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Abstract

Eigendecomposition of kernel matrix is an in-
dispensable procedure in many learning and
vision tasks. However, the cubic complex-
ity O(N3) is impractical for large problem,
where N is the data size. In this paper,
we propose an efficient approach to solve the
eigendecomposition of the kernel matrix W .
The idea is to approximate W with W that is
composed of m2 constant blocks. The eigen-
vectors of W , which can be solved in O(m3)
time, is then used to recover the eigenvec-
tors of the original kernel matrix. The com-
plexity of our method is only O(mN + m3),
which scales more favorably than state-of-
the-art low rank approximation and sampling
based approaches (O(m2N + m3)), and the
approximation quality can be controlled con-
veniently. Our method demonstrates encour-
aging scaling behaviors in experiments of im-
age segmentation (by spectral clustering) and
kernel principal component analysis.

1. Introduction

Eigendecomposition of the kernel matrix plays an im-
portant role in many machine learning and vision prob-
lems. For example, in kernel principal component
analysis (KPCA) (Schölkopf et al., 1998), the eigen-
system of the kernel matrix is used to extract nonlinear
structures in the high-dimensional feature space. In
spectral clustering (Shi & Malik, 2000; Fowlkes et al.,
2004), the eigenvectors of the (normalized) Gram ma-
trix provide an approximate clustering solution. Many
manifold learning and embedding algorithms also use
eigendecomposition of an affinity matrix to capture the
low-dimensional structure of the input patterns.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

However, given a set of N points, the eigendecompo-
sition of the N × N kernel matrix scales as O(N3).
This may be prohibitive for large data sets in prac-
tice. To circumvent this problem, many methods often
make use of the rapidly decaying spectrum of the ker-
nel matrix (Williams & Seeger, 2000), with prominent
examples including the low-rank approximations and
sampling-based methods.

As its name suggests, a low-rank approximation is an
approximation of the form L = GG′, where G ∈ R

N×m

and the rank m is generally much smaller than N .
A well-known example is the incomplete Cholesky de-
composition (Bach & Jordan, 2002; Fine & Scheinberg,
2001) in linear algebra. Other sparse greedy kernel
methods, such as (Lawrence & Herbrich, 2003; Smola
& Bartlett, 2000), also compute similar approxima-
tions, and most of them scale as O(m2N).

Recently, there has been a lot of interest in sampling-
based approaches. For example, the Nyström method
(Baker, 1977), which selects a random subset of
columns to approximate the full kernel matrix, has
been used to speed up kernel machines (Williams &
Seeger, 2001; Lawrence & Herbrich, 2003). More so-
phisticated sampling approaches have also been pro-
posed along this line. In (Drineas & Mahoney, 2005),
the columns are chosen based on a nonuniform, data-
dependent probability distribution p. However, this
p is constructed based on the L2 norms of all the
columns in the kernel matrix, which is a relatively ex-
pensive operation. Ouimet and Bengio (2005) studies
a greedy sampling scheme based on the feature space
distance between a candidate example and the span of
previously chosen examples. This greedy scheme out-
performs the Nyström method with random sampling.
However, its complexity still scales as O(m2N).

In this paper, we propose an efficient approach to com-
pute the eigendecomposition of a large N × N kernel
(affinity) matrix W . The idea is to approximate W

by a matrix W that is composed of m2 constant sub-
matrices, where m ¿ N . This special structure allows
the eigendecomposition of W to be computed very ef-
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ficiently, which then serves as an approximate solution
to the eigendecomposition of the original W . The ap-
proximation quality can be controlled by the Frobenius
norm ‖W − W‖F . Moreover, it also allows the use of
Nyström formula (Williams & Seeger, 2001) to further
refine the approximate eigenvectors obtained.

The proposed approach has two desirable properties.
First, its complexity only scales as O(mN + m3).
This is more efficient than most existing methods,
whose complexities are at least O(m2N + m3). Sec-
ond, instead of picking a subset of rows/columns from
the kernel matrix, our approach computes the “rep-
resentative” rows/columns based on the structure of
the training data. These representatives are further
weighted by using information on the data distribu-
tion. Therefore, it is more powerful than sampling-
based approaches with uniform weighting. Experimen-
tally, our approach can afford the use of very few rep-
resentatives to maintain the eigen-structure of the ker-
nel matrix. For example, in one experiment involving
a 2, 000× 2, 000 kernel matrix computed on real-world
data, only 3 representatives are needed to produce a
faithful embedding.

The rest of the paper is organized as follows. In Sec-
tion 2, we show that matrices of the form W (i.e., com-
posed of m2 constant blocks, where m ¿ N) can be
eigendecomposed very efficiently in O(m3) time. This
lays the foundation for the scaling behavior of the pro-
posed approach. In Section 3, we show how the dif-
ference ‖W − W‖F between matrices W and W can
be used to bound the difference of their eigen-spectra
and eigenvectors. Now, the problem boils down to how
to construct a blockwise-constant matrix W such that
‖W − W‖F is minimized. In Section 4, we propose
two methods to optimize this objective, together with
some error analysis and complexity analysis. More-
over, the Nyström extension can also be used to fur-
ther refine the piecewise-constant eigenvectors of W .
Experimental results on using our approach for KPCA
and spectral clustering are presented in Section 5, and
the last section gives some concluding remarks.

2. Gram Matrix of Special Forms

In this Section, we consider a N × N matrix W with
blockwise-constant structure. To be more precise, W

is composed of m2 sub-matrices, each having the con-
stant value βij . The following shows an example:

W =




a a b b b

a a b b b

c c d d d

c c d d d

c c d d d


 . (1)

Here, β11 = a, β12 = b, β21 = c, β22 = d. Note that the
“quantization” in (1) is different from the commonly
used quantization procedures (Achlioptas & McSherry,
2001). Here, our quantization has a regular “block”
structure. This can also be interpreted as partitioning
the data set into m local clusters (S1, S2, . . . , Sm), and
then set the pairwise similarity between any point in
Si and any point in Sj at the constant value βij . In the
following, we shall see that such a block quantization
makes the eigendecomposition of W particularly easy.
In comparison, other quantization schemes do not have
this advantage1.

Let ni be the number of samples in the ith cluster
(i = 1, 2, . . . ,m). For example, in (1), n1 = 2, and
n2 = 3. We now show that the eigen-system of W can
be obtained efficiently. First, the eigen-system of W

can be written in scalar form as N equations:

N∑

j=1

W ijφj = λφi, i = 1, 2, . . . , N, (2)

where φ is the N × 1 eigenvector of W . For the first
n1 equations (i = 1, 2, . . . , n1), their left-hand-sides
are all the same. Therefore, the corresponding right-
hand-sides, φis, are also the same. Similarly, the next
n2 φis are also the same (i = n1+1, n1+2, . . . , n1+n2),
and so on. Thus, it is easy to see that the eigen-system
Wφ = λφ has only m independent equations

m∑

j=1

njβij φ̃j = λφ̃i, i = 1, 2, . . . ,m, (3)

or, in matrix form, W̃ φ̃ = λφ̃, where W̃ is a m × m

matrix with elements W̃ij = βijnj , and φ̃ is the m× 1

eigenvector of W̃ . In summary, the eigenvectors of
the N ×N blockwise-constant matrix W can be easily
obtained by first solving the eigendecomposition of the
m × m matrix W̃ , and then extending its eigenvector
from φ̃ (m×1) to φ (N×1) by repeating the kth entries

of φ̃ a total of nk times (k = 1, 2, . . . ,m). Note that

the eigenvalues of W and W̃ are exactly the same.

3. Quality of the Approximation

In this Section, we give some background on the ap-
proximation of matrices and their associated eigen-
systems.

1In principle, the columns and rows of W may have
to be permuted before it can be quantized as “blocks”.
However, this operation can be avoided in practice by re-
arranging the “sample points” instead.
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3.1. Bounding the Difference in Eigenvalues

From the perturbation theory of matrices, it is known
that the size of the difference between two matrices can
be used to bound the difference between their singu-
lar value spectra (Bhatia, 1997). In particular, given
two matrices A,E ∈ R

m×n, let σk(A) denote the kth
singular value of A, then

max
1≤t≤n

|σt(A + E) − σt(A)| ≤ ‖E‖2,

∑

k=1

(σk(A + E) − σk(A))
2 ≤ ‖E‖2

F . (4)

(4) is also known as the Hoffman-Wielandt inequality.

3.2. Bounding the Difference in Eigenvectors

Besides the eigenvalues, the eigenvectors are also of
great importance in tasks such as KPCA and spectral
clustering. In this Section, we derive an error bound
on the eigenvectors using the Frobenius norm of the
difference matrix ‖E‖F .

Denote the original Gram matrix and its blockwise-
constant approximation by W and W , respectively.
Let their eigen-systems be Wµ = αµ and Wν = βν,
where µ (or ν) is an (normalized) eigenvector of W (or
W ). In the following, we use ‖µ − ν‖ to measure how
well the eigenvectors of W approximate those of W .
Let E = W − W , then

‖µ − ν‖ =

∥∥∥∥
1

α
Wµ − 1

β
Wν

∥∥∥∥

=

∥∥∥∥
1

α
Wµ − 1

β
(W − E)ν

∥∥∥∥

=

∥∥∥∥W

(
1

α
µ − 1

β
ν

)
+

1

β
Eν

∥∥∥∥ . (5)

Note that 1

αµ − 1

β ν =
(

1

α − 1

β

)
µ + 1

β (µ − ν). Hence,

(5) can be written as

‖µ − ν‖ =

∥∥∥∥W

(
1

α
− 1

β

)
µ +

1

β
W (µ − ν) +

1

β
Eν

∥∥∥∥

≤ 1

|β| ‖W (µ − ν)‖ +

(∣∣∣∣
1

α
− 1

β

∣∣∣∣
)
‖Wµ‖

+
1

|β| ‖Eν‖. (6)

As ‖µ‖ = ‖ν‖ = 1, therefore ‖Wµ‖ ≤ ‖W‖2 and
‖Eν‖ ≤ ‖E‖2. Moreover, ‖W (µ − ν)‖ ≤ ‖W‖2 · ‖µ −
ν‖ ≤ ‖W‖2(‖µ‖+‖ν‖) = 2‖W‖2. Plugging these back
into (6), we obtain

‖µ − ν‖ ≤ 2

|β| ‖W‖2 +

(∣∣∣∣
1

α
− 1

β

∣∣∣∣
)
‖W‖2 +

1

|β| ‖E‖2.

For positive eigenvalues α and β, we have

‖µ − ν‖ ≤





(
1

α + 1

β

)
‖W‖2 + 1

β ‖E‖2, α ≤ β,(
3

β − 1

α

)
‖W‖2 + 1

β ‖E‖2, α > β.
(7)

Note that α and ‖W‖2 are fixed constants, and ‖E‖2 is
bounded by ‖E‖F . Therefore the error ‖µ−ν‖ is con-
trolled by the eigenvalue β and the Frobenius norm
of the difference matrix E. This suggests: 1) The
larger the β, the smaller is the approximation error.
In other words, the leading eigenvectors of W have a
better approximation than its trailing eigenvectors. 2)
By minimizing ‖E‖F , the quality of the approximate
eigenvectors can be improved.

4. The Proposed Method

The basic idea of our approach is described as follows.
In order to compute the eigendecomposition of the ker-
nel matrix W , we first find a blockwise-constant ma-
trix W to approximate W . The approximation crite-
ria is ‖W − W‖F , which (as shown in Section 3) can
be used to bound the difference between the eigen-
systems of the two matrices. At the same time, the
blockwise-constant structure of W makes its eigende-
composition particularly easy. Therefore, we can also
obtain the eigensystem of W easily.

Let f be the objective ‖W − W‖F , then

f =

N∑

i,j=1

(
Wij − W ij

)2

=

m∑

i,j=1

∑

xp∈Si,xq∈Sj

(Wpq − βij)
2
.

It can be minimized directly by setting ∂f
∂βij

= 0 to

obtain

βij =
1

ninj

∑

xp∈Si,xq∈Sj

Wpq =
1

ninj

∑

p,q

K(xp, xq). (8)

However, this takes O(N2) time for computing βij ’s.

In the following, we employ a different strategy. As dis-
cussed in Section 2, the blockwise-constant structure
of W implies that the data set is divided into clus-
ters. The constant βij can be equivalently expressed
as βij = K(ti, tj), where ti’s are “representatives” of
the local clusters. We will first analyze how the data
partitioning step, i.e., configuration of the local clus-
ters, affects the approximation error ‖W −W‖F (Sec-
tion 4.1). Then, we propose two methods to obtain
the cluster representatives (Sections 4.2 and 4.3).

4.1. Effect of Partitioning on the

Approximation Error

To simplify notations, let f =
∑m

i=1

∑m
j=1

fij , where
fij denotes the component of f associated with the
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local clusters Si and Sj . Suppose the use of stationary

kernels of the form K(x, y) = k
(

‖x−y‖2

σ2

)
. Denote

dpq = ‖xp − xq‖, and Dij = ‖ti − tj‖. Then, by the
mean value theorem,

|K(xp, xq)−K(ti, tj)|=
∣∣∣∣∣k(

d2

pq

σ2
)−k(

D2

ij

σ2
)

∣∣∣∣∣ ≤ ξ

∣∣d2

pq − D2

ij

∣∣
σ2

,

where ξ = max
x

|k′(x)|. Without loss of generality, sup-

pose that the local cluster Si is enclosed by a minimum
enclosing ball of radius ri. We are interested in the
case where the representatives ti’s also fall inside the
enclosing ball of the local clusters Si’s. Then, it is
easy to see that |dpq + Dij | ≤ 2(Dij + ri + rj) and
|dpq − Dij | ≤ 2(ri + rj). Consequently,

fij =
∑

p∈Si,q∈Sj

(K(xp, xq) − K(ti, tj))
2

≤ ξ2
∑

p,q

16(Dij + ri + rj)
2(ri + rj)

2

σ4

≤ ξ2ninj
16(2R)2(Dij + 2R)2

σ4
,

where R = max
i

ri. The overall objective function can

be bounded by

m∑

i,j=1

fij ≤ ξ2

m∑

i=1

m∑

j=1

ninj
64R2(Dij + 2R)2

σ4

= 64N2ξ2
R2

σ4

(
D2 + 4R2 + 4DR

)
, (9)

where D= 1

N2

∑
ij ninjDij and D2 = 1

N2

∑
ij ninjD

2

ij

can be regarded as proxies for the average pairwise
distance and average squared pairwise distance of the
training data. Note that both D and D2 are fixed
given the data. Therefore, to obtain a low error, we
should partition the data set into compact local clus-
ters such that every point is close to its cluster center
and the value of R is small. In the extreme case where
every point is a cluster, all the enclosing balls have zero
radius, and the error f is zero. Note that the larger
the kernel parameter σ, the lower is the error.

4.2. Sequential Sampling

As discussed in Section 4.1, we are interested in effi-
cient algorithms that partition the data into local com-
pact clusters. Popular methods include vector quan-
tization (VQ) and spatial data structures like the kd-
tree (Moore, 1998). However, VQ is sensitive to the
initial choice of code vectors, while the efficiency of
spatial data structures degrades rapidly as the input
dimension increases. Here, we propose a simple but

very efficient procedure, called sequential sampling , to
partition the data and obtain the cluster representa-
tives ti’s:

1: Randomly select a sample as t1 and initialize the
cluster center set C = {t1}. Then, for i =
1, 2, . . . , N , do the following.

2: Calculate the distance between xi and each tj in
C. Once we have a tj such that ‖xi − tj‖ ≤ r,
assign xi to Sj , let i = i + 1, and go to the next
iteration.

3: If ‖xi − tj‖ > r,∀tj ∈ C, add xi to C as a new
cluster center and assign xi to this new cluster.
Let i = i + 1 and go to the next iteration.

4: On termination, count the number of samples,
nj , in Sj , and update each tj ∈ C as tj =
1

nj

∑
xi∈Sj

xi.

The complexity of sequential sampling is only O(mN),
as each data point is related to at most m centers, and
the algorithm requires only one pass of the data. By
using a hierarchical scheme (Feder & Greene, 1988),
this can be further reduced to N log m. At the same
time, the volume of the resultant local clusters will
never exceed the hypercube of side length 2r, where
r is the partitioning threshold. Combining this with
the error bound in (9), we can have a guidance on the
choice of r for a certain level of accuracy.

4.3. Gradient Optimization

From optimization point of view, note that the ap-
proximation error f = ‖W −W‖F can also be written
as a function of the cluster representatives ti’s,

f =

m∑

i,j=1

∑

p∈Si,q∈Sj

(K(xp, xq) − K(ti, tj))
2

=
m∑

i,j=1

(
∑

p,q

K2(xp, xq) +
∑

p,q

K2(ti, tj)

−2
∑

p,q

K(xp, xq)K(ti, tj)

)
(10)

=

m∑

i,j=1

(
Ωij + AijK

2(ti, tj) − 2BijK(ti, tj)
)
,

where Ωij =
∑

p,q K2(xp, xq) is constant with
regard to ti’s, Aij = |Si| · |Sj |, and Bij =∑

p∈Si,q∈Sj
K(xp, xq). Therefore, standard optimiza-

tion techniques, such as gradient descent, can be used
to find the local optima of f . Suppose the use of the

Gaussian kernel K(x) = exp
(
− x2

2σ2

)
, then by setting

the derivative of f with regard to tk (k = 1, 2, ...,m)
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to zero, we have the iteration formula

tk =

∑
j 6=k tj

(
Bkje

−
(tk−tj)2

2σ2 − Akje
−

(tk−tj)2

σ2

)

∑
j 6=k Bkje

−
(tk−tj)2

2σ2 − Akje
−

(tk−tj)2

σ2

. (11)

The gradient optimization procedure can be used to
further improve the cluster representatives as follows:

1: Initialize the cluster centers tis by using the se-
quential sampling procedure in Section 4.2.

2: Apply the update equation in (11) to the cluster
centers/representatives.

3: Re-partition the data set by allocating every point
to its closest center. Then compute the mean of
each cluster as their representatives.

4: Go to step 2 until convergence.

There are several practical issues here. First, a direct
computation of the Bik’s is expensive. This can be
avoided by making use of the partition in sequential
sampling (details are in the Appendix). Second, care
should be taken during the iterations, and the update
procedure should be terminated before the denomina-
tor of (11) is close to zero. In our experiments, the
number of iterations required is very small. Third,
when the number of partitions m is reasonably large
(say, larger than 0.05N in our experiments), the im-
provement brought by the gradient method is limited.
In other words, the gradient method is particularly
useful when the data partitioning is coarse.

4.4. Refining the Eigenvectors

Recall that the eigenvectors of W are piecewise-
constant, i.e., there are only m different values in the
N × 1 eigenvector φ. These m values are associated
with the m cluster representatives ti’s. For all the xi’s
in the same cluster, their φi’s are also the same. This
means we can use the Nyström extension to further
refine the piecewise-constant eigenvectors φk’s as:

φk(x) =
1

Nλk

m∑

i=1

niφikK(x, ti), (12)

where the local cluster sizes (ni’s) are very important
weighting factors that carry distribution information.

The refinement procedure in (12) can further improve
the accuracy of the obtained eigenvectors. However,
empirical experience on clustering and image segmen-
tation tasks shows that the piecewise-constant eigen-
vectors obtained are already good enough. Thus, the
O(mN) operation in (12) can be avoided, making
our algorithm much more efficient than the Nyström
method. On the other hand, for the KPCA experiment

in Section 5, since we are directly measuring the quan-
titative error of the obtained eigenvectors, we will first
use the refinement procedure (12) and then conduct
our evaluation.

4.5. Complexity Analysis

Partitioning the data into a number of m local clus-
ters takes O(log mN) time for the sequential sampling
procedure. If gradient optimization is used to fur-
ther refine the cluster representatives, the complexity
is O(m2) by using the approximate procedure in the
Appendix. With the cluster representatives, entries of
W̃ can be computed in O(m2) time, and decomposing

the m × m matrix W̃ takes O(m3) time. Finally, us-
ing the Nyström method to reconstruct the complete
eigenvectors (and thus the embedding) of the training
data takes O(mN) time.

Data-dependent kernels often involve additive nor-
malization (e.g., for KPCA), KA(x, y) = K(x, y) −
Eu[K(u, y)] − Ev[K(x, v)] + Euv[K(u, v)], or di-
visive normalization (e.g., for spectral clustering)
KD(x, y) = K(x, y)(Eu[K(u, y)]Ev[K(x, v)])−1/2. It
is easy to see that the blockwise-constant structure
of W allows us to (approximately) compute both of
them in O(m2) time. So the overall complexity is
O(m2 + log mN + m3) = O(mN + m3). Note that for
most existing methods, selection of the representatives
already takes O(m2N) time. Moreover, the memory
requirement of our approach is only O(mN) because
we do not need to store the full Gram matrix.

5. Experiments

In this Section, we study the efficiency of the proposed
method in solving large eigen-systems by performing
experiments on both kernel principal component anal-
ysis and spectral clustering. Implementations are in
VC7.0, and all experiments are run on a 2.26GHz
Pentium–3 PC.

5.1. Kernel Principal Component Analysis

In this Section, we perform KPCA experiments on the
digits 0 and 1 from the MNIST data set2. Each image
is of size 28 × 28. We use 2,000 images for training
and another 2,000 for testing. The Gaussian kernel
is used. For our method, we use sequential sampling
with threshold r =

√
140, which divides the data set

into m = 3 clusters. Gradient optimization is then
used to further improve the cluster centers.

Figures 1(a) and 1(b) show the KPCA embedding

2http://yann.lecun.com/exdb/mnist/
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results using the 3 leading eigenvectors, while Fig-
ures 1(c) and 1(d) show our results using the refined
eigenvectors in (12). As can be seen, by using only
three representatives, our method obtains comparable
result as that of KPCA. In other words, the eigen-
vectors of the 2, 000 × 2, 000 kernel matrix has been
well-approximated by those of a 3 × 3 matrix. This
demonstrates the effectiveness of our approach in ex-
tracting the eigen-structures of large kernel matrices
with highly compact models.
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(a) KPCA (PCs 1&2).
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(b) KPCA (PCs 2&3).
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Figure 1. Embedding of the digits 0 and 1 obtained by
KPCA (using the three leading eigenvectors) and our
method (using only 3 representatives).

Following (Ouimet & Bengio, 2005), we perform a
quantitative comparison of the embedding results on
the 3 leading eigenvectors. We align the obtained em-
bedding (i.e., coordinates of the data points) to the
KPCA embedding through linear regression, and then
report the mean squared error between them. Our
method (without using gradient optimization) is com-
pared to the Nyström algorithm with different ways
of selecting the samples: 1) random subset3; 2) using
sequential sampling; 3) using VQ. Both the in-sample
error (embedding of the training patterns) and out-
of-sample error (embedding of the test patterns) are
shown.

Figure 2 shows that our embedding results are always
superior, and the error drops rapidly as the number
of representatives used increases. Another interesting
observation is that the direct use of sequential sam-
pling or VQ in the Nyström algorithm does not help,
as the sampling procedure misrepresents the data dis-

3Experiments with different random subsets are re-
peated ten times, and the average performance reported.
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(a) In-sample error.
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(b) Out-of-sample error.

Figure 2. Embedding error (using the 3 leading eigenvec-
tors) versus the number of representatives used.

tribution. On the other hand, the weighting scheme in
(3) and (12) plays a central role in representing the in-
put density and rectifies this problem when sampling
procedures are used with our method.

Figure 3 compares the approximation errors of the
eigenvectors obtained (‖φ−φ‖). Again, our method is
more accurate than the others. Moreover, as discussed
in Section 3.2, the leading eigenvectors have a better
approximation than the trailing ones.

Table 1 shows the total time taken by our method
on using different partitioning thresholds r in the se-
quential sampling procedure. The number of represen-
tatives/clusters (m) obtained is also shown. Empiri-
cally, good performance can usually be obtained when
m is around 50. While standard KPCA takes 87.45
seconds, our method can be hundreds of times faster.
Moreover, in general, the larger the training set, the
higher is the speedup.

5.2. Spectral Clustering

In this experiment, we perform image segmentation
using the normalized cuts (Shi & Malik, 2000), which
is one of the most widely used spectral clustering tech-
niques. In order to use both local coherence and global
similarity information, we use the RGB colors concate-
nated with the (x, y) pixel positions as features. All
the features are normalized to [0, 255], i.e., we assume
that the color and spatial features take equal weight.
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(a) 1st eigenvector.
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(b) 2nd eigenvector.
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(c) 3rd eigenvector.

Figure 3. Approximation errors of the three leading eigenvectors.

The Gaussian kernel is adopted, with bandwidth σ

varying in [20, 40], and the partitioning threshold is
chosen as r = 25.

Segmentation results on some 481×321 images4 and a
large 1024× 768 image5 are shown in Figures 4 and 5.
The time consumption is shown in Table 2. As can be
seen, our method produces competitive segmentation
results with very high speed. In particular, the seg-
mentation of the 1024× 768 image takes only about 4
seconds, while standard spectral clustering algorithms
cannot be run with this large data set on our machine.

Figure 4. Image segmentation results obtained by spectral
clustering with the proposed method.

4These images are taken from the Berkeley image data
set (http://www.cs.berkeley.edu/projects/vision/grouping).

5http://www.freenaturepictures.com

Table 2. Total time (in seconds) and number of represen-
tatives (m) in segmentation tasks.

hill man house flower

m 114 175 162 240

time 0.45 0.66 0.91 4.27

6. Conclusion

In this paper, we propose an efficient approach for
eigendecomposition of kernel matrices. It scales more
favorably than most existing low-rank approxima-
tions and sampling-based approaches. Moreover, the
method greatly improves the convergence behavior of
the Nyström method by introducing density-based co-
efficients as weighting factors for the data representa-
tives. While it is usually difficult to make use of the
distributional information in the Nyström method, our
method provides an effective solution to this problem.
Experiments demonstrate the success of our method in
extracting the eigen-structures of large kernel matrices
using very few representatives.

(a) Original image. (b) Result.

Figure 5. Segmentation result on an 1, 024 × 768 image.

Our approach can be easily extended to the multi-
scale framework (Cour et al., 2005). The sequential
sampling procedure (which is implemented hierarchi-
cally) can naturally follow the multiscale methodolo-
gies when working in the concatenated spatial-range
domain. Moreover, it will be interesting to compare
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Table 1. Total time (in seconds) and number of representatives m obtained at different partitioning thresholds (r) used
in the sequential sampling procedure.

r2
140 120 110 100 90 80 70 65 60 56 52 48 44 40 36

m 3 6 10 16 19 27 47 68 87 116 150 175 226 293 382

time 0.04 0.06 0.09 0.14 0.17 0.26 0.48 0.72 0.95 1.32 1.82 2.31 3.57 5.35 8.55

the matrix approximation obtained with other low-
rank approximation techniques.
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Appendix: Computation of Bij

Note that the data set has been divided into clusters
Si’s by sequential sampling (with threshold r). For
each cluster, we further apply the sequential sampling
procedure with a smaller threshold r′ < r. Suppose
that each cluster Si is divided into ki smaller groups,
Qi1, Qi2, . . . , Qiki

, with centers oi1, oi2, . . . , oiki
, and

group size li1, li2, . . . , liki
. Then Bij can be approx-

imated by Bij =
∑

oia∈Si

∑
ojb∈Sj

lialjbK (oia, ojb).
The complexity for computing Bij ’s becomes
O((m′)2), where m′ =

∑m
i=1

ki. Note that this
partition is just a deeper hierarchy of the original
partition obtained. So, m < m′ ¿ N , and m′ is
roughly a constant times larger than m. Computing
Bij ’s then also takes O(m2) time.
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