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Abstract

The core vector machine (CVM) is a recent ap-
proach for scaling up kernel methods based on
the notion of minimum enclosing ball (MEB).
Though conceptually simple, an efficient imple-
mentation still requires a sophisticated numerical
solver. In this paper, we introduce the enclosing
ball (EB) problem where the ball’s radius is fixed
and thus does not have to be minimized. We de-
velop efficient(1 + ¢)-approximation algorithms
that are simple to implement and do not require
any numerical solver. For the Gaussian kernel
in particular, a suitable choice of this (fixed) ra-
dius is easy to determine, and the center obtained
from the (L + €)-approximation of this EB prob-
lem is close to the center of the corresponding
MEB. Experimental results show that the pro-
posed algorithm has accuracies comparable to
the other large-scale SVM implementations, but
can handle very large data sets and is even faster
than the CVM in general.

tionally expensive even on medium-sized data sets. Hence,
in practical applications, it is imperative to use more so-
phisticated techniques and a careful implementation.

A powerful approach to scale up SVM training is by using
decomposition methods (Osuna et al., 1997), which break a
large QP problem into a series of manageable QP subprob-
lems. In recent years, various other scale-up strategies ha
been proposed. For example, Vishwanathan et al. (2003),
in their SimpleSVM algorithm, use greedy working set se-
lection strategies to identify support vectors for incremaé
update of the kernel sub-matrix. Bordes et al. (2005) use
online SVM learning together with active example selec-
tion in their LASVM algorithm. Sonnenburg et al. (2006)
exploit special data structures for fast computations ef th
kernel in their chunking algorithm. Moreover, instead of
maximizing the dual problem as is usually done, Chapelle
(2007) propose to directly minimize the primal problem.

In this paper, we focus on another recent algorithm called
the core vector machine (CVM) (Tsang et al., 2005a),
which combines techniques from computational geometry
with SVM training. By reformulating SVM’s QP as a min-
imum enclosing ball (MEB) problem, they then apply an
efficient(1 4 ¢) approximation algorithm (based on the so-

1. Introduction called core-sets) to obtain a close-to-optimal SVM solu-

Large margin methods have been highly successful in siON- As pointed out in (Har-Peled et al., 2007; Tsang &
pervised learing. In particular, support vector machined<Wok, 2007), these core-set algorithms are similar to the
(SVM) have obtained outstanding performance in manycuttlng-plane algorlthm used in (Joachims, 2006) and the
machine learning problems such as classification, regre£0lUmn generation method commonly used in large-scale
sion, and ranking. Traditionally, SVM training is formu- linear programming. EXperl_mentaIIy,_the_ CVM has demon-
lated as a quadratic programming (QP) problem, which jStrated good performance in cIaSS|_f|cat|0n (Asharaf et al.,
then optimized by some numerical solver. However, a naivé006; Tsang etal., 2005a), regression (Tsang et al., 2005b)

implementation take®(n?) time andO (n?) space, where aﬂd semi.-supervise_d learning (Tsang & Kwok, 2007). Be-
n is the number of training examples, and is thus computaSides, this connection between SVM and MEB has also

been used for one-class classification with arbitrary Breg-
Appearing inProceedings of the/ ‘" International Conference man divergence (Nock & Nielsen, 2005), support vector
on Machine LearningCorvallis, OR, 2007. Copyright 2007 by ordinal regression (Shevade & Chu, 2006), and agnostic
the author(s)/owner(s). learning in the presence of outliers (Har-Peled et al., 2007
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Simpler Core Vector Machines with Enclosing Balls

However, though conceptually simple, each iteration of thds then-dimensional vector with all zeroes except that the
CVM algorithm involves a QP subproblem defined on theith position is equal to one), and the corresponding trans-
core-set. Thus, this again requires the use of a sophisticat formed kernel is (Tsang et al., 2005a)

numerical solver for efficient implementation. Moreover, .

for data sets that are very large or complicated, the size of kij = yiy;(ki; +1) + 655/ C. 3)

the core-set can also be large and so this internal optimiza-

tion problem can become computationally expensive. After transforming the QP to a MEB problem, the CVM
uses an iterativél + ¢)-approximation algorithm to obtain

a near-optimal solution (Algorithm 1). Its basic idea is to
maintain a core-sef;, which is a subset of, and its MEB
B(cq, R;) at each iteratiort. The ball B(c, R;) is ex-

Recall that the CVM is closely related to thenimumen-
closing ball, and thus some optimization appears inewdtabl
In this paper, we propose to solve instead the simgter

closing ball(EB) problem, where the radius of the ball is . . : . ;
. i i S _ panded by including a point falling outsid¥c;, (1+¢) R;)
fixed. We propose efficientl + ¢)-approximation algo into the core-set. This is repeated until all the pointsin

rithms that are simple to implement and do not require nu- o
merical solvers. Moreover, with a convenient choice of the2"® COVered bs(ce, (1-+¢) ;). After obtaining ar(1+¢)-

radius, it can be shown that the center obtained from thgglproxmate_ S‘,[OI(;Jt'qg(fh’ R%\%;h? MEB,.the gf'mg' vag-
(1 + e)-approximation of this EB problem is close to the aples associated wi € (i.e., weight biasb, an

center of the corresponding MEB. Thus, the approximateSIaCk errors) can be recovered from

SVM solution obtained is also close to the truly optimal c=[w b \@5/}/’ 4)
SVM solution, especially asis typically small in practice.

Experimental results show that the proposed algorithm haghereC is the regularization parameter in the SVM.
accuracies comparable to the other large-scale SVM imple-

mentations, but can handle very large data sets and is eveXigorithm 1 CVM algorithm.

faster than the CVM in general. 1: Initialize Sy = {p(z0)}, co = ¢(z0) and Ry = 0.

The rest of this paper is organized as follows. Section 2 2: Terminate if nop(z) falls outsideB(c;, (1 + €) ;).
first gives a short introduction to the CVM. Section 3 then ~ Otherwise, letp(z;) be such a point. Set;,; = S; U

describes the proposéhll vector machingBVM) algo- {p(z)}-
rithm. Experimental results are presented in Section 4, and3: Find MEB(S;.+1)
the last section gives some concluding remarks. 4: Increment by 1 and go back to Step 2.

2. Core Vector Machine 3. Ball Vector Machine (BVM)

The CVM is tightly coupled to the MEB problem. Here,
instead of finding theninimumenclosing ball, we consider
the simpler problem of finding an enclosing ball (EB) with
its radius given in advance.

(¢", R") = argmin B* : [lo — o(x;)|* < B* ¥i. (1)  Definition 1. (Enclosing ball EB(S, 1)) Given the radius

’ r > R*, find a ball B(c, r) that encloses all the points in

Its dual is the QPmaxy, >0 > i Nikii—>_5 oy Midjkij 0 S,ie., |le — o(z:)||2 < r2 for all ¢(z;)'sin S.
Yici A = 1, wherek;; = k(xi,x;) = ¢(x;) (%)
Conversely, any QP of this form can be regarded as a MEBN Section 3.1, we first propose &h + ¢)-approximation

Let ¢ be the feature map corresponding to kerneGiven
a set ofp-mapped pointsS, = {¢(x1),...,¢(xn)}, its
MEB, denotedB(c*, R*) with centerc* and radiusk*, is
the smallest ball that encloses all these points:

problem. In particular, wheh satisfie$ algorithm for solving the EB problem, which is then im-
proved by a more efficient, multi-scale version in Sec-
k(x,x) = &, (2)  tion 3.2. The radius of the EB can also be reduced automat-

a constant, this form includes the QPs associated with man ally as sh,own i_n Section 3.3. I_Zinally, the iSSU?S of how 1o
kernel methods. For example, the two-class L2-SVM usin et the EBS radius and how this EB p.roblem_ is related to
kernel k can be transformed to a MEB problem with the he solving of the SVM are addressed in Section 3.4.

feature mapp((x;,v:)) = [vip(xi), vi, —=e€’]’ (wheree;

Ve 3.1.(1 + ¢)-Approximation Algorithm for EB( S, )

the Clr;rgltweexf,equel, we will simply write5,, asS if  is clear from o proposed iterative algorithm is shown in Algorithm 2.

2Note that condition (2) is satisfied by many kernels, including 't follows from a similar MEB algorithm in (Panigrahy,

the commonly used isotropic kernel (e.g., Gaussian kernel) and004), wherep(z;) in Step 2 is further required to be the
any normalized kernel. point furthest fromB(c;, r); while here it only has to be
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outsideB(c;, (1 + €)r)). The ball's center is updated such a weaker result in the proof of Theorem 1 in (Panigrahy,
that the new ball just touches(z;). The whole procedure 2004). For completeness and later reference in the sequel,
is repeated until no point falls outside(c,1, (1 + ¢)r).  the proof is shown here.

Obviously, this produces &f + €)-approximation. Proposition 1. Algorithm 2 obtains an (1 + e)-
approximation of EBS, r) in O(1/¢?) iterations.

Algorithm 2 (1+-¢)-approximation algorithm for EES, r).

1: Initialize ¢y = ¢(zo). Proof. The update ot; is shown in Figure 1. From (6),
2: Terminate if nap(z) falls outsideB(c;, (1+¢€)r). Oth-  c¢+1 must be along; andy(z,). As [|ci11 — ¢(z¢)|| = 7,
erwise, lety(z;) be such a point. we havel/c; — ci+1]| > er. Denote||c; — c*|| by d;. As
3: Find the smallest update to the center such that/c* — o(z)|| < R* < r, Zc*ci41c, is Obtuse, and so
B(Ct-i-lvr) tOUCheSp(Zt). 5? > 5t2+1 + ||Ct — Ct+1H2 > 5t2+1 + 627"2, or
4: Increment by 1 and go back to Step 2. 5t2+1 <22, )
3.1.1. EFICIENT UPDATING OF THEBALL ESTIMATE In other words 7 decreases by at least-? in each iter-

_ _ ation. Thus, the algorithm terminates in a finite number
Unlike the CVM, the update in Step 3 can be performed(say, 7") of iterations. Summing (7) over tHg iterations,
efficiently without the use of any numerical optimization \ye haves2. < 62 — Te2r2 and so

solver. Mathematically, we want to find thesuch that 5 o ) )
ming |lc — ¢;||2 : 2 > |lc — ¢(z)]|2. The Lagrangian Tetr® < o5 <. (8)
is £ = lle —c/[|> — a(r? — |lc — @(z)[?), wherea'is  Thus.T < 1/e2. 0
the Lagrangian multiplier. On setting its derivative toaer
and substituting the result back to the optimality conditio

- Moreover, it can be shown
llc — o(z¢)]|? = 2, we obtaina = 1/3; — 1, where

that Algorithm 2 only takes
O(1/€*) time andO(1/€?)

Be=r/ller =zl (2 0). ©) space (not including the

Thus, the new center is O(n) space for storing the
training patterns). These

ciy1 = o(z¢) + Bi(cs — o(z4)), (6)  are thusindependent of the

number of training exam-
which is a convex combination af, and ¢(z;). Conse- ples for a fixede, and can  Figyre 1.Update ofc, at the
quently, for anyt > 0, ¢, is always a combination af, also be seen to be lower h iteration.
andS; = {¢(z;)}!_,. Note that this step is also similar to than those of the CVM.
the update rule of the passive-aggressive algorithm (Cram-

mer et al., 2006) used for online learning. 3.2. Faster, Multi-Scale EBS, ) Approximation

3.1.2. EEFICIENT DISTANCE COMPUTATIONS If the furthest point were used &gz, ) in Step 2 of Algo-
rithm 2, a tighter analysis in (Panigrahy, 2004) shows that
Algorithm 2 converges i (1/¢), rather tharO(1/¢?), it-
erations. However, computing such a point takés|S;|)
time and so is computationally expensive for large

After the update, Step 2 in the next iteration requires com
puting the distance betwean.; and any patterrp(z).
This can also be done efficiently. Note that

leeri]l® = 1Biee + (1 = By) (2| In this section, we propose a faster version of Algorithm 2
= Billedll® + (1 = Bo)lle(z)]|? + (67 = By)||c: — ¢(z)]|?, that still only requiresp(z;) to be any point lying outside

B(cy, (1 + €)r). Assume thag=! < e = 2= for some
and so can be computed ifi(|S;+1|) time by caching positive integerM. The idea is that instead of using this
[lc:||? in the last iteration. Moreover, from (6), the expan- smalle from the very beginning, we start with a much larger
sion coefficients o€, in terms of thep(z;)'s can also be ¢ = 271, After an(1 + ¢')-approximation of EBS, r) has
computed inO(|S;+1]) time. Hence||c,+1 — ¢(z)| (for  been obtained by Algorithm 2/ is reduced by half and the
anyz) can be computed i®(|S;41]|) time. process repeated until = ¢ (Algorithm 3).

3.1.3. ®ONVERGENCE Next, we first show the following proposition:

Proposition 2. Let B(&,(1 + €)r) be any ( + ¢)-

As mentioned in Section 3.1, Algorithm 2 is modified from approximation of EES, r). then

the MEB algorithm in (Panigrahy, 2004) by relaxing the

requirement thap(z; ) in Step 2 has to be the furthest point. & —c*| r
Despite this, convergence of Algorithm 2 still follows from = (1 + ﬁ) ((1 +te) o~ 1)-

©)
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Algorithm 3 Multi-scale (L + ¢)-approximation algorithm holds forr = R*. Nevertheless, it is obvious that Algo-

for EB(S, 7). rithm 3 always converges (as takes finite values and each
1: Initialize ces, = ©(zo). iteration of Algorithm 2 converges). We conjecture that for
2: Form = 1to M do r > R*, it converges irO(1/¢) to O(1/€?) iterations. We
3: Sete,, = 27™. Find (1 + €,,)-approximation of leave aformal analysis to a future occasion.
EB(S,r) using Algorithm 2, withcgg,, , as warm

start. 3.3. Obtaining a Smaller Enclosing Ball

With an initial », we show in this section how a smaller EB

_ o can be obtained. The machinery is similar to that used in
Proof. Assumec* # ¢ (otherwise, (9) is trivial). LetH (Crammer et al., 2006). First, define= \/W
be the halfspace passing throughthat is perpendicular  anq rewrite the distance constraint in the MEB problem (1)
to the line joiningc* and & but not containingé. Us- as|lc — o(z)|2 + (> — (R*)?) < 2. This can then be
ing Lemma 2 in (Kumar et al., 2003), there is at leastggen as an E(B?,r) problem||(:_— 5(z)||> < 72, with
a point o(z) in H such that its distance te* is R*. g _ {(3(2:)} = {[p(z:)" 0} and centek = [(? d'. After
Letd = |[& — c*|. Using cosine law|[¢ — ¢(z)[| > jnitializing ¢y = [c), co]’, wherecy = (zo) for some
V(R*)2+6%2=R"\/1+ %. AsB(&,(1+¢e)r)isan  ¢(zg) € S andey = r, either Algorithm 2 or 3 can be used
(1 + €)-approximation, the distance betwearand every to0 obtain an { + e)-approximation of this EB.

- 5
p(zi) is < (1 + €)r. Also, = < 1. Thus,(1+ €)r > \when it terminates at, say, théh iteration, all the points

|€¢ — ¢(z)] > R* (1 + %) and so (9). O are insideB(¢r, (1 + ¢)r). In other words, ||c;y —
©0(z)]]? < (1 + €)*r? — & for all ¢(z;)’s. Note, on the
other hand, that the original approximate EB problem only
guaranteegicr — o(z;)]|? < (1 + €)*r? on termination.
As ¢ > 0, we may now obtain a smaller ball of radius

In the special case where= R* (i.e., the radius of the
MEB is known in advance), (9) reduces to

" =+/(1+€)?r? — 2. Indeed, if this”’ < r, we can re-
[er —c*| < R (1 + \/§> €. (10)  peat the procedure and thus find an even smalléSEB);
otherwise, we should have< r’ or ¢ < (2¢ + ¢*)r? and
Moreover, on using (4), we have we stop. The whole procedure is shown in Algorithm 4.

ler —c*||? =|wr—w*||*+ (br —b*)+C||€x—£€"|*. (11)  Algorithm 4 Obtaining a smaller enclosing ball.

_ _ _ 1: Initialize ¢y = [c{, co)’ wherecy = ¢(zo) andeg = .
On using (11) andx in (2), the difference between 5. ygse Algorithm 2 or 3 to obtaidB (ér, (1 + €)r).
fr(x) = wpo(x) + b* and fr(x) = wie(x) + bris  3: Terminate wher2. < (2¢ + €2)r2.
[fr () = f ()| < VIwr—w*[>+(br—b")*VE+1 = 4 Setr = /(T + )22 — 2, and go to Step 1.
Vier—c*|2=Clé;—€|2v/k+1. Thus, the bound in
(10) guarantees that the predictifin(x) is close tof*(x),
particularly where is small. 3.4. Linking EB with SVM
Proposition 3. Algorithm 3 obtains an (1 + ¢)-
approximation of EBS, R*) in O(1/e) iterations.

We first address the question of how to set the EB’s ra-
dius in the context of finding a SVM solution. Recall from
Proof. Let EB,, = B(ces,,R*) be an (1 + ¢,)-  Section 2 that the two-class L2-SVM using kerhedorre-
approximation of EBS, R*). Then,§y = |[co — c*|| =  sponds to a MEB problem with kerneldefined in (3). As
. v/ in (Tsang et al., 2005a), we assume that the kefrealtis-
|L‘J(;EirB1W(18)7V\(/:e |Lavl:er0m (10),00 < B/ (14 V2)en-i. fies condition (2). Itis easy to see that = « + & = & is
9(©), also a constant. In the corresponding EB(r) problem,

Te,r? < (14 \/i)em,l(R*)Q <(1+ \/5)%717#2 we can then set = /& because of the following lemma.
= T < (1+V2)em 1/, = (1+2)2m+1, Lemmal. /x > R*, whereR* is the radius of MEB§;).
. . : Proof. From the KKT conditions of (1),
The total number of iterations is thén™'_, 7,, = 22 + )
SM (14 v2)2mt = 0(2M) = O(1/e). O n
(R =F— Y Njhij <& (12)
This is thus an improvement over Algorithm 2, which con- i,j=1
verges inO(1/¢?) iterations. Note, however, that while 3
Proposition 1 holds for any > R*, Proposition 3 only as the kernek is psd. O
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Noting thatA; > 0 and)_, , A\; = 1, we have from (12)
that(R*)? > - & Y, kij > i i — 5 — 5 X0, ki,

wherel = ). y;. Assume that the data RP is gen-
erated from the normal distributio (0, o%I). With the

use of the Gaussian kernk(x,x’) = exp (—M>

20.2
we replace;; >, kij by E[k(x,x')] = 557z. Substitut-
ing back into the previous equation, we obtaiR*)? >
F— = £ _ so73- Asy; € {#1}, son > £ unless
the two classes are very imbalanced. When- oo and
D — oo, we obtainR* > /%. Finally, on combining

with Lemma 1, we havé&r* = /&. Thus, this justifies the

Whene is increased further, their performance begins to
deteriorate. Moreover, the training time and number of
support vectors for both algorithms become stable:far
10—%. On both data sets, BVM and CVM have comparable
numbers of support vectors, but training a BVM is faster
than CVM (by almost an order of magnitude).

4.2. Varying C

We perform experiments on two medium-sized data sets
(w3a andreuters) and a large data seigps), with C'in the
range[10~! : 10*]. Results are shown in Figure 3. In gen-
eral, BVM attains almost the same accuracies as LIBSVM

choice ofr = V/. In the sequel, this approach of solving for the differentC’s, except that it deteriorates on th@a

the SVM via the EB§;, V&) problem will be called the
ball vector machindBVM) procedure.

Moreover, withr = /& = R*, the bound in (9) reduces to
that in (10). In other words, whenis small, the center ob-
tained from the { + ¢)-approximation of this EBS, V&)
problem is close to the center of MEB;). Recall that

data when the relatively large= 103 is used. Moreover,
the training time and number of support vectors obtained
by BVM (with ¢ > 10~%) are comparable with those of
LIBSVM, even though these data sets are only of medium
size. On the other hand, LASVM also has comparable per-
formance as LIBSVM for most of th€’s, though it seems

one can use (4) to recover SVM'’s weight and bias from thgg geteriorate with larg€”s.

ball's center. Thus, the obtained BVM will also be close

to the truly optimal SVM solution and has comparable per-4.3. Varying the Training Set Size

formance, especially asis typically small. This will be
verified experimentally in Section 4.

4. Experiments

Experiments are performed on ten datas€fable 1). The
proposed BVM (using Algorithm 4)is compared witt: 1.
CVM; 2. LIBSVM; 3. LASVM; 4. SimpleSVM. All are

We perform experiments on theeb data with the standard
partitioning (vla, w2a, ...,w8a). Here, we show the re-
sults withe = 1072 and10~* (Figure 4). Ate = 1074,
both BVM and CVM have comparable testing accuracies
as the other implementations; whereas a larger 10~3
leads to poor performance (as in Sections 4.1 and 4.2).

As theweb data is not very large, almost all implementa-

implemented in C++, except for SimpleSVM which is in tions scale well except for the SimpleSVM which has to

Matlgb. Hence, some mea_suremen_ts reported here may "B& terminated early. We speculate that this might be partly
be directly comparable with the SimpleSVM. Moreover, because a Matlab implementation is used

unless otherwise specified, SVM’s parameter is always
setto 1. We use the Gaussian keregh(—|x — z[|*/8), 4.4, Comparisons on all Data Sets

where ( is the average squared distance between train- . _

ing patterns. All experiments are performed on an AMDWe perform experiments on all data sets in Table 1. By
Athlon 4400+ PC with 4GB of RAM running Windows XP. default, we seC' = 1 which yields good performance ex-

4.1. Varying e

We compare BVM and CVM at different values efon
a large letter) and a very largeusps) data set. Figure 2
shows that both have high accuraciesdfer 1078 : 1073].

UCI
from

3optdigits, satimage, pendigits are from
machine learning repository; reuters
http://www.daviddlewis.com/resources/testcollections/reuters21578/;
w3a, letters, web (Obtained by combiningvia to w8a), iicnnl are
from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/; usps and
intrusion are fromnttp://www.cse.ust.hk/~ivor/cvm.html.

“For simplicity, there is only one iteration of Algorithm 4 in
the current implementation.

SCVM (v1.1) is from http:/fwww.cse.ust.hk/~ivoricvm.html, LIB-
SVM (v2.83) from http://www.csie.ntu.edu.tw/~cjlin/libsvm/, LASVM
(v1.0) from http:/leon.bottou.org/projects/lasvm, and SimpleSVM
(v2.31) fromhttp://asi.insa-rouen.fr/~gloosli/simpleSVM.html.

cept for theintrusion data where we hawe = 10° instead.

As the previous sections have indicated that 1072 is

not appropriate for the BVM, we only repostvalues of
107%,107°, and10~% here. Methods that cannot be run
(either because of not enough memory and/or the training
time is longer than 10,000 seconds) are indicated by “~"

Table 2 shows that BVM and CVM have accuracies compa-
rable with the other SVM implementatidhdn terms of the
training speed, Table 3 shows that BVM is usually faster
than CVM for the same value af and is faster / compa-
rable with the other implementations. @sps (the second
largest data set), BVM is faster than LIBSVM and LASVM

5The LASVM implementation does not support multi-class
classification, and so the corresponding entries in Tables 2 — 4
are marked “N/A’.
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even withe = 1075, Moreover, only BVM and CVM (but medium-sized data sets. On the large data sets (such as
neither LIBSVM nor LASVM) can work orintrusion, the  reuters, web, ijcnnl, usps andintrusion), CVM and, even
largest data set used in the experiment. In contrast, Sinbetter, BVM can have fewer support vectors.

pleSVM can work on medium-sized data sets only, as its .

rank-one update involves the inverse of a kernel sub-matri®- Conclusion

defined on all the support vectors. This causes pmblemﬁ/lotivated by the minimum enclosing ball (MEB) prob-
when there are a lot of support vectors. Note that the aCam. we introduce in this paper the easier enclosing ball

curacy of BVM is quite insensitive to the value ofin our (EB) problem where the ball’s radius is fixed. Three effi-

—6 . 10—4 ; ii ;
rafmge[lo N ‘ 1(3 D.' but both its irammgljlt'm$ﬁnd numbetr cient(1 + ¢)-approximation algorithms are developed that
Of support vectors Increase agets smaller. This SUggests o simple to implement and do not require any numeri-

T A . _ _ _ _
e =107 is a reasonable choice in practice. cal solver. For the Gaussian kernel in particular, a swatabl

Table 1.Data sets used in the experiments. choice of this (fixed) radius is easy to determine, and the
datasets | #class| dim | #train patns.| #test patns center obtained from thd ¢ €)-approximation of this EB
optdigits 10 64 3,823 1,797 problem is expected to be close to the center of the cor-
satimage 6 36 4,435 2,000 responding MEB. Experimental results show that the pro-
pe\lflvdsigits 1% 322 ?'Zéﬁ 43'2357; posed algorithm has accuracies comparable to the other
reuters 2 | 8315 7.770 3,299 large-scale SVM implementations, but can handle very

letter 26 16 15,000 5,000 large data sets and is even faster than the CVM in general.
web 2 300 49,749 14,951
ijcnn 2 22 49,990 91,701 Acknowledgments
usps 2 676 266,079 75,383
intrusion 2| 127 4,898,431 311,029 This research has been partially supported by the Research

Grants Council of the Hong Kong Special Administrative

The numbers of support vectors obtaihede shown in Region under grant 615005.

Table 4. As can be seen, all of them obtain compar_abqueferences
numbers of support vectors. In particular, LIBSVM, which
uses second order information for working set selectionAsharaf, S., Murty, M., & Shevade, S. (2006). Cluster

can identify a smaller number of support vectors on most Pased core vector machineProceedings of the Sixth

- International Conference on Data Mininfpp. 1038—
"For multi-class problems, the same pattern may appear as 1042).

support vectors in different binary classifiers in the current Sim-

pleSVM implementation. To avoid confusion, the number of sup-

port vectors obtained by SimpleSVM is not reported here. Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005).
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Figure 3.Performance at differert’s onw3a, reuters andusps.
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Figure 4.Performance with different training set sizesweb.
Table 2.Testing accuracies (in %) of the various SVM implementations.
data BVM CVM LIBSVM | LASVM | SimpleSVM
e=10" | e=10° | e=10"° | e=10"" | e=107° | e=10"°
optdigits 96.38 96.38 96.38 96.38 96.38 96.38 96.77 N/A 96.88
satimage 89.35 89.60 89.60 89.55 89.55 89.60 89.55 N/A 89.65
w3a 97.89 97.88 97.88 97.80 97.81 97.82 97.70 97.72 97.42
pendigits 97.97 97.94 97.91 97.85 97.85 97.85 97.91 N/A 97.97
reuters 96.75 96.78 96.75 96.96 96.96 96.96 97.15 97.09 -
letter 94.47 94.47 94.47 94.12 94.10 94.10 94.25 N/A 94.23
web 99.13 99.13 99.08 99.09 99.07 99.08 99.01 98.93 -
ijicnnl 97.58 98.38 98.25 98.67 98.11 98.23 98.19 98.42 94.10
usps 99.42 99.52 99.52 99.52 99.52 99.51 99.53 99.53 -
intrusion 91.97 91.97 91.97 81.68 92.44 92.44 — - -
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Table 3.CPU time (in seconds) used in SVM training.

data BVM CVM LIBSVM LASVM | SimpleSVM
e=10"%]e=10° ]| e=10"°%| e=10"* | e=10"°% | e=10"FC
optdigits 1.65 1.76 1.87 24.86 26.07 26.25 1.79 N/A 81.15
satimage 1.82 2.67 3.54 14.81 19.15 19.67 1.06 N/A 221.01
w3a 0.85 1.31 1.75 13.82 30.71 35.12 1.46 1.54 1384.34
pendigits 1.31 1.40 1.45 12.10 13.31 13.43 0.82 N/A 41.22
reuters 6.32 7.78 8.25 63.51 136.04 162.89 9.76 13.81 -
letter 19.87 24.84 28.40 215.73 244.25 250.43 10.85 N/A 1290.55
web 32.59 235.26 576.95 54.46 670.28 1235.32 168.84 178.73 -
ijicnnl 99.95 1019.58 | 2385.14 62.78 433.35 784.78 57.96 140.25 2201.35
usps 150.46 319.20 324.17 288.96 998.96 1753.12 1578.27 753.09 -
intrusion 0.73 0.73 0.73 0.51 0.84 0.70 - - -
Table 4.Numbers of support vectors obtained by the various SVM implementations
data BVM CVM LIBSVM | LASVM
e=10"% ] e=10° | e=10"°% | e=10"* | e=10"% | e=10"°
optdigits 1583 1594 1595 2154 2191 2197 1306 N/A
satimage 1956 2048 2058 2333 2581 2611 1433 N/A
w3a 694 952 1060 1402 2118 2269 1072 979
pendigits 1990 2006 2008 2827 2925 2926 1206 N/A
reuters 925 1059 1076 1496 2217 2389 1356 1359
letter 10536 10658 10673 12440 12820 12843 8436 N/A
web 2522 4786 6263 2960 9986 12984 4674 5718
ijcnnl 4006 7409 7981 3637 9041 11097 5700 5525
usps 1524 2128 2163 2576 4224 4429 2178 1803
intrusion 99 100 100 26 44 51 - -
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