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Abstract

Locally adaptive classifiers are usually supe-
rior to the use of a single global classifier.
However, there are two major problems in
designing locally adaptive classifiers. First,
how to place the local classifiers, and, sec-
ond, how to combine them together. In this
paper, instead of placing the classifiers based
on the data distribution only, we propose a
responsibility mixture model that uses the un-
certainty associated with the classification at
each training sample. Using this model, the
local classifiers are placed near the decision
boundary where they are most effective. A
set of local classifiers are then learned to form
a global classifier by maximizing an estimate
of the probability that the samples will be
correctly classified with a nearest neighbor
classifier. Experimental results on both ar-
tificial and real-world data sets demonstrate
its superiority over traditional algorithms.

1. Introduction

Linear models have been very popular because of their
simplicity and analytical tractability, and algorithms
like Eigenfaces (PCA) (Turk & Pentland, 1991) and
linear discriminant analysis (LDA) (Belhumeur et al.,
1997) have been widely used in many real-world appli-
cations. However, when the data has a complex non-
linear structure, a single linear classifier cannot well
separate the different classes. A natural remedy is
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then to have an ensemble of locally adaptive classifiers.
There are two fundamental problems in designing such
an ensemble:

1. How to place the local classifiers?

2. How to effectively fuse these local classifiers?

Attempts have been made in solving these problems
(Kim & Kittler, 1994; Yan et al., 2004; Meir et al.,
2000; Chapelle et al., 2000; Toussaint & Vijayakumar,
2005). Kim and Kittler (1994) place the local classi-
fiers at the clusters obtained by the K-means (Selim
& Ismail, 1984) clustering algorithm. The projection
directions of the local classifiers are then derived by
using the (global) Fisher criterion (Fisher, 1936). Yan
et al. (2004) proposed a variant of the K-means al-
gorithm called Intra-Class Balanced K-means. The
local classifiers are placed in clusters such that each
one has a balanced number of samples from the dif-
ferent classes. They then also use the Fisher criterion
to optimize the projection directions of the classifiers.
The work of Kim and Kittler (1994) can easily decide
the locations of the local classifiers since the method is
unsupervised and based directly on the data distribu-
tion. The work of Yan et al. (2004), on the other hand,
can utilize the label information. However, it becomes
computationally infeasible especially when the classes
are imbalanced.

In this paper, we propose a different approach for solv-
ing these two problems. To address the first problem,
the local classifiers are placed by using an uncertainty

map, where uncertainty refers to the probability that
a sample will be misclassified by the nearest neighbor
classifier. A responsibility mixture model is learned to
describe this uncertainty distribution. The local clas-
sifiers are then placed in areas with high uncertainties.
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Figure 1. Schematic diagram for designing an ensemble of locally adaptive classifiers. In this example, the data distribu-
tions of classes A and B are both Gaussian mixtures (A1, A2 are the two mixture components for class A, while B1, B2
are those for class B). The two ellipses show the locations of the local classifiers.

For the second problem, we introduce a linear classi-
fier with local dimensionality reduction that directly
maximizes an estimate of the classification accuracy
attained by a nearest neighbor classifier. The general
design for an ensemble of locally adaptive classifiers is
shown schematically in Figure 1.

The rest of this paper is organized as follow. Section 2
introduces the responsibility mixture model together
with the uncertainty map. Section 3 then introduces
the fusion of the local classifiers. Experimental results
are presented in Section 4, and the last section gives
the conclusion and future works.

2. Placement of the Local Classifiers

In a classification problem, we are given a training
set of N i.i.d. samples. This can be represented by
the matrix X = [x1, x2, . . . , xN ] ∈ R

m×N with xi ∈
R

m. The label of xi is ci ∈ {1, 2, . . . , Nc}, where Nc

is the number of classes. We also denote the number
of samples belonging to the cth class by nc, and the
corresponding index set of samples by πc.

Despite the possibly complicated global structure of
the data, we can often represent it by a collection of
simpler, locally linear models (Roweis & Saul, 2000;
Bregler & Omohundro, 1995). Methods such as the
Gaussian Mixture Model (GMM) (Bilmes, 1998) and
Mixture of Factor Analyzers (MFA) (Ghahramani &
Hinton, 1996) have been proposed for isolating these
local structures. However, as these are unsupervised
learning techniques, they may not be suitable in clas-
sification problems. This deficiency can be easily
demonstrated by interchanging the labels of two sam-
ples belonging to different classes. This will not alter
the clustering result, but the decision boundary can
be changed significantly. Moreover, it is also possible
that all the samples in one cluster may belong to the
same class, and the classifier located at that cluster is
thus unable to learn.

2.1. The Uncertainty Map

Consider the use of a L-nearest neighbor classifier. For
a particular sample x, if most of its neighbors share
the same class label as x, then the classification of x
will be easy. Otherwise, the classification of x will
be unreliable or even incorrect. In the following, let
exp{−‖xi−xj‖

2/δ2} be the similarity between samples
xi and xj . We can thus define the uncertainty ui of a
training sample xi as:

ui =

∑

j∈NL
i

,j /∈πci
exp{−‖xi − xj‖

2/δ2}
∑

j∈NL
i

exp{−‖xi − xj‖2/δ2}
, (1)

where NL
i is the set of L-nearest neighbors1 of xi.

From the definition, a large ui means that the neigh-
boring samples are likely to be of different classes, and
hence the classification of xi is more uncertain. On
the contrary, a small ui indicates that more neighbor-
ing samples share the same class label of xi.

Note that computing the uncertainty relies not only
on the data distribution, but also on the label infor-
mation. Moreover, intuitively, the uncertainty will be
high for those training samples lying close to the deci-
sion boundary.

2.2. Responsibility Mixture Model

In this section, we propose the responsibility mixture

model (RMM) for modeling the uncertainty distribu-
tion of the data. The RMM is a mixture of K Gaus-
sians2, with each mixture component normally distrib-
uted as N(mk,Σk) with mean mk and covariance ma-
trix Σk. The (combined) responsibility distribution
function r(x|θ) at a particular sample x is then

r(x|θ) ≡
K
∑

k=1

wk 1
√

| Σk |π
m
2

×

1In the experiments, we simply use L = nc for the cth
class.

2Here, K is chosen empirically.
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exp{−
1

2
(x − mk)T (Σk)−1(x − mk)},

where wk is the prior probability of the kth component
(with

∑

k wk = 1). Here, we use θ = {wk,mk,Σk}K
k=1

to denote all the model parameters.

Obviously, the local classifiers should be placed near
the decision boundary, where classification is the most
difficult. As mentioned in Section 2.1, by construction,
the uncertainty is also high at those training samples
lying close to the decision boundary. Consequently,
the mixture should have a high responsibility for areas
with high uncertainties. In other words, r(xi|θ) should
be large when ui is large, and vice verse.

To achieve this goal, we maximize the following objec-
tive function

F (u,X | θ) =

N
∑

i=1

ui log r(xi|θ). (2)

Notice that when the label information is not available,
we cannot compute the uncertainty using Eq.(1) and
all the ui’s may be taken as one. In this case, Eq.(2)
reduces to the log-likelihood

log P (X | θ) = log

[

N
∏

i=1

p(xi | θ)

]

.

of the standard Gaussian mixture (GMM) that con-
siders the data distribution of the samples only.

Another advantage of this formulation is that areas
of high uncertainty should have training samples from
at least two classes. Thus, when the local classifiers
are placed in those areas, they will not suffer from
the above-mentioned problem that only one class of
training samples are available in that local region.

2.3. EM for Parameter Estimation

It is difficult to optimize Eq.(2) directly. Therefore,
we treat it as an incomplete data problem and use the
Expectation Maximization (EM) algorithm (Bilmes,
1998).

Let zk
i = 1 when xi is generated from the kth mixture

component, and 0 otherwise. Concatenating all these
missing data together, we have zi = [z1

i , z2
i , . . . , zK

i ]T ,
and Z = {zk

i | i = 1, . . . , N ; k = 1, . . . ,K}. We can
then rewrite the objective function in Eq.(2) with the
complete data as

F (Z, u,X | θ) =

N
∑

i=1

ui log p(xi, zi | θ), (3)

where

p(xi, zi | θ) =

K
∑

k=1

zk
i wk 1

√

| Σk |π
m
2

×

exp{−
1

2
(xi − mk)T (Σk)−1(xi − mk)}.

Since only one zk
i is non-zero for a given i, Eq.(3) can

be rewritten as

F (Z, u,X | θ) =
N
∑

i=1

K
∑

k=1

zk
i ui log{wk 1

√

| Σk |π
m
2

× exp[−
1

2
(xi − mk)T (Σk)−1(xi − mk)]}.

Let θn = {wk
n,mk

n,Σk
n}

K
k=1 be the parameter estimated

from the nth step. The Q-function (Bilmes, 1998) is
then obtained as

Q(θ | θn) = Ez{F (Z, u,X | θ) | X, θn} (4)

=

N
∑

i=1

K
∑

k=1

Ez(z
k
i )ui log{wkp(xi | mk,Σk)},

where the expectation is computed using p(Z|X, θn).

2.3.1. E-Step

From the Bayes rule,

Ez(z
k
i ) =

wk
np(xi | mk

n,Σk
n)

∑K
j=1 wj

np(xi | mj
n,Σj

n)
. (5)

Notice that only the Ez(z
k
i ) term is related to Z in

Eq.(4). Once we obtain Ez(z
k
i ) from Eq.(5), Eq.(4) is

only related to the parameter θ = {wk,mk,Σk}K
k=1.

2.3.2. M-Step

From Eq.(4), we have

∂Q(θ | θn)

∂mk
=

N
∑

i=1

Ez(z
k
i )ui

∂

∂mk
log p(xi | mk,Σk)

=
N
∑

i=1

Ez(z
k
i )ui(Σ

k)−1(xi − mk).

On setting ∂Q(θ | θn)/∂mk to zero,

mk =
N
∑

i=1

Ez(z
k
i )uixi/

N
∑

i=1

Ez(z
k
i )ui,

as Σk is non-singular. Similarly, on setting ∂Q(θ |
θn)/∂Σk = 0, we have

Σk =









N
∑

i=1

Ez(z
k
i )ui

N
∑

i=1

Ez(zk
i )ui

(xi − mk)(xi − mk)T









−1

.
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For the prior probability of each mixture component
wk, we use the method of Lagrange multipliers to en-
force the constraint

∑

k wk = 1. The Lagrangian is:

f(λ,wk) = Q(θ | θn) + λ

(

∑

k

wk − 1

)

.

Setting ∂f(λ,wk)/∂wk = 0, we have

λwk =

N
∑

i=1

Ez(z
k
i )ui,

and therefore

wk =

N
∑

i=1

Ez(z
k
i )ui/

K
∑

k=1

N
∑

i=1

Ez(z
k
i )ui.

We can then optimize the parameters of the responsi-
bility mixture model iteratively until convergence.

2.4. Discussion

The GMM is unsupervised and all the samples are con-
sidered equally important. If there is prior information
on the importance ui of sample xi, we can rewrite the
objective function of GMM as

P (X | θ) =

N
∏

i=1

[p(xi | θ)]ui .

If ui is set to be the uncertainty of sample xi, we can
immediately recover the RMM. Thus, while the stan-
dard GMM considers only the data distribution, the
RMM can be viewed as a way of assigning importance
to the training samples based on the label information.
An illustration of the superiority of RMM over GMM
is shown in Figure 2.

3. Ensemble of Locally Adaptive

Classifiers

Locally adaptive classifiers are usually superior to the
use of a single global classifier. In this section, we
use an ensemble of local non-parametric classifiers for
locally adaptive classification based on the class re-
sponsibilities obtained from the responsibility mixture
model in Section 2.2.

3.1. Training

Using the responsibility mixture model in Section 2.2,
the weight of each local classifier for sample xi is the
probability Ez(z

k
i ) that xi belongs to the kth clus-

ter. We now perform local dimensionality reduction

Figure 2. RMM better characterizes the locations of the
locally adaptive classifiers. (a) Toy data; (b) Uncertainty
map; (c) GMM result; (d) RMM result.

by associating a transformation matrix Ak with each
local classifier. As discussed in Section 2.1, a particular
sample x will be more likely to be classified correctly
if most of its neighbors share the same class label as
x. We may then define the probability that sample xi

will be correctly classified by the kth local model as

pk
i =

∑

j:cj=ci

exp{−‖Akxi − Akxj‖
2}

∑

o6=i exp{−‖Akxi − Akxo‖2}
. (6)

Notice that Eq.(6) is related to the definition of the
uncertainty in Eq.(1). In particular, when the number
of nearest neighbors L is set to N − 1 and Ak = I, we
have pk

i + ui = 1. For computational efficiency, this
simplified formulation will always be used.

Recall that sample xi belongs to the kth cluster with
probability Ez(z

k
i ), and that xi will be correctly classi-

fied by the kth local model with probability pk
i . Thus,

to find the optimal A = {Ak}K
k=1, we maximize

G(A) =

N
∑

i=1

K
∑

k=1

Ez(z
k
i )pk

i . (7)

Denote xij = xi − xj . The gradient vector of G(A)
can be easily obtained as

∂G(A)

∂A
=

[

∂G(A)

∂A1
,
∂G(A)

∂A2
, . . . ,

∂G(A)

∂AK

]′

, (8)

∂G(A)

∂Ak
= −2Ak

N
∑

i=1

∑

j:cj=ci

Ez(z
k
i ) ×

(pk
ijxijx

T
ij − pk

ij

∑

o6=i

pk
ioxiox

T
io),

where pk
ij =

exp{−‖Akxi−Akxj‖
2}�

o6=i
exp{−‖Akxi−Akxo‖2}

.
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However, G(A) may be non-convex and have local op-
tima. In the following, we use simulated annealing
(Casella & Robert, 1999) to perform the optimization.
The whole algorithm is shown in Algorithm 1. To ac-
celerate optimization, we update the transformation
matrix A with a random gradient matrix. In practice,
this greatly alleviates the computational complexity
without sacrificing accuracy.

Algorithm 1 Simulated Annealing for Parameter Op-
timization.
1: Initialize the transformation matrix A = A(0), and

set the iteration counter n = 0.
2: Compute the gradient matrix ∂G(A(n))

∂A(n) using

Eq.(8).

3: Compute B = A(n) − α ∂G(A(n))
∂A(n) + ε, where α is

the step size, and ε is a random matrix of the same
size as A.

4: Compute G(B), G(A(n)) and set dG = G(B) −
G(A(n)).

5: Set A(n + 1) = B with probability
min(exp(dG/Tn), 1), where Tn is the tem-
perature at the nth iteration; otherwise, set
A(n + 1) = A(n).

6: Set Tn+1 = βTn (where β < 1 is the cooling rate),
n = n + 1, then, go to step 2.

As an illustration, Figure 3 demonstrates the improve-
ment in classification accuracy with the number of it-
erations. The two experiments are performed on a
subset of the CMU PIE database (Sim et al., 2003)
with 8,442 facial images of 67 subjects3. The algo-
rithm is initialized by setting the local transformation
matrix Ak to be the identity matrix, the temperature
to 200, and β = 0.925. As can be seen, the proposed
algorithm converges in only about 50 iterations.

(a) With lighting variations. (b) With pose variations.

Figure 3. Recognition accuracies (%) vs. the number of
iterations for the proposed method.

3Please refer to Section 4.2 for the detailed experimental
setups.

3.2. Testing

Given a new sample x, we first compute the responsi-
bilities of the various local models as

zk(x) =
wkp(x | θk)

∑K
j=1 wjp(x | θj)

.

Its class label can then be predicted according to

arg max
i

K
∑

k=1

zk(x)
exp{−‖Akx − Akxi‖

2}
∑N

j=1 exp{−‖Akx − Akxj‖2}
.

3.3. Discussion

If the number of clusters K is set to one, then the
objective function in Eq.(7) reduces to

G(A) =

N
∑

i=1

∑

cj=ci

exp{−‖Axi − Axj‖
2}

∑

o6=i exp{−‖Axi − Axo‖2}
.

This is the same as that of neighborhood component

analysis (NCA) (Goldberger et al., 2004), which is a
linear dimensionality reduction method for learning a
Mahalanobis distance for nearest neighbor classifiers.
Therefore, NCA is a special case of the RMM with
only one cluster. Besides, NCA uses gradient descent
to compute the solution, and may easily fall into a
local optimum. Moreover, NCA is computationally
expensive, especially when a large number of training
samples is available.

4. Experiments

In this section, we perform a number of experiments
on both toy and real-world data sets. The proposed
method will be referred to as Locally Adaptive Classi-

fication Piloted by Uncertainty (LCU).

4.1. Dimensionality Reduction

To visualize the effectiveness of RMM, we perform di-
mensionality reduction by combining RMM with the
Fisher criterion (FDA) in a manner similar to that in
(Kim & Kittler, 1994). Experiments are performed
on two sets of artificial data (Figures 4(a) and (b)),
where the task is to reduce the data from 2-D to 1-D.
Comparisons are made with three traditional dimen-
sionality reduction algorithms: PCA, LDA and locally
linear discriminant analysis (LLDA) (Kim & Kittler,
1994). For both LLDA and LCU, the number of clus-
ters K is set to 4 for the first data set and 3 for the
second one.

Results are shown in Figures 4(c)-(j). As can be seen,
the two classes become more separated by using the
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Figure 4. Dimensionality reduction results. (a) Data set 1;
(b) Data set 2; (c)-(j): Distributions of the 1-D projec-
tions of the two data sets obtained using various methods
((c),(d) PCA; (e),(f) LDA; (g),(h) LLDA; (i),(j) LCU).

proposed method. As discussed earlier, this is due to
the facts that both PCA and LDA are globally linear,
and LLDA is based directly on the data distribution;
while RMM can make use of the uncertainty of the
data (see also Figure 2).

4.2. Face Recognition

In this section, we perform face recognition experi-
ments on the CMU PIE face database (Sim et al.,
2003) (Figure 5). We use a total of 8,442 images from
67 subjects4 that were acquired under different light-
ing conditions and poses. As pre-processing, PCA is
applied to these images and the number of principal
components extracted is determined by keeping about
95% of the total energy.

Figure 5. Examples of cropped images from the CMU PIE
face database (with different lighting conditions and poses).

LCU is compared to three popular face recognition
schemes: Eigenface (Turk & Pentland, 1991), Fisher-
face (Belhumeur et al., 1997) and LLDA. For Fish-
erface and LLDA, we try all possible numbers of ex-
tracted features (from 1 to 66) and report the best
recognition results; whereas for LCU, we simply fix
the number of features to Nc − 1. As there are 7 dif-
ferent lighting conditions in the training set, we set the
number of clusters/components K to 7 for both LCU
and LLDA. The transformation matrices of Eigenface
(PCA), Fisherface (LDA), LLDA and LCU are shown
in Figure 6.

4.2.1. Varying the Lighting

We first study the algorithms’ robustness to lighting
variations. The training set consists of 2,345 images
from 67 subjects, with 5 poses and 7 different light-
ing conditions. The test set consists of 2,680 images
from the same 67 subjects, with the same poses but
8 different lighting conditions. As can be seen from
Table 1, LCU performs much better than the use of
a single model. This indicates the superiority of the
fusing strategy in LCU. Also, the results show that
LCU outperforms LLDA, which is a locally adaptive
algorithm based on the data distribution.

4One subject does not have the complete set of images
for all lighting conditions and poses, and so is not used.
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Figure 6. Visualization of the column vectors of the transformation matrices obtained by Eigenface (PCA), Fisherface
(LDA), LLDA and LCU on the training set of the CMU PIE database.

Table 1. Recognition accuracies (%) on the CMU PIE
database with different lighting conditions.

light Eigenface Fisherface LLDA LCU

L1 48.76 79.37 95.05 97.75

L2 51.10 80.65 94.29 96.06

L3 44.05 80.20 93.84 97.87

L4 45.77 77.43 93.85 98.48

L5 53.06 87.74 99.10 99.50

L6 58.88 89.29 99.53 99.65

L7 56.21 88.17 98.63 99.73

L8 52.74 85.03 98.17 99.02

average 51.32 83.46 96.56 98.51

4.2.2. Varying the Pose

In this experiment, we study the robustness to pose
variations. We use face images with 5 poses and 7
lighting conditions for training, and images with 8 un-
seen poses but the same lighting variations for testing.
Table 2 shows the recognition results. Eigenface and
Fisherface are sensitive to pose variations and perform
much worse than in Section 4.2.1. Note that Eigenface
outperforms Fisherface here. A similar observation is
also made in (Martinez & Kak, 2001). Again, LCU is
the best among all the algorithms evaluated here.

4.2.3. Number of Features Extracted

As shown in Figure 7, the performance of Eigenface,
Fisherface and LLDA all depend on the number of
features extracted. On the other hand, for LCU, if the
sizes of its local transform matrices (Ak’s) are large
enough, unnecessary dimensions can be automatically
removed in the optimization process. Hence, there is
no need to test different numbers of extracted features.
As mentioned earlier, we have simply fixed it at Nc−1

Table 2. Recognition accuracies (%) on the CMU PIE
database with different poses.

pose Eigenface FisherFace LLDA LCU

P1 32.67 20.12 29.87 46.73

P2 60.53 47.76 62.47 71.49

P3 61.41 46.59 60.09 68.75

P4 36.12 24.31 31.65 56.63

P5 37.70 26.79 27.74 54.54

P6 64.91 39.11 63.38 69.83

P7 48.83 25.55 40.26 57.74

P8 44.07 22.91 35.81 48.92

average 48.28 31.64 43.91 59.33

in all the experiments.

(a) With lighting variations. (b) With pose variations.

Figure 7. Recognition accuracies (%) vs. the number of
features extracted. Note that the number of features for
LCU is always fixed at Nc − 1.

5. Conclusion and Future Works

In this paper, we introduce the responsibility mixture
model and an ensemble of classifiers with local dimen-
sionality reduction for locally adaptive classification.
The responsibility mixture model ensures that the lo-
cal classifiers are placed near the potential decision
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boundary, where they will be most effective for clas-
sification purposes. It also avoids the situation where
only one class of samples is available for training the
local classifier. Parameters of the ensemble are then
learned by directly optimizing an estimate of the prob-
ability that the samples will be correctly classified with
a nearest neighbor classifier.

In the future, we will study algorithms similar to the
loc-boost (Meir et al., 2000) that can combine a set of
localized adaptive classifiers guided by the uncertainty
map. Moreover, the support vector machine (Osuna
et al., 1997) and many boosting/leveraging algorithms
(Meir et al., 2000) also consider the decision boundary
for discriminant analysis. While most of these were
originally proposed for binary classification, LCU is
naturally suitable for multi-class classification. The
underlying relationship between LCU and these algo-
rithms is an interesting direction for further research.
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