
Fast Stochastic Alternating Direction Method of Multipliers

Leon Wenliang Zhong WZHONG@CSE.UST.HK
James T. Kwok JAMESK@CSE.UST.HK

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

Abstract
We propose a new stochastic alternating direc-
tion method of multipliers (ADMM) algorith-
m, which incrementally approximates the ful-
l gradient in the linearized ADMM formulation.
Besides having a low per-iteration complexity
as existing stochastic ADMM algorithms, it im-
proves the convergence rate on convex problems
fromO(1/

√
T ) toO(1/T ), where T is the num-

ber of iterations. This matches the convergence
rate of the batch ADMM algorithm, but without
the need to visit all the samples in each itera-
tion. Experiments on the graph-guided fused las-
so demonstrate that the new algorithm is signif-
icantly faster than state-of-the-art stochastic and
batch ADMM algorithms.

1. Introduction
The alternating direction method of multipliers (ADMM)
(Boyd, 2010; Gabay & Mercier, 1976; Glowinski & Mar-
rocco, 1975) considers problems of the form

min
x,y

Φ(x, y) ≡ φ(x) + ψ(y) : Ax+By = c, (1)

where φ, ψ are convex functions, and A,B (resp. c) are
constant matrices (resp. vector) of appropriate sizes. Be-
cause of the flexibility in splitting the objective into φ(x)
and ψ(y), it has been a popular optimization tool in many
machine learning, computer vision and data mining ap-
plications. For example, on large-scale distributed con-
vex optimization, each φ or ψ can correspond to an opti-
mization subproblem on the local data, and the constraint
Ax+By = c is used to ensure all the local variables reach a
global consensus; for regularized risk minimization which
will be the focus of this paper, φ can be used for the empiri-
cal loss, ψ for the regularizer, and the constraint for encod-
ing the sparsity pattern of the model parameter. In compar-
ison with other state-of-the-art optimization methods such
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as proximal gradient methods (Duchi & Singer, 2009; Xi-
ao, 2010), the use of ADMM has been shown to have faster
convergence in several difficult structured sparse regular-
ization problems (Suzuki, 2013).

Existing works on ADMM often assume that Φ(x, y) is de-
terministic. In the context of regularized risk minimization,
this corresponds to batch learning and each iteration need-
s to visit all the samples. With the proliferation of data-
intensive applications, it can quickly become computation-
ally expensive. For example, in using ADMM on the over-
lapping group lasso, the matrix computations become cost-
ly when both the number of features and data set size are
large (Qin & Goldfarb, 2012). To alleviate this problem,
the use of stochastic and online techniques have recently
drawn a lot of interest. Wang & Banerjee (2012) first pro-
posed the online ADMM, which learns from only one sam-
ple (or a small mini-batch) at a time. However, in general,
each round involves nonlinear optimization and is thus not
computationally appealing. Very recently, three stochastic
variants of ADMM are independently proposed (Ouyang
et al., 2013; Suzuki, 2013). Two are based on the stochastic
gradient descent (SGD) (Bottou, 2004), while one is based
on regularized dual averaging (RDA) (Xiao, 2010). In both
cases, the difficult nonlinear optimization problem inher-
ent in the online ADMM is circumvented by linearization,
which then allows the resultant iterations in these stochastic
variants to be efficiently performed.

However, despite their low per-iteration complexities, these
stochastic ADMM algorithms converge at a suboptimal rate
compared to their batch counterpart. Specifically, the algo-
rithms in (Ouyang et al., 2013; Suzuki, 2013) all achieve
a rate of O(1/

√
T ), where T is the number of iterations,

for general convex problems and O(log T/T ) for strongly
convex problems; whereas batch ADMM achievesO(1/T )
and linear convergence, respectively (Deng & Yin, 2012;
He & Yuan, 2012). This gap in the convergence rates be-
tween stochastic and batch ADMM algorithms is indeed
not surprising, as it is also observed between SGD and
batch gradient descent in the analogous unconstrained opti-
mization setting (Mairal, 2013). Recently, there have been
several attempts on bridging this gap (Le Roux et al., 2012;
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Mairal, 2013; Shalev-Shwartz & Zhang, 2013a). For ex-
ample, Le Roux et al. (2012) proposed an approach whose
per-iteration cost is as low as SGD, but can achieve linear
convergence for strongly convex functions.

Along this line, we propose in the sequel a novel stochas-
tic algorithm that bridges the O(1/

√
T ) vs O(1/T ) gap in

the convergence rates for ADMM. The new algorithm en-
joys the same computational simplicity as existing stochas-
tic ADMM algorithms, but with a much faster convergence
rate matching that of its batch counterpart. Experimental
results demonstrate that it dramatically outperforms exist-
ing stochastic and batch ADMM algorithms.

Notation. Let ‖ · ‖ be the Euclidean norm. For a func-
tion f , we let f ′ be a subgradient in the subdifferential set
∂f(x) = {g | f(y) ≥ f(x) + gT (y − x), ∀y}. When f is
differentiable, we use ∇f for its gradient. A function f is
L-Lipschitz if ‖f(x) − f(y)‖ ≤ L‖x − y‖ ∀x, y. It is L-
smooth if ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, or equivalently,

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖x− y‖2. (2)

Moreover, a function f is µ-strongly convex if f(y) ≥
f(x) + gT (y − x) + µ

2 ‖y − x‖
2 for g ∈ ∂f(x).

2. Related Work
2.1. Batch and Stochastic ADMM

As in the method of multipliers, ADMM starts with the
augmented Lagrangian of problem (1):

L(x, y, β) = φ(x) + ψ(y) + βT (Ax+By − c)

+
ρ

2
‖Ax+By − c‖2, (3)

where β is the vector of Lagrangian multipliers, and ρ > 0
is a penalty parameter. At the tth iteration, the values
of x and y (denoted xt, yt) are updated by minimizing
L(x, y, β) w.r.t. x and y. Unlike the method of multipliers,
these are minimized in an alternating manner, which allows
the problem to be more easily decomposed when φ and ψ
are separable. Using the scaled dual variable αt = βt/ρ,
the ADMM update can be expressed as (Boyd, 2010):

xt+1←arg min
x

φ(x) +
ρ

2
‖Ax+Byt − c+ αt‖2, (4)

yt+1←arg min
y

ψ(y) +
ρ

2
‖Axt+1 +By − c+ αt‖2,(5)

αt+1←αt +Axt+1 +Byt+1 − c. (6)

In the context of regularized risk minimization, x denotes
the model parameter to be learned. Moreover,

φ(x) =
1

n

n∑
i=1

`i(x) + Ω(x), (7)

where n is the number of samples, `i(x) is sample i’s con-
tribution to the (possibly nonsmooth) empirical loss, and
Ω(x) is the regularizer. Problem (4) then becomes

xt+1 ← arg min
x

1

n

n∑
i=1

`i(x) + Ω(x)

+
ρ

2
‖Ax+Byt − c+ αt‖2. (8)

When the data set is large, solving (8) can be computa-
tionally expensive. To alleviate this problem, Wang &
Banerjee (2012) proposed the online ADMM that uses on-
ly one sample in each iteration. Consider Ω = 0. Let
the index of the sample selected at iteration t be k(t) ∈
{1, 2, . . . , n}. Instead of using (8), x is updated as xt+1 ←
arg minx `k(t)(x) + ρ

2‖Ax + Byt − c + αt‖2 + D(x,xt)
ηt+1

,
where D(x, xt) is a Bregman divergence between x and
xt, and ηt ∝ 1√

t
is the stepsize. In general, this involves

nonlinear optimization, making it potentially expensive.

Very recently, several stochastic versions of ADMM have
been independently proposed. Ouyang et al. (2013) pro-
posed the stochastic ADMM1, which updates x as

xt+1 ← arg min
x

`′k(t)(xt)
T (x− xt) +

‖x− xt‖2

2ηt+1

+
ρ

2
‖Ax+Byt − c+ αt‖2 (9)

=

(
1

ηt+1
I + ρATA

)−1
·[

xt
ηt+1

− `′k(t)(xt)− ρA
T (Byt − c+ αt)

]
,(10)

where `′k(t)(xt) is the (sub)gradient of `k(t) at xt, ηt ∝ 1√
t

is the stepsize, and I is the identity matrix. The updates for
y and α are the same as in (5) and (6).

For the special case where B = −I and c = 0, Suzuk-
i (2013) proposed a similar approach called online proxi-
mal gradient descent ADMM (OPG-ADMM), which uses
the inexact Uzawa method (Zhang et al., 2011) to further
linearize the last term in (9). Specifically, let LA be an
upper bound on the eigenvalues of ρATA it upper-bounds
ρ
2‖Ax− yt +αt‖2 with ρ

2‖Axt − yt +αt‖2 + ρAT (Ax−
yt + αt)

T (x− xt) + LA

2 ‖x− xt‖
2, leading to

xt+1←arg min
x

(`′k(t)(xt) + ρAT (Axt − yt + αt))
Tx

+
‖x− xt‖2

2ηt+1
(11)

=xt−ηt+1

[
`′k(t)(xt)+ρAT (Axt − yt + αt)

]
. (12)

1To avoid confusion, this particular stochastic variant will be
called STOC-ADMM in the sequel.
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Compared to (10), it avoids the inversion of 1
ηt+1

I+ρATA

which can be computationally expensive when ATA is
large. Suzuki (2013) also proposed another stochastic vari-
ant called RDA-ADMM based on the method of regularized
dual averaging (RDA) (Xiao, 2010) (again for the special
case with B = −I and c = 0), in which x is updated as

xt+1←arg min
x

(ḡt + ρAT (Ax̄RDA
t − ȳRDA

t + ᾱRDA
t )Tx

+
‖x‖2

ηt+1

=−ηt+1

[
ḡt + ρAT (Ax̄RDA

t − ȳRDA
t + ᾱRDA

t )
]
.(13)

Here, ηt ∝
√
t, ḡt = 1

t

∑t
j=1 `

′
k(j)(xj), x̄

RDA
t =

1
t

∑t
j=1 xj , ȳ

RDA
t = 1

t

∑t
j=1 yj , and ᾱRDA

t = 1
t

∑t
j=1 αj

are averages obtained from the past t iterations.

For general convex problems, these online/stochastic AD-
MM approaches all converge at a rate of O( σ√

T
) w.r.t.

either the objective value (Suzuki, 2013) or a weighted
combination of the objective value and feasibility violation
(Ouyang et al., 2013), where σ is the standard deviation of
the stochastic gradient. When φ is further required to be
strongly convex and that the gradient’s norm is bounded by
M , the convergence rate can be improved to O(M

2 log T
µT )

(except for RDA-ADMM whose convergence rate in this
situation is unclear). However, in both cases (general and
strongly convex), these are inferior to the O( 1

T ) and lin-
ear convergence rates of their batch ADMM counterparts
(Deng & Yin, 2012; He & Yuan, 2012; Hong & Luo, 2012).

2.2. Stochastic Optimization with Finite Samples

While the full gradient descent has linear convergence, it is
well-known that SGD only achieves sublinear convergence
(Mairal, 2013) (i.e., O(LT )). Recently, by observing that
the training set is indeed finite, it is shown that the con-
vergence rates of stochastic algorithms can be improved to
match those of the batch learning algorithms. A pioneer-
ing approach along this line is the stochastic average gra-
dient (SAG) (Le Roux et al., 2012), which considers the
optimization of a strongly convex sum of smooth functions
(minx

1
n

∑n
i=1 `i(x)). By updating an estimate of the ful-

l gradient incrementally in each iteration, the per-iteration
time complexity of SAG is only as low as SGD, yet surpris-
ingly its convergence rate is linear. Specifically, at iteration
t, a sample with index k(t) ∈ {1, 2, . . . , n} is randomly
chosen and its contribution to the objective’s gradient re-
computed. Variable x is then updated as

xt+1 ← xt −
η

n

n∑
i=1

∇`i(xτi(t)), (14)

where

τi(t) =

{
t i = k(t)
τi(t− 1) otherwise , (15)

and η is a constant stepsize. The recently proposed stochas-
tic coordinate descent (Shalev-Shwartz & Zhang, 2013b)
also obtains a similar convergence rate.

Another closely related approach is the minimization
by incremental surrogate optimization (MISO) (Mairal,
2013), which replaces each `i by some “surrogate” func-
tion in an incremental manner similar to SAG. To opti-
mize 1

n

∑n
i=1 `i(x) + Ω(x), where `i(x) is smooth and

convex, and Ω(x) is nonsmooth, MISO first approxi-
mates the smooth part as P `t (x) ≡ 1

n

∑n
i=1 `i(xτi(t)) +

∇`i(xτi(t))T (x − xτi(t)) + L
2 ‖x − xτi(t)‖

2, and then up-
dates x as xt+1 ← arg minx P

`
t (x) + Ω(x). This can be

viewed as an extension of SAG, and enjoys the same con-
vergence rate as proximal methods with full gradient, i.e.,
O
(
n
T

)
for general convex problems and linear convergence

for strongly convex problems. Proximal stochastic coordi-
nate descent methods are also studied recently in (Shalev-
Shwartz & Zhang, 2013a).

3. Stochastic Average ADMM (SA-ADMM)
On comparing the update rules on x for the STOC-ADMM
and OPG-ADMM ((9) and (11)) with that of the batch AD-
MM (8), one can see that the empirical loss on the whole
training set (namely, 1

n

∑n
i=1 `i(x)) is replaced by the lin-

ear approximation based on one single sample plus a proxi-
mal term ‖x−xt‖2

2ηt+1
. This follows the standard approach tak-

en by SGD. As discussed in Section 2.2, SGD has slower
convergence than full gradient descent. This also agrees
with the result in Section 2.1 that the existing stochastic
versions of ADMM all have slower convergence rates than
their batch counterpart.

Motivated by the recent stochastic optimization results in
Section 2.2, we will propose a novel stochastic ADMM al-
gorithm that achieves the same convergence rate as batch
ADMM on general convex problems. Unlike SAG or MIS-
O, the proposed algorithm is more general and can be ap-
plied to optimization problems with equality constraints,
which are naturally handled by ADMM.

3.1. Algorithm

In the following, we assume that `i in (7) is L-smooth (e.g.,
square loss and logistic loss). As in existing stochastic AD-
MM approaches (Wang & Banerjee, 2012; Ouyang et al.,
2013; Suzuki, 2013), y and α are still updated by (5), (6).
The key difference is on the update of x (Algorithm 1).

First, consider the special case where Ω = 0. At itera-
tion t, we randomly choose a sample k(t) uniformly from
{1, 2, . . . , n}, and then update x as

xt+1 ← arg min
x
P `t (x) + r(x, yt, αt), (16)
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Algorithm 1 Stochastic average alternating direction
method of multipliers (SA-ADMM).

1: Initialize: x0, y0, α0 and τi(−1) = 0∀i.
2: for t = 0, 1, . . . , T − 1 do
3: randomly choose k ∈ {1, 2, . . . , n}, and set τi(t) as

in (15);
4: update xt+1 using (17) or (20) when Ω = 0; and use

(23) when Ω 6= 0;
5: yt+1 ← arg miny ψ(y)+ ρ

2‖Axt+1+By−c+αt‖2;

6: αt+1 ← αt + (Axt+1 +Byt+1 − c);
7: end for
8: Output: x̄T ← 1

T

∑T
t=1 xt, ȳT ←

1
T

∑T
t=1 yt.

where

P `t (x) ≡ 1

n

n∑
i=1

`i(xτi(t)) +∇`i(xτi(t))
T (x− xτi(t))

+
L

2
‖x− xτi(t)‖

2,

r(x, y, α) ≡ ρ

2
‖Ax+By − c− α‖2,

and τi(t) is as defined in (15). Hence, as in SAG, out
of the n gradient terms in (16), only one of them (which
corresponds to sample k(t)) is based on the current iterate
xt, while all others are previously-stored gradient values.
Moreover, note its similarity with the STOC-ADMM up-
date in (9), which only retains terms related to `k(t), while
(16) uses the information from all of {`1, `2, . . . , `n}. An-
other difference with (9) is that the proximal term in (16)
involves a constant L, while (10) requires a time-varying
stepsize ηt.

By setting the derivative of (16) to zero, we have

xt+1 ← (ρATA+ LI)−1

·
[
Lx̄t − ρAT (Byt − c+ αt)−∇`t

]
, (17)

where x̄t = 1
n

∑n
i=1 xτi(t), and ∇`t =

1
n

∑n
i=1∇`i(xτi(t)). When the dimension of ATA is

manageable, (ρATA + LI)−1 can be pre-computed and
stored. On the other hand, when ρATA+LI is large, even
storing its inverse can be expensive. A technique that has
been popularly used in the recent ADMM literature is the
inexact Uzawa method (Zhang et al., 2011), which uses (2)
to approximate r(x, yt, αt) by its upper bound:

r(x, yt, αt) ≤ P rt (x)

≡ r(xt, yt, αt) +∇txrT (x− xt)

+
LA
2
‖x− xt‖2, (18)

where∇txr ≡ ρAT (Axt+Byt−c+αt) andLA is an upper
bound on the eigenvalues of ρATA (He & Yuan, 2012).

Hence, (16) becomes

xt+1 ← arg min
x
P `t (x) + P rt (x) (19)

=
Lx̄t + LAxt −

[
∇`t +∇txr)

]
LA + L

. (20)

Analogous to the discussion on the relationship between
(16) and (9) above, our (20) is also similar to the OPG-
ADMM update in (12), except that all the information from
{`1, `2, . . . , `n} are now used. Moreover, note that al-
though RDA-ADMM also uses an average of gradients (ḡt
in (13)), its convergence is still slower than the proposed
algorithm (as will be seen in Section 3.4).

When Ω 6= 0, it can be added back to (16), leading to

xt+1 ← arg min
x
P `t (x) + Ω(x) + r(x, yt, αt). (21)

In general, it is easier to solve with the inexact Uzawa sim-
plification. The update then becomes

xt+1 ← arg min
x
P `t (x) + P rt (x) + Ω(x) (22)

= arg min
x

1

2

∥∥∥∥∥x− Lx̄t + LAxt −
[
∇`t +∇txr

]
LA + L

∥∥∥∥∥
2

+
Ω(x)

LA + L
. (23)

This is the standard proximal step popularly used in op-
timization problems with structured sparsity (Bach et al.,
2011). As is well-known, it can be efficiently computed as
Ω is assumed “simple” (e.g., Ω(x) = ‖x‖1, ‖x‖2, ‖x‖∞
and various mixed norms (Duchi & Singer, 2009)).

3.2. Discussion

In the special case where ψ = 0, (1) reduces to minx φ(x)
and the feasibility violation r(x, yt, αt) can be dropped.
The update rule in (16) then reduces to MISO using the
Lipschitz gradient surrogate; and (21) corresponds to the
proximal gradient surrogate (Mairal, 2013). SAG, on the
other hand, does not have the proximal term ‖x− xτi(t)‖2
in its update rule, and also cannot handle a nonsmooth Ω.
When ψ 6= 0, (18) can be regarded as a quadratic surrogate
(Mairal, 2013). Then, (19) (resp. (21)) is a combination
of the Lipschitz (resp. proximal) gradient surrogate and
quadratic surrogate, which can be easily seen to be another
surrogate function in the sense of (Mairal, 2013). Note that
when ψ 6= 0, MISO has to compute the proximity operator
w.r.t. the equality constraints, which is difficult in general.

The stochastic algorithms in Section 2.1 only require φ
to be convex, and do not explicitly consider its form in
(7). Hence, there are two possibilities in the handling of
a nonzero Ω. The first approach directly takes the nons-
mooth φ in (7), and uses its subgradient in the update equa-
tions ((10), (12) and (13)). However, unlike the proximal
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step in (23), this does not exploit the structure of φ and
subgradient descent often has slow empirical convergence
(Duchi & Singer, 2009). The second approach folds Ω into
ψ by rewriting the optimization problem as

min
x,

[
y
z

] 1

n

n∑
i=1

`i(x) + [ψ(y) + Ω(z)]

s.t.
[
A
I

]
x+

[
B 0
0 −I

] [
y
z

]
=

[
c
0

]
.

In the update step for
[
y
z

]
, it is easy to see from (5) that y

and z are decoupled and thus can be optimized separately.
In comparison with (23), a disadvantage of this reformula-
tion is that an additional variable z (which is of the same
size as x) has to be introduced. Hence, it is more com-
putationally expensive empirically. Moreover, the radius
of the parameter space is also increased, leading to big-
ger constants in the big-O notation of the convergence rate
(Ouyang et al., 2013; Suzuki, 2013).

3.3. Per-Iteration Time Complexity

The proposed algorithm uses the same update rules for yt
and αt as the existing stochastic ADMM algorithms (in
Section 2.1). Hence, we only consider the complexities of
the xt updates here. For easy comparison, we takeB = −I
and c = 0, as assumed in (Suzuki, 2013). OPG-ADMM
is the most efficient. Its update rule (12) takes O(nz(A))
time, where nz(A) is the number of nonzero elements in
A. Both RDA-ADMM and the proposed update rule (20)
require taking the average of the gradients/variables. The
resultant complexities areO(nz(A) +dx) andO(nz(A) +
dy), respectively, where dx (resp. dy) is the dimensionality
of x (resp. y). Typically, nz(A) is larger than dx and dy ,
and so OPG-ADMM, RDA-ADMM and rule (20) have the
same complexity. STOC-ADMM (with update rule (10)) is
the most expensive as matrix inversion is involved, which
takes O(d3x) time. As to the proposed rule (17), one can
pre-compute the matrix inverse as the step size is a con-
stant.

3.4. Convergence Analysis

In this section, we show that the proposed ADMM algo-
rithm has fast convergence. Recall that in the standard AD-
MM, equation (4) is used for updating x. In the proposed
algorithm, the loss and feasibility violation are linearized,
making the convergence analysis more difficult than those
in (He & Yuan, 2012; Wang & Banerjee, 2012). Moreover,
though related to MISO, our analysis is a non-trivial ex-
tension because of equality constraints and additional La-
grangian multipliers in the ADMM formulation.

Let ‖x‖H ≡ xTHx for a psd matrix H , Hx ≡ LAI −

ρATA, and Hy ≡ ρBTB. Denote the optimal solution of
(1) by (x∗, y∗). As in (Ouyang et al., 2013), we first consid-
er the convergence of (x̄T , ȳT ) in terms of a combination
of the objective value and feasibility violation (weighted
by some γ > 0). The following theorem establishesO

(
1
T

)
convergence.

Theorem 1 Using update rule (23),

E [Φ(x̄T , ȳT )− Φ(x∗, y∗) + γ‖Ax̄T +BȳT − c‖]

≤ 1

2T

{
‖x∗ − x0‖2Hx

+ nL‖x∗ − x0‖2 + ‖y∗ − y0‖2Hy

+2ρ

(
γ2

ρ2
+ ‖α0‖2

)}
.

When Ω = 0 and the inexact Uzawa simplification is not
used, update rule (17) leads to

E [Φ(x̄T , ȳT )− Φ(x∗, y∗) + γ‖Ax̄T +BȳT − c‖]

≤ 1

2T

{
nL‖x∗ − x0‖2 + ‖y∗ − y0‖2Hy

+2ρ

(
γ2

ρ2
+ ‖α0‖2

)}
.

Remark 1 When Ω = 0, (22) reduces to (19). Hence, The-
orem 1 trivially holds when update rule (20) is used.

However, similar to the other ADMM algorithms, the
(x̄T , ȳT ) obtained from Algorithm 1 may not exactly sat-
isfy the linear constraint Ax + By = c. As discussed in
(Suzuki, 2013), when B is invertible, the feasibility vio-
lation can be reduced to zero by obtaining y from x̄T as
y(x̄T ) = B−1(c − Ax̄T ). The following Corollary shows
that the (x̄T , y(x̄T )) pair still have O

(
1
T

)
convergence to-

wards the objective value.

Corollary 1 Assume that ψ is L̃-Lipschitz continuous, and
B is invertible. Using the update rule (20) or (23), we have

E [Φ(x̄T , y(x̄T ))− Φ(x∗, y∗)]

≤ 1

2T

{
‖x∗ − x0‖2Hx

+ nL‖x∗ − x0‖2 + ‖y∗ − y0‖2Hy

+ρ

(
L̃2LB
ρ2

+ ‖α0‖2
)}

,

where LB is the largest eigenvalue of (B−1)TB−1. When
update rule (17) is used,

E [Φ(x̄T , y(x̄T ))− Φ(x∗, y∗)]

≤ 1

2T

{
nL‖x∗ − x0‖2 + ‖y∗ − y0‖2Hy

+ρ

(
L̃2LB
ρ2

+ ‖α0‖2
)}

.
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Alternatively, when A is invertible, one can obtain x from
ȳT as x(ȳT ) = A−1(c − BȳT ). The following corollary
shows that (x(ȳT ), ȳT ) also has O

(
1
T

)
convergence.

Corollary 2 Assume that Ω is L̂-Lipschitz continuous, and
A is invertible. Using the update rule (20) or (23), we have

E [Φ(x(ȳT ), ȳT )− Φ(x∗, y∗)]

≤ 1

2T

{
‖x∗ − x0‖2Hx

+ nL‖x∗ − x0‖2 + ‖y∗ − y0‖2Hy

+ρ

(
(L̂+ L)2L̂A

ρ2
+ ‖α0‖2

)}
,

where L̂A is the largest eigenvalue of (A−1)TA−1. When
update rule (17) is used,

E [Φ(x(ȳT ), ȳT )− Φ(x∗, y∗)]

≤ 1

2T

{
nL‖x∗ − x0‖2 + ‖y∗ − y0‖2Hy

+ρ

(
(L̂+ L)2L̂A

ρ2
+ ‖α0‖2

)}
.

Remark 2 The convergence rates obtained here are of the
form O( nT ). Recall that batch ADMM has O( 1

T ) con-
vergence (Section 2.1). It may thus appear that the pro-
posed stochastic algorithms are much slower, especially
for large n. However, in the worst case, this is inevitable.
For example, consider the lasso problem on the data set
{(zi, li)}ni=1, where zi is the input and li is the output. This
can be formulated as φ(x) =

∑n
i=1(li − zTi x)2, ψ(y) =

‖y‖1, A = −B = I , and c = 0. Assume that each in-
put sample is nonzero in only one and unique dimension
(e.g., [zi]i 6= 0 and [zi]j = 0 ∀i 6= j). Obviously, there
are indeed n independent optimization problems. The s-
tochastic algorithm can only update one dimension in each
iteration, and so will inevitably be n times slower than
the batch algorithm. However, this situation is very rare
in practice. Empirical results in Section 4 show that s-
tochastic algorithms always outperform their batch coun-
terparts. It is also interesting to compare with the exist-
ing stochastic ADMM algorithms. In this worst-case s-
cenario, σ2 = O(n), and these algorithms converge as
O( σ√

T
) = O(

√
n√
T

). When the whole data set is processed
more than once (as is typically the case), T > n as each
iteration processes only one sample, and O(

√
n√
T

) is worse
than our O( nT ) rate.

Instead of updating the gradient of only one sample in each
iteration, extension to the use of mini-batch is straightfor-
ward. This is particularly useful when (i) the gradients of
the multiple samples in the mini-batch can be computed
in parallel; or (ii) the other steps are much more expen-
sive than computing the gradient of one single sample. The

analysis in this section still holds, with n simply replaced
by n

nb
, where nb is the mini-batch size. This can thus also

be used to reduce the essential value of n.

Remark 3 Compared with the existing stochastic ADMM
algorithms, the faster convergence of Algorithm 1 comes
at the cost of an extra O(ndx) memory for the historical
information used in Step 4. This is similar to the algorithms
in (Le Roux et al., 2012; Mairal, 2013).

Remark 4 The present analysis considers convergence
w.r.t. the training objective (or a combination with the fea-
sibility violation), but does not directly bound the gener-
alization performance. Intuitively, for any algorithm that
only have access to a finite training set, it is impossible
to achieve perfect generalization even after infinite itera-
tions. Nevertheless, improved generalization performance
is observed in our experiments (Section 4). Moreover, while
Agarwal et al. (2012) show that O( 1√

T
) is the optimal

convergence rate for any stochastic optimization scheme
on general convex problems, this does not contradict our
analysis as we further assume a finite training sample.

4. Experiments
In this section, we perform experiments on the gen-
eralized lasso model (Tibshirani & Taylor, 2011):
minx

1
n

∑n
i=1 `i(x) + λ‖Ax‖1, where λ is the regular-

ization parameter, and A is a penalty matrix specifying the
desired structured sparsity pattern of x. With different set-
tings of A, this can be reduced to models such as the fused
lasso, trend filtering, and wavelet smoothing. Here, we will
focus on the graph-guided fused lasso (Kim et al., 2009).
As in (Ouyang et al., 2013), the graph is obtained by s-
parse inverse covariance selection (Banerjee et al., 2008),
and A = [G; I] for the sparsity pattern G. Moreover, as
classification problems are considered here, we use the lo-
gistic loss instead of the square loss.

While proximal methods have been used in the optimiza-
tion of graph-guided fused lasso (Barbero & Sra, 2011; Liu
et al., 2010), in general, the underlying proximal step is d-
ifficult to solve because of the presence of A. ADMM, by
splitting the objective as φ(x) = 1

n

∑n
i=1 `i(x), ψ(y) =

λ‖y‖1 and with constraint Ax = y, has been shown to be
more efficient (Ouyang et al., 2013; Suzuki, 2013). In this
experiment, we compare

1. two variants of the proposed method: SA-ADMM,
which uses update rule (17); and SA-IU-ADMM,
which uses (20)) based on the inexact Uzawa method;

2. three existing stochastic ADMM algorithms: STOC-
ADMM (Ouyang et al., 2013); OPG-ADMM (Suzuki,
2013); and RDA-ADMM (Suzuki, 2013);
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(a) a9a (b) covertype (c) rcv1 (d) sido

(e) a9a (f) covertype (g) rcv1 (h) sido

Figure 1. Performance versus running time on general convex problems. Top: objective value; Bottom: testing loss.

3. two deterministic ADMM variants: batch-ADMM,
which is the batch version of SA-ADMM using ful-
l gradient (i.e., τi(t) = t ∀i); and batch-IU-ADMM,
which is the batch version of SA-IU-ADMM.

All these share the same update rules for y and α (i.e., step-
s 5 and 6 in Algorithm 1), and differ only in the updating
of x, which are summarized in Table 1. We do not com-
pare with the online ADMM (Wang & Banerjee, 2012) or
a direct application of the batch ADMM, as an expensive
matrix inverse is required for the update of x in (10). More-
over, it has been shown that the online ADMM is slower
than RDA-ADMM (Suzuki, 2013).

Table 1. A comparison of the update rules on x.
gradient linearize constant

computation ‖Ax+By−c‖2? stepsize?
SA-ADMM average no yes

SA-IU-ADMM average yes yes
STOC-ADMM one sample no no
OPG-ADMM one sample yes no
RDA-ADMM average (history) yes no
batch-ADMM all samples no yes

batch-IU-ADMM all samples yes yes

Experiments are performed on four popular binary classi-
fication data sets2 (Table 2) (Le Roux et al., 2012; Suzu-
ki, 2013). For each data set, half of the samples are used
for training, while the rest for testing. To reduce statistical
variability, results are averaged over 10 repetitions. To en-
sure that the ADMM iterates satisfy the constraint during
the iterations, we report the performance using (xt, y(xt))
as discussed in Section 3.4. Moreover, we fix the regu-
larization parameter λ to 10−5 for a9a, covertype, and to

2a9a, covertype and rcv1 are from the LIBSVM archive, and
sido from the Causality Workbench website.

10−4 for rcv1 and sido. For ρ in (3) and the stepsize (or
its proportionality constant), we use a small training subset
with 500 samples, and choose the parameter setting with
the smallest training objective value after running the s-
tochastic algorithm over 5 data passes; or after running the
batch algorithm for 100 iterations. As the proposed meth-
ods require historical information, we initialize them with
OPG-ADMM for the first n iterations. All methods are im-
plemented in MATLAB, and experiments are performed on
a PC with an Intel i7-2600K CPU and 32GB memory.

Table 2. Summary of data sets.
data set number of samples dimensionality

a9a 32,561 123
covertype 581,012 54

rcv1 20,242 47,236
sido 12,678 4,932

Figure 1 shows the objective value and testing loss obtained
by the various algorithms versus running time. Overall,
SA-ADMM and SA-IU-ADMM are the fastest and rapid-
ly lead to a model with good generalization performance.
These are followed by the other stochastic algorithms, whie
the batch ADMM algorithms are the slowest.

As in (Mairal, 2013), we also study the variation of the
objective value with the number of “effective passes” over
the data3. For a batch algorithm, one effective pass is the
same as one iteration; whereas for a stochastic algorithm,
one effective pass is equal to n iterations (as each iteration
processes only one sample). Results are shown in Figure 2.
As can be seen, the relative performance of the various al-

3Because of the lack of space, the variation of the testing loss
with the number of effective passes is not shown here. Similar to
the objective value, the trend is similar to that in Figure 1.
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(a) a9a (b) covertype (c) rcv1 (d) sido

(e) a9a (f) covertype (g) rcv1 (h) sido

Figure 2. Performance versus the number of effective passes on general convex problems. Top: objective value; Bottom: testing loss.

(a) a9a (b) covertype (c) rcv1 (d) sido

(e) a9a (f) covertype (g) rcv1 (h) sido

Figure 3. Performance versus the running time on strongly convex problems. Top: objective value; Bottom: testing loss.

gorithms is similar to that in Figure 1. In other words, not
only is the total time required by the proposed algorithms
shorter, the number of iterations required is also smaller.

As discussed in Section 2.1, STOC-ADMM and OPG-
ADMM has O( log T

T ) convergence when the loss is strong-
ly convex. It is still an open question whether this also
holds for the proposed algorithm. In the following, we
compare their performance empirically by adding an extra
`2-regularizer on x to the model. Results are shown in Fig-
ure 3. As can be seen, the improvement of SA-IU-ADMM
over others is even more dramatic.

5. Conclusion
In this paper, we developed a novel stochastic algorithm
that incrementally approximates the full gradient in the lin-

earized ADMM formulation. It enjoys the same computa-
tional simplicity as existing stochastic ADMM algorithms,
but has a fast convergence rate that matches the batch AD-
MM. Empirical results on both general convex and strongly
convex problems demonstrate its efficiency over batch and
stochastic ADMM algorithms. In the future, we will in-
vestigate the theoretical convergence rate of the proposed
algorithm on strongly convex problems.
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