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Abstract
Low-rank matrix approximation is an effective
tool in alleviating the memory and computa-
tional burdens of kernel methods and sampling,
as the mainstream of such algorithms, has drawn
considerable attention in both theory and prac-
tice. This paper presents detailed studies on the
Nyström sampling scheme and in particular, an
error analysis that directly relates the Nyström
approximation quality with the encoding pow-
ers of the landmark points in summarizing the
data. The resultant error bound suggests a sim-
ple and efficient sampling scheme, thek-means
clustering algorithm, for Nystr̈om low-rank ap-
proximation. We compare it with state-of-the-art
approaches that range from greedy schemes to
probabilistic sampling. Our algorithm achieves
significant performance gains in a number of su-
pervised/unsupervised learning tasks including
kernel PCA and least squares SVM.

1. Introduction

Kernel methods play a central role in machine learning and
have demonstrated huge success in modelling real-world
data with highly complex, nonlinear structures. Examples
include the support vector machine, kernel Fisher discrimi-
nant analysis and kernel principal component analysis. The
key element of kernel methods is to map the data into a
kernel-induced Hilbert spaceϕ(·) where dot product be-
tween points can be computed equivalently through the ker-
nel evaluation〈ϕ(xi), ϕ(xj)〉 = K(xi, xj). Givenn sam-
ple points, this necessitates the calculation of ann×n sym-
metric, positive (semi-)definite kernel matrix. The resultant
complexities in terms of both space (quadratic) and time
(usually cubic) can be quite demanding for large problems,
posing a big challenge on practical applications.
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A useful way to alleviate the memory and computational
burdens of kernel methods is to utilize the rapid decay-
ing spectra of the kernel matrices (Williams & Seeger,
2000) and perform low-rank approximation in the form of
K = GG′, whereG ∈ R

n×m with m ≪ n. However, the
optimal (eigenvalue) decomposition takesO(n3) time and
efficient alternatives have to be sought. In the following,
we give a brief review on efficient techniques for low-rank
decompositions of symmetric, positive (semi-)definite ker-
nel matrices.

Greedy approaches have been applied in several fast al-
gorithms for approximating the kernel matrix. In (Smola
& Schölkopf, 2000), the kernel matrixK is approximated
by the subspace spanned by a subset of its columns. The
basis vectors are chosen incrementally to minimize an up-
per bound of the approximation error. The algorithm takes
O(m2nl) time using a probabilistic heuristic, wherel is the
random subset size. In (Ouimet & Bengio, 2005), a greedy
sampling scheme is proposed based on how well a sample
point can be represented by a (constrained) linear combi-
nation of the current subspace basis in the feature space.
Their algorithm scales asO(m2n). Another well-known
greedy approach for low-rank approximation of positive
semi-definite matrices is the incomplete Cholesky decom-
position (Fine & Scheinberg, 2001; Bach & Jordan, 2005;
Bach & Jordan, 2002). It is a variant of the Cholesky
decomposition that skip pivots below a certain threshold,
and factorizes the kernel matrixK as K = GG′ where
G ∈ R

n×m is a lower triangular matrix.

Another class of low-rank approximation algorithms stem
from the Nystr̈om method. The Nyström method was orig-
inally designed to solve integral equations (Baker, 1977).
Given a kernel matrixK, the Nystr̈om method can be
deemed as choosing a subset ofm columns (hence rows)
E ∈ R

n×m, and reconstructing the complete kernel ma-
trix by K ≃ EW−1E′, whereW is the intersection of
the selected rows and columns ofK. The most popular
sampling scheme for Nyström method is random sampling,
which leads to fast versions of kernel machines (Williams
& Seeger, 2001; Lawrence & Herbrich, 2003) and spectral
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clustering (Fowlkes et al., 2004). In (Platt, 2005), several
variants of multidimensional scaling are all shown to be re-
lated to the Nystr̈om approximation.

There are also a large body of randomized algorithms for
low-rank decomposition of arbitrary matrices (Frieze et al.,
1998; Achlioptas & McSherry, 2001; Drineas et al., 2003),
where the goal is to design column/row sampling proba-
bilities that achieve provable probabilistic bounds. These
algorithms are designed for a more general purpose and
will not be the focus of this paper. However, we note that
one of these randomized algorithms has been recently re-
vised for efficient low-rank approximation of the symmet-
ric Gram matrix (Drineas & Mahoney, 2005). Therefore
we will use it as a representative of randomized algorithms
in our empirical evaluations. The basic idea of (Drineas &
Mahoney, 2005) is to sample the columns of the kernel ma-
trix based on a pre-computed distribution using the norms
of the columns. The reconstruction of the kernel matrix is
also normalized by the sampling distribution.

In terms of efficiency, greedy approaches usually take
O(m2n) time for sampling, while the random scheme only
needsO(n) and is much more efficient. Probabilistic ap-
proaches, or randomized algorithms in general, are usually
more expensive in that the sampling distributions have to
be computed based on the original matrix, which require
at leastO(n2). In terms of memory, note that the matrices
(E andW ) needed in the Nyström method with random
sampling can be simply computed on demand. This greatly
reduces the memory requirement for very large-scale prob-
lems. In contrast, the intermediate matrices for greedy ap-
proaches have to be incrementally updated and stored.

Although the Nystr̈om method possesses desirable scaling
properties and has been applied with success in various ma-
chine learning problems, analysis on its key step of choos-
ing the landmark set is relatively limited. In (Drineas &
Mahoney, 2005), a probabilistic error bound is provided
on the Nystr̈om low-rank approximation. However, the
error bound only applies to the specially designed sam-
pling scheme, which needs to compute the norms of all
the rows/columns of the kernel matrix and is hence quite
expensive. In (Zhang & Kwok, 2006), a block quantiza-
tion scheme is proposed for fast spectral embedding. The
kernel eigen-system is approximated by first computing
a block-wise constant kernel matrix and then extrapolat-
ing its eigenvectors through the weighted Nyström exten-
sion. However, the error analysis is only on the block-
quantization step, and how the Nyström method affects the
approximation quality in general remains unclear. Thus,
the motivation of this paper is to provide a more concrete
analysis on how the sampling scheme (or the choice of the
landmark points) in general influences the Nyström low-
rank approximation, and to improve the sampling strategy

while still preserving its computational efficiency.

Our key finding is that the Nyström low-rank approxima-
tion depends crucially on the quantization error induced by
encoding the sample set with the landmark points. This
suggests that, instead of applying the greedy or probabilis-
tic sampling, the landmark points can be simply chosen as
thek-means cluster centers, which finds a local minimum
of the quantization error. To the best of our knowledge,
thek-means has not been applied in the Nyström low-rank
approximation. The complexity ofk-means is only linear
in the sample size and dimension and, as our analysis ex-
pected, it demonstrates very encouraging performance that
is consistently better than all known variants of Nyström.
We also compare it with the greedy approach of incomplete
Cholesky decomposition and again obtain positive results.

The rest of the paper is organized as follows. In Section 2,
we give a brief introduction of the Nyström method. In
Section 3, we present an error analysis on how the Nyström
low-rank approximation is affected by the chosen landmark
points, and propose thek-means algorithm for the sam-
pling step. In Section 4, we compare our approach with
a number of state-of-the-art low-rank decomposition tech-
niques (including both greedy and probabilistic sampling
approaches). The last section gives concluding remarks.

2. Nyström Method

The Nystr̈om method is originated from the numerical
treatment of integral equations of the form

∫

p(y)k(x, y)φi(y)dy = λiφi(x), (1)

wherep(·) is the probability density function,k is a posi-
tive definite kernel function, andλ1 ≥ λ2 ≥ · · · ≥ 0 and
φ1, φ2, . . . are the eigenvalues and eigenfunctions of the in-
tegral equation, respectively. Given a set of i.i.d. samples
{x1, x2, . . . , xq} drawn fromp(·), the basic idea is to ap-
proximate the integral in (1) by the empirical average:

1

q

q
∑

j=1

k(x, xj)φi(xj) ≃ λiφi(x). (2)

Choosingx in (2) from{x1, x2, . . . , xq} leads to a standard
eigenvalue decompositionK(q)U (q) = U (q)Λ(q), where
K

(q)
ij = k(xi, xj) for i, j = 1, 2, . . . , q, U (q) ∈ R

q×q

has orthonormal columns andΛ(q) ∈ R
q×q is a diagonal

matrix. The eigenfunctionsφi’s and eigenvaluesλi’s in
(1) can be approximated byU (q) andΛ(q), as (Williams &
Seeger, 2001):

φi(xj) ≃
√

qU
(q)
ji , λi ≃ λ

(q)
i /q. (3)

This means, the Nyström method using different subset
sizesq’s are all approximations toλi andφi in the inte-
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gral equation (1). As a result, the Nyström method us-
ing a smallq can also be deemed as approximating the
Nyström method using a largeq. Suppose the sample set
X = {xi}n

i=1, with the correspondingn × n kernel matrix
K. Then the Nystr̈om method that randomly chooses a sub-
setZ = {zi}m

i=1 of m landmark points will approximate
the eigen-system of the full kernel matrixKΦK = ΦKΛK

by (Williams & Seeger, 2001)

ΦK ≃
√

m

n
EΦZΛ−1

Z
, ΛK ≃ n

m
ΛZ . (4)

Here,E ∈ R
n×m with Eij = k(xi, zj), andΦZ ,ΛZ ∈

R
m×m contain the eigenvectors and eigenvalues ofW ∈

R
m×m whereWij = k(zi, zj). Using the approximations

in (4), K can be reconstructed as

K ≃
(
√

m

n
EΦZΛ−1

Z

)

( n

m
ΛZ

)

(
√

m

n
EΦZΛ−1

Z

)′

= EW−1E′. (5)

Equation (5) is the basis for Nyström low-rank approx-
imation of the kernel matrix (Williams & Seeger, 2001;
Fowlkes et al., 2004).

3. Error Analysis of the Nyström Method

In this section we analyze how the Nyström approximation
error depends on the choice of landmark points. We first
provide an important observation (Section 3.1), and then
derive the error bound in more general settings based on a
“clustered” data model (Section 3.2-3.4). The error bound
gives important insights on the design of efficient sam-
pling schemes for accurate low-rank approximation (Sec-
tion 3.5).

3.1. Observation

Proposition 1. Given the data setX = {xi}n
i=1, and the

landmark point setZ = {zj}m
j=1. Then the Nystr̈om recon-

struction of the kernel entryK(xi, xj) will be exact if there
exist two landmark points such thatzp = xi, andzq = xj .

Proof. Let Kxk,Z ∈ R
1×m be the similarity betweenxk

and the landmark pointsZ. Then the Nystr̈om reconstruc-
tion of the kernel entry will beKxi,ZW−1K ′

xj ,Z , where
W ∈ Rm×m is the kernel matrix defined on the land-
mark setZ. Let W (k) be thekth row of W , then we
haveKxi,Z = W (p) andKxj ,Z = W (q) sincexi = zp,
andxj = zq. As a result, the reconstructed entry will be
W (p)W−1(W (q))′ = Wpq = K(zp, zq) = K(xi, xj).

Proposition 1 indicates that the landmark points should be
chosen to overlap sufficiently with the original data. How-
ever, it is often impossible to use a small landmark set to
represent every sample point accurately.

3.2. Approximation Error of Sub-Kernel Matrix

In this section we apply a “clustered” data model to analyze
the quality of Nystr̈om low rank approximation. Here, the
data clusters can be naturally obtained by assigning each
sample to the closest landmark point. As will be seen, this
model allows us to derive an explicit error bound for the
Nyström approximation.

Again, suppose that the landmark set isZ = {zi}m
i=1, and

the whole sample setX is partitioned intom disjoint clus-
tersSk ’s. Let c(i) be the function that maps each sam-
ple xi ∈ X to the closest landmark pointzc(i) ∈ Z, i.e.,
c(i) = arg minj=1,2,··· ,m ‖xi − zj‖. Our goal is to study
the approximation error in (5):

E =
∥

∥K − EW−1E′
∥

∥

F
, (6)

where‖ · ‖F denotes the matrix Frobenious norm.

First, we consider the simpler notion ofpartial approxima-
tion error defined as follows.

Definition 1. Suppose each cluster hasT samples1. Re-
peat the following sampling processT times: at each time
t, pick one sample from each cluster, and denote the set of
samples chosen at timet asXIt

. ThenX = {XI1
∪ XI1

∪
...∪XIT

}, and the whole kernel matrix will be correspond-
ingly decomposed intoT 2 blocks, each of sizem × m. Let
KIi,Ij

, andEIi,Z be them×m similarity matrices defined
on(XIi

,XIi
) and(XIi

,Z), respectively, andW ∈ R
m×m

the kernel matrix defined onZ. Thepartial approximation
error is the difference betweenKIi,Ij

and its Nystr̈om ap-
proximation under the Frobenius norm

EIi,Ij
= ‖KIi,Ij

− EIi,ZW−1E′
Ij ,Z‖F . (7)

We assume the kernelk satisfies the following property:

(k(a, b)−k(c, d))2≤Ck
X

(

‖a − c‖2+‖b − d‖2
)

,∀a, b, c, d
(8)

whereCk
X

is a constant depending onk and the sample set
X . The validity of this assumption on a number of com-
monly used kernels will be proved in Section 3.4.

Proposition 2. For kernel k satisfying property (8), the
partial approximation errorEIi,Ij

is bounded by

EIi,Ij
≤
√

2mCk
X

(eIi
+ eIj

) +
√

mCk
X

eIi

+
√

mCk
X

eIj
+ mCk

X

√
eIi

eIj
‖W−1‖F . (9)

whereeIi
is the quantization error induced by coding each

sample inXIi
by the closest landmark point inZ, i.e.,

eIi
=
∑

xi∈XIi

∥

∥xi − zc(i)

∥

∥

2
. (10)

1If cluster sizes differ, add “virtual samples” to each cluster
such that all the clusters have the same size (which is equal to
T = maxk |Sk|). The virtual samples added to clusterSk are
chosen as the landmark pointzk for that cluster, so they will not
induce extra quantization errors but will loosen the bound.
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Proof. We will first define the following matrices

AIi,Ij
= KIi,Ij

− W ;BIi,Z = EIi,Z − W ;

CIj ,Z = EIj ,Z − W, (11)

and then show that they have bounded Frobenius norms.
Without loss of generality, we specify the indices as fol-
lows: KIi,Ij

(p, q) = k(xIi(p), xIj(q)); EIi,Z(p, q) =
k(xIi(p), zq); EIj ,Z(p, q) = k(xIj(p), zq); andW (p, q) =
k(zp, zq). With property (8), we have

‖AIi,Ij
‖2

F =

m
∑

p,q=1

(

k(xIi(p), xIj(q)) − k(zp, zq)
)2

≤ Ck
X

m
∑

p,q=1

(

∥

∥xIi(p) − zp

∥

∥

2
+
∥

∥xIi(q) − zq

∥

∥

2
)

= mCk
X

(

m
∑

p=1

∥

∥xIi(p) − zp

∥

∥

2
+

m
∑

q=1

∥

∥xIj(q) − zq

∥

∥

2

)

= 2mCk
X

(

eIi
+ eIj

)

,

whereeIi
is the same as that in (10) sincec(I(q)) = q.

For matrixBIi,Z , we have

‖BIi,Z‖2
F =

∑

p,q

(

k(xIi(p), zq) − k(zp, zq)
)2

≤ mCk
X

m
∑

p=1

∥

∥xIi(p) − zp

∥

∥

2
= mCk

X eIi
,

and similarly for matrixCIj ,Z ‖CIj ,Z‖2
F ≤ mCk

X eIj
.

Note that the partial approximation errorEIi,Ij
(7) can be

re-written as follows using (11).

‖ EIi,Ij
‖F =

∥

∥W +AIi,Ij
−(W + BIi,Z)W−1(W +CIj,Z)′

∥

∥

F

=
∥

∥

∥
W +AIi,Ij

−W
′−C

′

Ij,Z
−BIi,Z−BIi,ZW

−1
C

′

Ij ,Z

∥

∥

∥

F

≤ ‖AIi,Ij
‖F +‖BIi,Z‖F +‖CIj,Z‖F +‖BIi,Z‖F ‖CIj,Z‖F ‖W−1‖F

Using the bounds on‖AIi,Ij
‖, ‖BIi,Z‖, ‖CIj ,Z‖ together

with the definition in (11), we have Proposition 2

3.3. Approximation Error of Complete Kernel Matrix

With the estimated partial approximation error, we can now
obtain a bound on the complete error for Nyström approx-
imation (6). The basic idea is to sum up the partial errors
EIi,Ij

over alli, j = 1, 2, ..., T .

Proposition 3. The error of the Nystr̈om approximation (6)
is bounded by

E ≤ 4T
√

mCk
X

eT + mCk
XTe‖W−1‖F (12)

whereT = max
k

|Sk|, ande =
∑n

i=1

∥

∥xi − zc(i)

∥

∥

2
is the

total quantization error of coding each samplexi ∈ X with
the closest landmark pointzj ∈ Z.

Proof. Here we sum up the terms in (9) separately.

T
∑

i,j=1

√

2mCk
X

(eIi
+eIj

)=
√

2mCk
X

T
∑

i=1





T
∑

j=1

√

eIi
+eIj





≤
√

2mCk
X

T
∑

i=1





√
T

√

√

√

√TeIi
+

T
∑

j=1

eIj



≤ 2T
√

mCk
X

Te

wheree =
∑T

j=1 eIj
=
∑

xi∈X
‖xi − zc(i)‖2 is the same

as defined in proposition 3. Similarly, the second term (and
the third term) in (9) can be summarized as

T
∑

i,j=1

√

mCk
X

eIi
=
√

mCk
X

T
∑

j=1

(

T
∑

i=1

√
eIi

)

≤T
√

mCk
X

eT

The last term in (9) can be summarized as

T
∑

i,j=1

mCk
X

√
eIi

eIj
‖W−1‖F = mCk

X‖W−1‖F

(

T
∑

i=1

√
eIi

)2

≤mCk
X ‖W−1‖F Te

By combining all these terms, we arrive at Proposition 3.

3.4.Ck
X

Under Different Kernels

In this section, we show that many commonly used ker-
nel functions satisfy the property in (8). Consider the sta-
tionary kernelk (x, y) = κ

(∥

∥

x−y
σ

∥

∥

)

, including the Gaus-
sian kernelκ(α) = exp(−α2), Laplacian kernelκ(α) =
exp(−α), and inverse distance kernelκ(α) = (α + ǫ)−1.
By using the mean value theorem and triangular inequality,
we have, for anya, b, c, d ∈ Rd,

(k(a, b) − k(c, d))2 = (κ (‖a − b‖/σ)− κ (‖c − d‖/σ))
2

= [κ′(ξ)/σ]2 (‖a − b‖ − ‖c − d‖)2 .

Let v1 = a−c andv2 = b−d. Note that we have‖c−d‖ ≤
‖a− b‖+ ‖v1‖+ ‖v2‖ and similarly‖a− b‖ ≤ ‖c− d‖+
‖v1‖ + ‖v2‖. So‖a − b‖ − ‖c − d‖ is always bounded by

(‖a − b‖ − ‖c − d‖)2 ≤ (‖a − c‖ + ‖b − d‖)2

≤ 2
(

‖a − c‖2 + ‖b − d‖2
)

.

So Ck
X

can be chosen asmax[2κ′(ξ)/σ]2 which is often
bounded (Ck

X
is 1

2σ2 for the Gaussian,1σ2 for the Laplacian,
and 1

σ2ǫ4 for the inverse distance). Similarly, for polyno-

mial kernels of the formk(x, y) = (〈x, y〉 + ǫ)
d,

(k(a, b) − k(c, d))2 =
(

(a′b + ǫ)d − (c′d + ǫ)d
)2

= (p′(ξ)(a′b − c′d))
2
= (p′(ξ) ((a − c)′b + (b − d)′c))

2

≤ [2p′(ξ)]2
(

‖(a − c)′b‖2 + ‖(b − d)′c‖2
)

≤ [2p′(ξ)R]2
(

‖a − c‖2 + ‖b − d‖2
)

,
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whereR is the larger one of the two quantities: the max-
imum pairwise distance between samples, and maximum
distance between samples and the origin point; andp(z) =
zd. SoCk

X
can be chosen asmax[κ′(ξ)R]2 = d2Rd.

3.5. Sampling Procedure

The error bound in Proposition 3 provides important in-
sights on how to choose the landmark points in the Nyström
method. As can be seen, consistently, that for a number of
commonly used kernels, the most important factor that in-
fluences the approximation quality ise, the error of quan-
tizing each of the samples inX with the closest landmark in
Z. If this quantization error is zero, the Nyström low-rank
approximation of the kernel matrix will also be exact. This
agrees well with the ideal case discussed in Section 3.1.

Motivated by this observation and the fact thatk-means
clustering can find a local minimum of the quantization er-
ror (Gersho & Gray, 1992), we propose to use the centers
obtained from thek-means as the landmark points. Here,k
is the desired number of landmark points inZ. The larger
the k, the more accurate the approximation though at the
cost of higher computations. Despite its simplicity, thek-
means procedure can greatly improve the approximation
quality compared to other sampling schemes, as will be
demonstrated empirically in Section 4. Recent advances
in speeding up thek-means algorithms (Elkan, 2003; Ka-
nungo et al., 2001) also make thisk-means-based sampling
strategy particularly suitable for large-scale problems.

4. Experiments

This section presents empirical evaluations of the various
low-rank approximation schemes. First, we discuss how
the low rank approximation fits into different applications.
One is to solve linear systems of the form(K + σI)x = a,
whereK is the kernel matrix,σ ≥ 0 is a regularization
parameter andI is then × n identity matrix. Given the
low-rank approximationK ≃ GG′, the following holds
(Williams & Seeger, 2001) by the Woodbury formula

(K + σI)−1 ≃ 1

σ

(

I − G(σI + G′G)−1G′
)

, (13)

which only needsO(m2n) time and O(mn) memory.
Therefore, it can be used in speeding up the Gaussian pro-
cesses (Williams & Seeger, 2001) and least-squares SVM
(LS-SVM) (Suykens & Vandewalle, 1999).

The second application is to reconstruct the eigen-system
of a matrix approximated by its low-rank decomposition.

Proposition 4. Given the low-rank approximationK ≈
GG′, whereG ∈ R

n×m andm ≪ n, the topm eigenvec-
torsU of K can be obtained asU ≈ GV Λ−1/2 in O(m2n)
time, whereV,Λ ∈ R

m×m are from the eigenvalue decom-

position of them × m matrixS = G′G = V ΛV ′.

Proof can be found in (Fowlkes et al., 2004). Therefore
low-rank approximation is useful for algorithms that rely
on eigenvectors of the kernel matrix, such as kernel PCA
(Scḧolkopf et al., 1998), Laplacian eigenmap (Belkin &
Niyogi, 2002) and normalized cut.

Note that the Nystr̈om method, when designed originally
to solve integral equations, did not provide orthogonal ap-
proximations to the kernel eigenfunctions. Thanks to the
matrix completion view (5) (Fowlkes et al., 2004; Williams
& Seeger, 2001), the Nyström method can be utilized for
obtaining orthogonal eigenvectors (Proposition 4), though
the time complexity increases from the simple Nyström ex-
tension (4) ofO(mn) to O(m2n). In the experiments we
focus on the orthogonalized eigenvector approximation.

Table 1.Complexities of basis selection for the different methods.

Ours Nystr̈om Drineas ICD
time O(mn) O(n) O(n2) O(m2

n)
space O(mn) O(mn) O(mn) O(mn)

We compare altogether five low-rank approximation algo-
rithms, including: 1. incomplete Cholesky decomposition
(ICD)2; 2. Nystr̈om method (with random sampling); 3.
the method in (Drineas & Mahoney, 2005); 4. our method
(for simplicity, the maximum number ofk-means iterations
is restricted to10); 5. SVD. Note that SVD (or eigenvalue
decomposition in our context) provides the best low-rank
approximation in terms of both the Frobenius norm and
spectral norm (Golub & Van Loan, 1996). The complexi-
ties of basis selection (i.e., choosingE andW in Nyström,
or sampling the columns in (Drineas & Mahoney, 2005)
and ICD) in the different algorithms are listed in Table 1.
Evaluations are performed in the contexts of kernel matrix
approximation (Section 4.1), kernel PCA (Section 4.2), and
LS-SVM classification (Section 4.3). We use core(TM)-
dual PC with 2.13GHz CPU and the codes are in matlab.

4.1. Approximating the Kernel Matrix

We first examine the performance of the low-rank approx-
imation schemes by measuring their approximation errors
(in terms of the Frobenius norm) on the kernel matrix. We
choose a number of benchmark data sets from the LIB-
SVM archive3, summarized in Table 2. Note that our ap-
proximation error bound in Proposition 3 applies to most
kernel functions (Section 3.4), and preliminary experimen-
tal results with these kernels have shown the superiority
of our sampling scheme compared with other low-rank ap-
proximation methods. However, due to lack of space, we

2http://www.di.ens.fr/∼fbach/kernel-ica/index.htm
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 2.A summary of data sets.
data german splice adult1a dna
size 1000 1000 1605 2000

dimension 24 60 123 180
data segment w1a svmgd1a satimage
size 2310 2477 3089 4435

dimension 19 300 4 36

will only report results for the Gaussian kernelK(x, y) =
exp(−‖x − y‖2/γ). Here, γ is chosen as the average
squared distance between data points and the mean of each
data set. We gradually increase the subset sizem from 1%
to 10% of the data size. To reduce statistical variability, re-
sults of methods 2, 3, and 4 are based on averages over 20
repetitions.

The approximation errors are plotted in Figure 1. As can
be seen, our algorithm is only inferior to SVD on most data
sets. Moreover, though the method in (Drineas & Mahoney,
2005) involves a more complicated probabilistic sampling
scheme, its performance is only comparable or sometimes
even worse than the Nyström method with simple random
sampling. Similar observations have also been reported in
the context of SVD (Drineas et al., 2003). ICD seems to be
inferior on several data sets. However, for data sets whose
kernel spectra decay rapidly to zero4 (such as thesegment,
svmguide1a andsatimage), ICD can also quickly attain
performance comparable to others.

We also examine empirically the relationship betweenE
ande under different sampling schemes. Figure 2 reports
the results on thegerman data, wherem = 100 and each
sampling scheme is repeated 100 times. As can be seen,
there is a strong, positive correlation betweenE ande. This
is observed on most data and agrees with our error analysis.

4.2. Kernel PCA

In kernel PCA, the key step is to obtain eigenvectors of the
centered kernel matrixHKH, whereH = I − 1

n11′ ∈
R

n×n. Following Proposition 2 of (Ouimet & Bengio,
2005), with the low-rank decompositionK ≃ GG′, the
centered kernel matrix can be written as(HG)(HG)′ or
(G− Ḡ)(G− Ḡ)′, whereḠ ∈ Rn×m and all its rows equal
to the mean of rows inG. Hence the topm eigenvectors can
be obtained inO(m2n) time according to Proposition 4.

We evaluate the low rank approximation schemes by the
embedding onto the top 3 principal directions. We align
the approximate embeddings (Ũ ) with the standard KPCA
embedding (U ) through a linear transform, and report the

4Note that the (squared) rank-m approximation error of SVD
is
∑n

i=m+1
σ

2
i , whereσi’s are the singular values ofK sorted in

descending order (Golub & Van Loan, 1996). Therefore, if SVD’s
error in Figure 1 drops rapidly, so does the spectrum ofK.
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Figure 2.Low-rank approximation error versus quantization error
for different sampling schemes.

minimum misalignment error:minA∈R3×3 ‖U − ŨA‖F .
The parameter setting is the same as in Section 4.1, ex-
cept that we fixm = 0.05n for all the low-rank decom-
position algorithms. Again, results of methods 2, 3, 4 in
Table 3 are averaged over 20 repetitions. As we can seen,
our algorithm is the best on most data sets, next comes the
standard Nystr̈om and the method by (Drineas & Mahoney,
2005). The time consumptions of all low-rank approxima-
tion schemes are significantly lower than SVD.

4.3. Least Squares SVM

Given the kernel matrixK, the training labelsy ∈
{±1}n×1, and the regularization parameterC > 0, the LS-
SVM classifierf(x) =

∑n
i=1 αiφ(x, xi) + b is solved by

b = y′M−11/y′M−1y, andα = M−1(1 − by), where
1 is a vector of all ones, andM = Y (K + I/C)Y and
Y = diag(y). Note thatM−1 = Y (K + I/C)−1Y can be
computed efficiently using (13).

We evaluate different low-rank approximation schemes in
LS-SVM, using some difficult pairs of theUSPS digits5.
We use Gaussian kernelexp(−‖x − y‖2/γ) andC = 0.5.
Table 4 reports the classification performance of the stan-
dard LS-SVM, and those with different low-rank approxi-
mation schemes, atm = 0.05n and0.1n. Again, methods
2, 3, 4 are repeated 20 times. Form = 0.05n, our approach
is significantly better than methods 1,2,3 with a confidence
level that is at least99.5%. For m = 0.1n, ours is also
better with a confidence level that is at least97.5% on the
first 7 pairs. For the last 4 pairs, the differences between
our approach and methods 1,2,3 are not statistically signif-
icant. Note, however, that the testing errors obtained by the
various approximation algorithms on these 4 pairs are all
close to those of the exact LS-SVM, i.e., all approximation
algorithms have reached their possibly best performance.

5ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/
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Figure 1.Approximation errors (in terms of the Frobenius norm) on the kernel matrix by different low-rank approximation schemes.

Table 3.Approximation errors and CPU time consumed for the different low-rank approximation schemes in the context of kernel PCA.
Due to the lack of space, we do not show the standard deviation of the CPU time.

approximation error CPU time (seconds)
data Ours Nystr̈om Drineas ICD SVD Ours Nystr̈om Drineas ICD

german (4.40±0.58)×10−2 (2.64±0.58)×10−1 (2.71±0.34)×10−1 5.11×10−1 27.6 0.8 0.03 0.3 0.09
splice (3.44±0.43)×10−1 (1.06±0.11)×100 (1.07±0.11)×100 1.27×100 24.2 0.9 0.05 0.6 0.1
adult1a (4.41±0.49)×10−2 (2.86±0.42)×10−1 (2.84±0.66)×10−1 6.19×10−1 134.8 3.0 0.2 4.0 0.7

dna (1.88±0.21)×10−1 (1.09±0.08)×100 (1.01±0.14)×100 1.17×100 197.0 6.6 0.5 10.6 1.5
segment (7.87±4.43)×10−4 (8.37±4.08)×10−3 (1.84±0.99)×10−2 2.37×10−2 322.8 4.2 0.3 1.8 1.0

w1a (1.55±0.78)×10−1 (2.81±0.62)×10−1 (6.05±3.39)×10−1 1.11×100 394.0 12.8 1.8 35.3 3.6
svmguide1a (5.16±2.12)×10−4 (3.71±2.26)×10−3 (2.78±1.60)×10−2 5.07×10−4 650.4 6.7 0.5 2.4 2.3

satimage (5.20±0.97)×10−4 (6.19±0.28)×10−3 (6.80±1.01)×10−2 2.47×10−2 2762.8 16.1 1.5 15.9 7.5

5. Conclusion

The Nystr̈om method is a useful technique for low-rank ap-
proximation. However, analysis on its key step of choos-
ing the landmark points and especially that in terms of
approximation quality is still limited. In this paper, we
draw an intuitive but important connection between the
Nyström approximation quality and the encoding capaci-
ties of landmark points. Our analysis suggests the k-means
as a natural sampling scheme. Despite its simplicity, the
k-means-based sampling gives encouraging performance
when empirically compared with state-of-the-art low-rank
approximation techniques. One future direction is to uti-
lize label/side information for task-specific decomposition,
where one excellent example is (Bach & Jordan, 2005) in
the context of incomplete Cholesky decomposition.
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