information Processing Systems, pp. 1504–1512, 2015.

C. De Sa, M. Leszczynski, J. Zhang, A. Marzoev, C. R. Aberger, K. Olukotun, and C. Ré. High-
accuracy low-precision training. Preprint arXiv:1803.03383, 2018.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Advances in Neural
Information Processing Systems, pp. 1223–1231, 2012.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Y. Guo, A. Yao, H. Zhao, and Y. Chen. Network sketching: Exploiting binary structure in deep
CNNs. In International Conference on Computer Vision and Pattern Recognition, pp. 5955–5963,
2017.

E. Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2
(3-4):157–325, 2016.

L. Hou and J. T. Kwok. Loss-aware weight quantization of deep networks. In International Confer-
ence on Learning Representations, 2018.

L. Hou, Q. Yao, and J. T. Kwok. Loss-aware binarization of deep networks. In International
Conference on Learning Representations, 2017.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural networks:
Training neural networks with low precision weights and activations. The Journal of Machine
Learning Research, 18(1):6869–6898, 2017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

C. Leng, H. Li, S. Zhu, and R. Jin. Extremely low bit neural network: Squeeze the last bit out with
admm. In AAAI Conference on Artificial Intelligence, 2018.

F. Li and B. Liu. Ternary weight networks. Preprint arXiv:1605.04711, 2016.

H. Li, S. De, Z. Xu, C. Studer, H. Samet, and Goldstein T. Training quantized nets: A deeper
understanding. In Advances in Neural Information Processing Systems, 2017.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, and A. Ahmed. Scaling distributed machine
learning with the parameter server. In USENIX Symposium on Operating Systems Design and
Implementation, volume 583, pp. 598, 2014a.

M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed machine
learning with the parameter server. In Advances in Neural Information Processing Systems, pp.
19–27, 2014b.

11

Published as a conference paper at ICLR 2019

X. Lin, C. Zhao, and W. Pan. Towards accurate binary convolutional neural network. In Advances
in Neural Information Processing Systems, pp. 344–352, 2017.

Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio. Neural networks with few multiplications.
In International Conference on Learning Representations, 2016.

A. Polino, R. Pascanu, and D. Alistarh. Model compression via distillation and quantization. In
International Conference on Learning Representations, 2018.

R. Rabenseifner. Optimization of collective reduction operations. In International Conference on
Computational Science, pp. 1–9, 2004.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet classification using
binary convolutional neural networks. In European Conference on Computer Vision, 2016.

S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for nonconvex
optimization. In International Conference on Machine Learning, pp. 314–323, 2016.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In International
Conference on Learning Representations, 2018.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and application to
data-parallel distributed training of speech DNNs. In Interspeech, 2014.

A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A framework for
performance modeling and prediction. In ACM/IEEE Conference on Supercomputing, pp. 1–17,
2002.

J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient dis-
tributed optimization. Preprint arXiv:1710.09854, 2017.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. TernGrad: Ternary gradients to re-
duce communication in distributed deep learning. In Advances in Neural Information Processing
Systems, 2017.

S. Wu, G. Li, F. Chen, and L. Shi. Training and inference with integers in deep neural networks. In
International Conference on Learning Representations, 2018.

H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang. The ZipML framework for training
models with end-to-end low precision: The cans, the cannots, and a little bit of deep learning. In
International Conference on Machine Learning, 2017.

S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. DoReFa-Net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. Preprint arXiv:1606.06160, 2016.

C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. In International Conference
on Learning Representations, 2017.

12

Published as a conference paper at ICLR 2019

A PROOFS

A.1 PROOF OF THEOREM 1

First, we introduce the following two lemmas.

Lemma 1. Let vt =
∑t
j=1(1 − β)βt−jg2

j , where β ∈ [0, 1). Assume that ‖gj‖∞ < G∞ for
j ∈ {1, 2 . . . , t}. Then,

vt,i ≥ (1− β)g2
t,i, (10)

√
vt,i ≤ G∞, (11)

‖
√
vt‖ =

√√√√ t∑
j=1

(1− β)βt−j‖gj‖2. (12)

Proof. vt,i =
∑t
j=1(1− β)βt−jg2

j,i ≥ (1− β)g2
t,i. Moreover,

√
vt,i =

√√√√ t∑
j=1

(1− β)βt−jg2
j,i ≤

√√√√ t∑
j=1

(1− β)βt−jG2
∞ ≤ G∞,

and

‖
√
vt‖ =

√√√√ d∑
i=1

vt,i =

√√√√ d∑
i=1

t∑
j=1

(1− β)βt−jg2
j,i =

√√√√ t∑
j=1

(1− β)βt−j‖gj‖2.

Lemma 2. [Lemma 10.3 in (Kingma & Ba, 2015)] Let g1:T,i = [g1,i, g2,i, . . . , gT,i]
> be the vector

containing the ith element of the gradients for all iterations up to T , and gt be bounded as in
Assumption A3. Then,

T∑
t=1

√
g2
t,i

t
≤ 2G∞‖g1:T,i‖.

Proof. (of Theorem 1) When only weights are quantized, the update for loss-aware weight quanti-
zation is

wt+1 = wt − ηtDiag(
√

v̂t)
−1ĝt. (13)

The update for the ith entry of wt is wt+1,i = wt,i − ηt ĝt,i√
v̂t,i

. This implies

(wt+1,i − w∗i)2 = (wt,i − w∗i)2 − 2ηt(wt,i − w∗i)
gt,i√
v̂t,i

+2ηt(wt,i − w∗i)
(gt,i − ĝt,i)√

v̂t,i
+ η2

t (
ĝt,i√
v̂t,i

)2.

After rearranging,

gt,i(wt,i − w∗i) =

√
v̂t,i

2ηt
((wt,i − w∗i)2 − (wt+1,i − w∗i)2)

+(wt,i − w∗i)(gt,i − ĝt,i) +
ηt
2

(
ĝ2
t,i√
v̂t,i

). (14)

Since ft is convex, we have

ft(wt)− ft(w∗) ≤ g>t (wt −w∗) =

d∑
i=1

gt,i(wt,i − w∗i). (15)

13

Published as a conference paper at ICLR 2019

As ft is convex (Assumption A1) and twice differentiable (Assumption A2),∇2ft � LI, where I is
the identity matrix. Combining with the assumption in Section 3.1 that ‖wm −wn‖ ≤ D, we have

‖wt −w∗‖2H′t ≤ L‖wt −w∗‖2 ≤ LD2, ‖wt − ŵt‖2H′t ≤ L‖wt − ŵt‖2 ≤ LD2. (16)

Let 〈x,y〉 = x>y be the dot product between two vectors x and y. Combining (14) and (15), sum
over all the dimensions i ∈ {1, 2 . . . , d} and over all iterations t ∈ {1, 2, . . . , T}, we have

R(T) =
∑T

t=1
ft(wt)− ft(w∗)

≤
d∑
i=1

√
v̂1,i

2η1
(w1,i − w∗i)2 +

d∑
i=1

T∑
t=2

(√
v̂t,i

2ηt
−
√
v̂t−1,i

2ηt−1

)
(wt,i − w∗i)2

+

T∑
t=1

〈wt −w∗,gt − ĝt〉+

d∑
i=1

T∑
t=1

ηt
2

 ĝ2
t,i√

(1− β)ĝ2
t,i


≤ D2

∞
2η

d∑
i=1

√
T v̂T,i +

T∑
t=1

〈H
′ 1
2
t (wt −w∗),H

′− 1
2

t (gt − ĝt)〉+
ηG∞√
1− β

d∑
i=1

‖ĝ1:T,i‖

≤ D2
∞

2η

d∑
i=1

√
T v̂T,i +

T∑
t=1

√
‖wt −w∗‖2H′t

√
‖wt − ŵt‖2H′t +

ηG∞√
1− β

d∑
i=1

‖ĝ1:T,i‖

≤ D2
∞

2η

d∑
i=1

√
T v̂T,i +

ηG∞√
1− β

d∑
i=1

‖ĝ1:T,i‖+
√
LD

T∑
t=1

√
‖wt − ŵt‖2H′t

≤ D2
∞

2η

√
dT

√√√√ T∑
t=1

(1− β)βT−t‖ĝt‖2 +
ηG∞√
1− β

√
d

√√√√ T∑
t=1

‖ĝt‖2

+
√
LD

T∑
t=1

√
‖wt − ŵt‖2H′t . (17)

The first inequality comes from (10) in Lemma 1. In the second inequality, the first term comes from∑d
i=1

√
v̂1,i

2η1
(w1,i −w∗i)2 +

∑d
i=1

∑T
t=2

(√
v̂t,i

2ηt
−
√
v̂t−1,i

2ηt−1

)
(wt,i −w∗i)2 =

∑d
i=1

√
v̂T,i

2ηT
(wT,i −

w∗i)2 and the domain bound assumption in Section 3.1 (i.e., (wT,i −w∗i) ≤ ‖wT −w∗‖∞ ≤ D∞).

The second term comes from the definition of H′t (i.e., H
′− 1

2
t (gt − ĝt) = H

′ 1
2
t (wt − ŵt)), and

Lemma 2. The third inequality comes from Cauchy’s inequality. The fourth inequality comes from
(16). The last inequality comes from (12) in Lemma 1.

For m-bit (m > 1) loss-aware weight quantization in (13), as

ŵt = arg minw ‖ŵ −wt‖2Diag(
√

v̂t−1)
=

d∑
i=1

√
v̂t−1,i(ŵi − wt,i)2

s.t. ŵ = αtbt, α > 0, b ∈ (Sw)d.

If −αtMk ≤ wt,i ≤ αtMk, as
√
v̂t−1,i > 0, the optimal ŵt,i satisfies ŵt,i ∈ {αtMr,i, αtMr+1,i},

where r is the index that satisfies αtMr,i ≤ wt,i ≤ αtMr+1,i. Since α = max{α1, . . . , αT }, we
have

(ŵt,i − wt,i)2 = min{(αtMr+1,i − |wt,i|)2, (αtMr,i − |wt,i|)2}

≤
(
αtMr+1,i − αtMr,i

2

)2

≤ α2∆2
w

4
. (18)

Otherwise (i.e., wt,i is exterior of the representable range), the optimal ŵt,i is just the nearest repre-
sentable value of wt,i. Thus,

(ŵt,i − wt,i)2 = (|wt,i| − αtMk)2 ≤ w2
t,i. (19)

14

Published as a conference paper at ICLR 2019

From (18) and (19), and sum over all the dimensions, we have

‖ŵt −wt‖2 ≤
dα2∆2

w

4
+ ‖wt‖2 ≤

dα2∆2
w

4
+D2. (20)

From (16) and (20),

‖ŵt −wt‖2H′t ≤ L
(
D2 +

dα2∆2
w

4

)
. (21)

From (21) and Assumption A3, we have from (17)

R(T) ≤ D2
∞dG∞

√
T

2η
+
ηdG2

∞
√
T√

1− β
+ LD

√
D2 +

dα2∆2
w

4
T.

Thus, the average regret is

R(T)/T ≤
(
D2
∞G∞
2η

+
ηG2
∞√

1− β

)
d√
T

+ LD

√
D2 +

dα2∆2
w

4
. (22)

A.2 PROOF OF PROPOSITION 1

Lemma 3. For stochastic gradient quantization in (3), E(g̃t) = ĝt, and E(‖g̃t − ĝt‖2) ≤
∆g‖ĝt‖∞‖ĝt‖1.

Proof. Denote the ith element of the quantized gradient g̃t by g̃t,i. For two adjacent quantized
values Br,i, Br+1,i with Br,i ≤ |gt,i|/st < Br+1,i,

E(g̃t,i) = E(st · sign(ĝt,i) · qt,i) = st · sign(ĝt,i) ·E(qt,i)

= st · sign(ĝt,i) · (pBr+1,i + (1− p)Br,i)
= st · sign(ĝt,i) · (p(Br+1,i −Br,i) +Br,i)

= st · sign(ĝt,i) ·
|ĝt,i|
st

= ĝt,i.

Thus, E(g̃t) = ĝt, and the variance of the quantized gradients satisfy

E(‖g̃t − ĝt‖2) =

d∑
i=1

(stBr+1,i − |ĝt,i|)(|ĝt,i| − stBr,i)

= s2
t

d∑
i=1

(Br+1,i −
|ĝt,i|
st

)(
|ĝt,i|
st
−Br,i)

≤ s2
t

d∑
i=1

(Br+1,i −Br,i)
|ĝt,i|
st

= ∆g‖ĝt‖∞‖ĝt‖1.

Proof. From Lemma 3,

E(‖g̃t‖2) = E(‖g̃t − ĝt‖2) + ‖ĝt‖2 ≤ ∆g‖ĝt‖∞‖ĝt‖1 + ‖ĝt‖2.
Denote {x1, x2, . . . , xd} as the absolute values of the elements in ĝt sorted in ascending order. From
Cauchy’s inequality, we have

‖ĝt‖∞‖ĝ‖1 = xd

d∑
i=1

xi =

d∑
i=1

xdxi ≤
d−1∑
i=1

(
1 +
√

2d− 1

2
x2
i +

1

1 +
√

2d− 1
x2
d) + x2

d

=
1 +
√

2d− 1

2

d∑
i=1

x2
i =

1 +
√

2d− 1

2
‖ĝt‖2.

15

Published as a conference paper at ICLR 2019

The equality holds iff x1 = x2 = · · · =
√

2
1+
√

2d−1
xd. Thus, we have

E(‖g̃t‖2) ≤ (
1 +
√

2d− 1

2
∆g + 1)‖ĝt‖2.

A.3 PROOF OF THEOREM 2

Proof. When both weights and gradients are quantized, the update is

wt+1 = wt − ηtDiag(
√

ṽt)
−1g̃t. (23)

Similar to the proof of Theorem 1, and using that E(g̃t) = ĝt (Lemma 3), we have

E(R(T)) ≤
d∑
i=1

E(

√
ṽ1,i

2η1
(w1,i − w∗i)2) +

d∑
i=1

T∑
t=2

E

(
(

√
ṽt,i

2ηt
−
√
ṽt−1,i

2ηt−1
)(wt,i − w∗i)2

)

+

T∑
t=1

E(〈wt −w∗,gt − g̃t〉) +

d∑
i=1

T∑
t=1

ηt
2
E(

 g̃2
t,i√

(1− β)g̃2
t,i

)


≤ D2

∞
2η

d∑
i=1

E(
√
T ṽT,i) +

T∑
t=1

E〈H
′ 1
2
t (wt −w∗),H

′− 1
2

t (gt − ĝt)〉

+
ηG∞√
1− β

d∑
i=1

E(‖g̃1:T,i‖)

≤ D2
∞

2η

d∑
i=1

E(
√
T ṽT,i) +

T∑
t=1

E(
√
‖wt −w∗‖2H′t

√
‖wt − ŵt‖2H′t)

+
ηG∞√
1− β

d∑
i=1

E(‖g̃1:T,i‖)

≤ D2
∞

2η

√
dTE(‖

√
ṽT ‖) +

ηG∞√
1− β

d∑
i=1

E(‖g̃1:T,i‖)

+
√
LD

T∑
t=1

E(
√
‖wt − ŵt‖2H′t)

≤ D2
∞

2η

√
dT

√√√√ T∑
t=1

(1− β)βT−tE(‖g̃t‖2) +
ηG∞√
1− β

√
d

√√√√ T∑
t=1

E(‖g̃t‖2)

+
√
LD

T∑
t=1

E(
√
‖wt − ŵt‖2H′t).

As (21) in the proof of Theorem 1 still holds, using Proposition 1 and Assumption A3, we have

E(R(T)) ≤

D2
∞

2η

√
dT

√√√√ T∑
t=1

(1− β)βT−t‖ĝt‖2 +
ηG∞√
1− β

√
d

√√√√ T∑
t=1

‖ĝt‖2


·

√
1 +
√

2d− 1

2
∆g + 1 + LD

√
D2 +

dα2∆2
w

4

≤
(
D2
∞G∞
2η

+
ηG2
∞√

1− β

)
d
√
T

√
1 +
√

2d− 1

2
∆g + 1 + LD

√
D2 +

dα2∆2
w

4
.

16

Published as a conference paper at ICLR 2019

E(R(T)/T) ≤
(
D2
∞G∞
2η

+
ηG2
∞√

1− β

)√
1 +
√

2d− 1

2
∆g + 1

d√
T

+ LD

√
D2 +

dα2∆2
w

4
.

A.4 PROOF OF PROPOSITION 2

Proof. From Lemma 3,
E(Qg(Clip(ĝt))) = Clip(ĝt),

and
E(‖Qg(Clip(ĝt))‖2) ≤ E(∆g‖Clip(ĝt)‖∞‖Clip(ĝt)‖1 + ‖Clip(ĝt)‖2).

As [ĝt]i ∼ N (0, σ2), its pdf is f(x) = 1√
2πσ2

e−
x2

2σ2 . Thus,

E(‖Clip(ĝt)‖1) ≤ E(‖ĝt‖1) =

d∑
i=1

E(|[ĝt]i|) = d

∫ +∞

−∞
|x|f(x)dx = 2d

∫ +∞

0

xf(x)dx

= d

∫ +∞

0

1√
2πσ2

e−
x2

2σ2 dx2 = d
−2σ2

√
2πσ2

e−
u

2σ2

∣∣∣+∞
0

= (2/π)
1
2 dσ.

As E(‖Clip(ĝt)‖2) ≤ E(‖ĝt‖2), and that E(‖ĝt‖2) = dσ2, we have

E(‖Qg(Clip(ĝt))‖2) ≤ E(∆g‖Clip(ĝt)‖∞‖Clip(ĝt)‖1 + ‖Clip(ĝt)‖2)

≤ ∆gcσ(2/π)
1
2 dσ + E(‖Clip(ĝt)‖2)

≤ ((2/π)
1
2 c∆g + 1)E(‖ĝt‖2).

A.5 PROOF OF PROPOSITION 3

Proof.

E(‖Clip(ĝt)− ĝt‖2) = d(

∫ +∞

cσ

(x− cσ)2f(x)dx+

∫ −cσ
−∞

(−x− cσ)2f(x)dx)

≤ 2d

∫ +∞

cσ

(x− cσ)2f(x)dx

=
2d√
2πσ2

σ3(−ce− c
2

2 +

√
π

2
(1 + c2)(1− erf(

c√
2

)))

= (2/π)
1
2 dσ2F (c).

A.6 PROOF OF THEOREM 3

Proof. When both weights and gradients are quantized, and gradient clipping is applied before gra-
dient quantization, the update then becomes

wt+1 = wt − ηtDiag(
√
v̌t)
−1ǧt. (24)

Similar to the proof of Theorem 1, and using that E(Qg(Clip(ĝt))) = Clip(ĝt), we have

E(R(T)) ≤
d∑
i=1

E(

√
v̌1,i

2η1
(w1,i − w∗i)2) +

d∑
i=1

T∑
t=2

E

(
(

√
v̌t,i

2ηt
−
√
v̌t−1,i

2ηt−1
)(wt,i − w∗i)2

)

+

T∑
t=1

E(〈wt −w∗,gt − ǧt〉) +

d∑
i=1

T∑
t=1

ηt
2
E

 ǧ2
t,i√

(1− β)ǧ2
t,i


17

Published as a conference paper at ICLR 2019

≤ D2
∞

2η

d∑
i=1

E(
√
T v̌T,i) +

T∑
t=1

E〈wt −w∗,gt − ĝt〉+

T∑
t=1

E〈wt −w∗, ĝt − Clip(ĝt)〉

+
ηG∞√
1− β

d∑
i=1

E(‖ǧ1:T,i‖)

≤ D2
∞

2η

d∑
i=1

E(
√
T v̌T,i) +

T∑
t=1

E〈H
′ 1
2
t (wt −w∗),H

′− 1
2

t (gt − ĝt)〉

+

T∑
t=1

E〈wt −w∗, ĝt − Clip(ĝt)〉+
ηG∞√
1− β

d∑
i=1

E(‖ǧ1:T,i‖)

≤ D2
∞
√
dT

2η
E(‖
√
v̌T ‖) +

ηG∞√
1− β

d∑
i=1

E(‖ǧ1:T,i‖)

+
√
LD

T∑
t=1

E(
√
‖wt − ŵt‖2H′t) +

T∑
t=1

E(
√
‖wt −w∗‖2

√
‖(ĝt − Clip(ĝt))‖2)

≤ D2
∞
√
dT

2η

√√√√ T∑
t=1

(1− β)βT−tE(‖ǧt‖2) +
ηG∞

√
d√

1− β

√√√√ T∑
t=1

E(‖ǧt‖2)

+
√
LD

T∑
t=1

E(
√
‖wt − ŵt‖2H′t) +D

T∑
t=1

E(
√
‖ĝt − Clip(ĝt)‖2).

(21) in the proof of Theorem 1 still holds. Similar to the proof of Theorem 2, using the domain
bound assumption in Section 3.1 (i.e., ‖wm − wn‖ ≤ D and ‖wm − wn‖∞ ≤ D∞ for any
wm,wn ∈ S), and Proposition 3, we have

E(R(T)/T) ≤
(
D2
∞G∞
2η

+
ηG2
∞√

1− β

)√
(2/π)

1
2 c∆g + 1

d√
T

+LD

√
D2 +

dα2∆2
w

4
+
√
dDσ(2/π)

1
4

√
F (c).

18

	Introduction
	Preliminaries
	Online Learning
	Weight Quantization
	Gradient Quantization

	Properties of a Quantized Model
	Assumptions
	Weight Quantization with Full-Precision Gradient
	Weight Quantization With Quantized Gradient
	Weight Quantization with Quantized Clipped Gradients

	Experiments
	Synthetic Data
	CIFAR-10
	Varying d
	Weight Quantization Resolution w
	Gradient Quantization Resolution g
	Gradient Clipping
	Varying the Number of Workers

	ImageNet

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 3

