
Rival Penalized Competitive Learning for Model-Based Sequence Clustering

Martin H. Law
Department of Computer Science

Hong Kong Baptist University
Kowloon Tong, Hong Kong
martin@comp.hkbu.edu.hk

James T. Kwok
Department of Computer Science

Hong Kong Baptist University
Kowloon Tong, Hong Kong
jamesk@comp.hkbu.edu.hk

Abstract

In this paper, we propose a model-based, competitive
learning procedure for the clustering of variable-length se-
quences. Hidden Markov models (HMMs) are used as rep-
resentations for the cluster centers, and rival penalized
competitive learning (RPCL), originally developed for do-
mains with static, fixed-dimensional features, is extended.
State merging operations are also incorporated to favor the
discovery of smaller HMMs. Simulation results show that
our extended version of RPCL can produce a more accu-
rate cluster structure thank-means clustering.

1. Introduction

Clustering aims at dividing a set of observations into
different groups so that members of the same group are
more alike than members of different groups. Knowledge
of this cluster structure is usually very important in un-
derstanding data with unknown distributions. Traditional
clustering algorithms work only with data having static,
fixed-dimensional features. However, with the increasingly
widespread use of information system technologies and the
Internet, there is now an explosive growth of many dif-
ferent varieties of databases. One example is the Gen-
Bank DNA sequence database, which contains approxi-
mately 3,400,000,000 bases in 4,610,000 sequence records
as of August 1999. These databases contain sequential data,
and pose a challenge to existing clustering algorithms.

One approach to cater for these sequential data is to
first define a similarity measure between sequences (such
as those based on trigram statistics or dynamic time warp-
ing) and then apply standard similarity-based clustering al-
gorithms [4, 5]. However, this usually results in a loss of
information and is restricted to fixed-length sequences. Ex-
perimental results also showed that only a rough clustering
can be obtained. Another paradigm is to use model-based
clustering. Here, clusters are represented as models, instead

of represented as data prototypes in similarity-based meth-
ods. For the processing of sequences, a natural choice for
the model is the hidden Markov model (HMM) [7]. This al-
lows easy handling of variable-length sequences. Moreover,
the dynamics of sequence generation in HMM has also been
proved to be a reasonable approximation in many real-world
problems. Previous attempts on using HMMs for sequence
clustering [2, 6, 8] usually employ a mixture of HMMs, and
then use EM algorithm to estimate the clusters.

However, an important problem in many clustering algo-
rithms is on how to determine the number of clusters. In
general, model selection criteria such as AIC, BIC or MDL
may be used. As an example, in using HMMs for sequence
clustering, Li and Biswas [3] run a number of trials with dif-
ferent numbers of HMMs, and then select the configuration
with the highest partition mutual information. The major
drawback is that they can be very time-consuming.

Another issue is the complexities of the cluster centers.
As mentioned above, traditional clustering algorithms rep-
resent the centers as data prototypes and so all are equally
complex. Here, however, HMMs are used and larger HMMs
can, in general, yield higher likelihoods than smaller ones.
Hence, the resultant HMMs discovered in the cluster struc-
ture may be larger than the generating models.

In this paper, we propose the combination of HMMs and
rival penalized competitive learning (RPCL) [10] with state
merging for sequence clustering. The rest of this paper is
organized as follows. Brief introductions to the HMM and
RPCL are given in Sections 2 and 3 respectively. Section 4
discusses how these two can be integrated. Simulation re-
sults are presented in Section 5, and the last section gives
some concluding remarks.

2. Hidden Markov Model

A discrete HMM has a set of statesf1; : : :Ng and an al-
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3. Rival Penalized Competitive Learning

Rival-penalized competitive learning (RPCL) [10] is an
improvement over traditional competitive learning proce-
dures by trying to determine the correct number of clusters
during learning. The basic idea is that for each input pat-
tern, not only is its winner adapted towards this input, but
its rival (i.e., the first runner-up) is also moved away from
this pattern (delearned). In the following, denote the weight
vector associated with the cluster uniti by w

i

. RPCL then
consists of the following two steps:

1. Randomly sample a patternx from the data. Find
the winner
 = argmin
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Experimentally, RPCL outperforms frequency sensitive
competitive learning [10]. Recently, it has also been suc-
cessfully used for financial time series forecasting [1].

4. Combining RPCL and HMM

4.1. The Basic Algorithm

In RPCL, as for other traditional clustering algorithms,
the cluster centers are of the same type as the patterns. In
this paper, however, we represent each cluster center by an
HMM �, and so the clusters are of a different type from the
patterns (which are sequences). The original RPCL algo-
rithm is thus modified as:

1. At thek-iteration, randomly sample a sequencex
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Find the winner
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1In the sequel, variables corresponding to thei-th sequence will be
denoted using the superscript(i).

and can be computed by the forward algorithm or ap-
proximated by the Viterbi algorithm [7].

2. Update the HMM parameters for the winner�




and its
rival �

r

, such that�



is moved closer to the sequence
x

(k), whereas�
r

is moved further away.

To perform step 2 above, we first define, for each�,
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1 if � is the winner ofx(i),
�� if � is the first runner-up forx(i),
0 otherwise,

where0 < � < 1. For a particular�, consider its associated
subset of sequences infx(i)gk

i=1

that� has either been its
winner or first runner-up. Consider maximizing the follow-
ing weighted sum of log likelihoods:
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with respect to the parameters of�. Here,0 < � < 1 is
a decaying factor which puts a stronger emphasize on the
more recent sequences (as is typical for online learning al-
gorithms). When� is a winner, the contribution ofx(i) on
the learning of� is positive, and� will be moved closer to
x

(i). On the contrary, when� is the first runner-up, the ef-
fect ofx(i) on� will be discounted and� will subsequently
be moved away fromx(i). Moreover,0 < � < 1 means that
the delearning rate will be smaller than the learning rate,
which is in line with the original RPCL algorithm.

The standard Baum-Welch algorithm can be used to op-
timize (4), with the M-step in (1) and (2) modified to
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4.2. Encouraging a Smaller Number of Clusters

To further encourage a smaller number of clusters in the
final cluster structure, we adopt the heuristic of favoring
clusters (which are HMMs) that have already been winning
frequently. In other words, instead of using (3), we have
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where� is a user-defined parameter, andw
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4.3. Encouraging Smaller HMMs

Larger HMMs can yield higher likelihoods than smaller
HMMs, and so are more likely to win. To alleviate this
problem, we incorporate the idea of state merging [3, 9] into
RPCL. For each HMM in the clustering process, two adja-
cent statesi and i + 1 with closest emission probabilities
(as measured by the symmetric divergence) are considered
for merging. The emission probabilities of the merged state
is the mean of those ofi andi + 1, while the self-looping
probability is set such that the expected time to stay in the
merged state remains the same as before. This new candi-
date HMM is then adapted for a certain period of time and,
at the end, its likelihood compared to that of the original
HMM. If the change is small, the original HMM will be
replaced, and another round of state merging repeated.

5. Simulation

Experiments are performed on a synthetic problem with
four generating HMMs and 16 symbols (Figure 1). They are
not well separated, and the Bayes error is about 15%. 250
variable-length sequences are generated from each HMM.
The clustering process starts with 35 HMMs as possible
cluster centers. Among these 35 HMMs, 5 are of 2-state,

another 5 are of 3-state, and so on. The experiment is re-
peated 10 times, each presenting the 1000 sequences in a
different random order. The resultant non-empty clusters
for a representative run by the four methods (k-means2, k-
means with conscience, RPCL and RPCL with state merg-
ing) are shown in Figure 2 Here, the top row corresponds
to the 1-state HMMs, the second row corresponds to the 2-
state HMMs, and so on. The size of each pie is proportional
to the number of sequences won by the corresponding clus-
ter, and the four colors correspond to sequences from the
four generating HMMs. The ideal results, obtained by using
only the four generating HMMs as possible cluster centers,
are also shown for comparison. As can seen, RPCL locates
exactly four clusters. With the incorporation of state merg-
ing, the clusters’ complexities can also be correctly deter-
mined. On the other hand, bothk-means procedures yield
much larger numbers of clusters with varying complexities.

(a) HMM 1 (b) HMM 2

(c) HMM 3 (d) HMM 4

Figure 1. The four generating HMMs.

Figure 3 shows the distances (as measured by symmetric
divergence) between the HMMs obtained and the four gen-
erating HMMs. Here, each row corresponds to one gener-
ating HMM, and each column corresponds to one HMM in
Figure 2. The top, leftmost HMM in Figure 2 corresponds
to the leftmost column in Figure 3. The remaining HMMs
are then shown in the order from left-to-right, up-to-down.
The whiter a particular square, the closer are the two corre-
sponding HMMs. As can be seen, both RPCL procedures
produce an unique white square in each row, indicating that
each generating HMM is close to one and only one clus-
ter. Thek-means procedures, on the other hand, yield much
inferior results.

2Traditional k-means clustering is modified for variable-length se-
quence clustering in a way similar to RPCL as described in Section 4.1.



6. Conclusion

In this paper, we extend RPCL for the clustering of
variable-length sequences. As in traditional domains with
static, fixed-dimensional features, RPCL produces a more
accurate estimation of the number of clusters. Besides, the
incorporation of state merging further allows the complexi-
ties of the HMMs to be correctly determined. More experi-
ments on real world data will be performed in the future.
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Figure 2. Clustering results.
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