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Abstract

Image fusion attempts to combine complementary information from multiple images of the same scene, so that the resultant
image is more suitable for human visual perception and computer-processing tasks such as segmentation, feature extraction and
object recognition. This paper presents an approach that fuses images with diverse focuses by first decomposing the source images
into blocks and then combining them by the use of spatial frequency. The algorithm is computationally simple and can be im-
plemented in real-time applications. Experimental results show that the proposed method is superior to wavelet transform based
methods in both objective and visual evaluations. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, image fusion has become an important to-
pic in image analysis and computer vision [1,2,8,14].
Image fusion refers to image processing techniques that
produce a new, enhanced image by combining images
from two or more sensors. The fused image is then more
suitable for human/machine perception, and for further
image-processing tasks such as segmentation, feature
extraction and object recognition.

The simplest image fusion method just takes the
pixel-by-pixel gray level average of the source images.
This, however, often leads to undesirable side effects
such as reduced contrast. In recent years, various
methods based on the multiscale transforms have been
proposed to address this issue. The basic idea is to
perform a multiresolution decomposition on each
source image, then integrate all these decompositions to
form a composite representation, and finally reconstruct
the fused image by performing an inverse multiresolu-
tion transform. Examples of this approach include the
Laplacian pyramid [3], the gradient pyramid [4], the
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ratio-of-low-pass pyramid [12], the morphological pyr-
amid [10], and the wavelet transform [6,9,13].

In this paper, we consider situations where two or
more objects in the scene are at different distances from
the camera. As is typical with most inexpensive cameras,
the image thus obtained will not be in focus everywhere,
i.e., if one object is in focus, another one will be out of
focus. However, by fusing images with different focus
points, an image that is in focus everywhere can be
obtained [11]. In this paper, an efficient pixel level image
fusion algorithm based on the spatial frequency is pro-
posed. This method is computationally simple and can
be used in real-time applications. Moreover, the resul-
tant fused images are both quantitatively and visually
superior to those produced by the wavelet transform
methods.

An important preprocessing step in image fusion is
image registration, i.e., corresponding pixel positions in
the source images must refer to the same location. In
this paper, we will focus on the fusion issue and the
source images are assumed to have already been regis-
tered.

The rest of this paper is organized as follows. A brief
introduction to the spatial frequency will be given in
Section 2. The proposed fusion scheme will be described
in Section 3. Experimental results will be presented in
Section 4, and the last section gives some concluding
remarks.
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2. Spatial frequency

Spatial frequency measures the overall activity level
in an image [7]. For an M x N image block F, with gray
value F(m,n) at position (m,n), the spatial frequency is
defined as

SF =/ (RF)* + (CF)?, (1)

where RF and CF are the row frequency
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respectively.

Fig. 1(a) shows a 64 x 64 image block extracted from
the ‘Lena’ image. Fig. 1(b)-(e) show the degraded ver-
sions after blurring with a Gaussian of radius 0.5, 0.8,
1.0 and 1.5, respectively. As can be seen from Table 1,
when the image gets more blurred, the spatial frequency
diminishes accordingly. Another experiment on an im-
age block extracted from the ‘Peppers’ image also pro-

(e)

Fig. 1. Original and blurred versions of an image block extracted from
the ‘Lena’ image: (a) original image; (b) radius=0.5; (¢) radius=10.8;
(d) radius=1.0; (e) radius=1.5.

Table 1
Spatial frequencies of the image blocks in Fig. 1

Fig. 1(a)  Fig. 1(b)  Fig. 1(c)  Fig. 1(d)  Fig. 1(e)
SF  16.10 12.09 9.67 8.04 6.49

- (b)

(c) (d)

(e)

Fig. 2. Original and blurred versions of an image block extracted
from the ‘peppers’ image: (a) original image; (b) radius=0.5;
(c) radius =0.8; (d) radius=1.0; (e) radius=1.5.

Table 2
Spatial frequencies of the image blocks in Fig. 2

Fig. 2(a)  Fig. 2(b) Fig. 2(c) Fig. 2(d) Fig. 2(e)
SF  28.67 17.73 12.98 10.04 7.52

duced similar results (Fig. 2 and Table 2). These
demonstrate that the spatial frequency can be used to
reflect the clarity of an image.

3. Multifocus image fusion

Fig. 3 shows a schematic diagram for the proposed
multifocus image fusion method. Here, we only consider
the fusing of two source images, though it can be ex-
tended straightforwardly to handle more than two im-
ages. The algorithm consists of the following steps:

1. Decompose the source images 4 and B into blocks of
size M x N. Denote the ith blocks of 4 and B by 4;
and B;, respectively.

2. Compute the spatial frequency of each block, and de-
note the spatial frequencies of 4; and B; by SF/ and
SFB, respectively.
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Fig. 3. Schematic diagram for multifocus image fusion.

3. Compare the spatial frequencies of two correspond-
ing blocks 4; and B;, and construct the ith block F;
of the fused image as

4, SFA > SFF + TH,
F={ B, SFA < SFF — TH, (4)
(4; +B;)/2, otherwise.

Here, TH is a user-defined threshold, and (4; + B;)/2
means taking the pixel-by-pixel gray level average of
A; and B;.

4. Verify and correct the fusion result in step 3: specifi-
cally, if the center block comes from A but the major-
ity of its surrounding blocks are from B, then this
center block will be changed to be from B, and vice
versa. In the implementation, we use a majority filter
together with a 3 x 3 window.

4. Experimental results
4.1. Setup for quantitative evaluation

Experiments have been performed on two sets of
images. Each original (reference) image (Figs. 4(a) and
5(a)) contains two or more objects, and are in good
focus everywhere. Their sizes are 128 x 128 and
480 x 640, respectively. We artificially produce a pair of
out-of-focus images from each reference image, by first
blurring one object to obtain an image, and then blur-
ring another object to produce a second image. Figs.
4(b) and (c) show the two images obtained by blurring
Fig. 4(a) with a Gaussian of radius 0.3 and 0.5, re-
spectively. Similarly, Figs. 5(b) and (c) are obtained by
blurring Fig. 5(a) with a Gaussian of radius 6 and 2,
respectively.

The root mean square error (RMSE) is used as the
evaluation criterion. For reference image R and fused
image F (both of size I x J), the RMSE is defined as

RMSE \/251 YRl ~ FT .
I xJ

where R(i, j) and F(i, ) are the pixel values at position
(i,7) of R and F, respectively. Mutual information has
also been used. But the results are similar to RMSE and
so will not be reported here.

4.2. Effects of the block size and threshold

Table 3 shows the RMSEs’ obtained on fusing images
in Figs. 4(b) and (c) with different block sizes and
thresholds. The best result (Fig. 4(d)) corresponds to the
use of 8 x 8 blocks and a threshold of 1.75. Table 4
shows the results on fusing images in Figs. 5(b) and (c),

(b) .
(d) -
Fig. 4. The reference image, blurred images and fusion result: (a) ref-
erence image; (b) blurred image, with focus on the right; (c) blurred

image, with focus on the left; (d) fused image (block size =
8 x 8, TH = 1.75).

(a) .
(c) .
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(c)

Fig. 5. The reference image, blurred images and fusion result: (a) reference image; (b) blurred image, with focus on the right; (c) blurred image, with

focus on the left; (d) fused image (block size =32 x 32, TH = 0.50).

Table 3
Effects on fusing images in Figs. 4(b) and (c) with different block sizes and thresholds®

TH Block size

4x4 4x8 8x8 8 x 16 16 x 16 16 x 32 32 %32 32 x 64 64 x 64

0.00 0.8064 0.6339 0.5166 0.6902 0.5549 1.3832 1.8363 1.9682 1.9682
0.25 0.8038 0.6136 0.4940 0.6699 0.5550 1.3832 1.8363 1.9682 1.9682
0.50 0.7821 0.6104 0.4634 0.6710 0.5550 1.3856 1.3264 1.9682 1.9682
0.75 0.7467 0.6503 0.4822 0.6821 0.5550 1.3883 1.3352 1.9682 1.9682
1.00 0.7495 0.5916 0.4841 0.6367 0.5706 1.3883 1.3428 1.9793 1.9682
1.25 0.7462 0.5924 0.4718 0.6307 0.5903 1.3990 1.3428 1.9793 1.9682
1.50 0.7462 0.5924 0.4718 0.6307 0.5903 1.3990 1.3428 1.9793 1.9682
1.75 0.7394 0.6069 0.4493 0.6384 0.6295 1.4137 1.3428 1.9793 1.9682
2.00 0.7498 0.6234 0.4597 0.6352 0.6400 1.4267 1.3428 1.9793 1.9682
2.25 0.7556 0.6265 0.4764 0.6633 0.6626 1.4267 1.3428 1.9793 1.9682
2.50 0.7300 0.5838 0.4896 0.7014 0.6716 1.4267 1.3428 1.6003 1.9682
2.75 0.7588 0.5997 0.5316 0.7014 0.6716 1.4267 1.3428 1.6003 1.9682
3.00 0.7586 0.6545 0.5580 0.7014 0.7034 1.4267 1.3428 1.6003 1.6709

#Numbers in bold indicate the lowest RMSE obtained over different block sizes for a given threshold.

and the best result (Fig. 5(d)) corresponds to the use of
32 x 32 blocks and a threshold of 0.5.

As can be seen from Tables 3 and 4, the optimal block
size is image-dependent for a given threshold. In general,
using a block size too large or too small is undesirable,
and this is demonstrated here with the second set of
images (Figs. 5(b) and (c)). Figs. 6(a)-(c) show parts of
the fused images obtained with block sizes of 4 x 4,

32 x 32 and 120 x 128, respectively, at a threshold value
of 0.5. With 4 x 4 blocks, the fused image contains saw-
tooth edges. On using 120 x 128 blocks, the fused image
suffers from uneven gray level distribution. Experiment
with a block size of 32 x 32 yields the best result in this
case.

On the other hand, the threshold setting has a rela-
tively mild effect on fusion performance. From Tables 3
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Table 4
Effects on fusing images in Figs. 5(b) and (c) with different block sizes and thresholds®

TH Block size

4 x4 4x8 8x8 8 x 16 16 x 16 16 x 32 32 %32 32 x40 40 x 40 40 x 64

0.0 3.1640 1.9681 1.2564 0.7050 0.5864 0.2107 0.2212 0.4901 0.4313 0.8010
0.25 3.1546 1.9186 1.2524 0.6516 0.5883 0.2099 0.2178 0.4212 0.4354 0.6836
0.50 3.1228 1.8898 1.2688 0.6682 0.5978 0.2403 0.1862 0.4239 0.4418 0.6882
0.75 3.0728 1.8772 1.2569 0.7033 0.5538 0.2759 0.2388 0.4440 0.4597 0.6975
1.0 3.0711 1.8356 1.2484 0.6796 0.5868 0.3141 0.2813 0.4846 0.4789 0.7121
1.25 3.0529 1.8403 1.2563 0.6849 0.6058 0.3526 0.3206 0.5311 0.5292 0.7243
1.50 3.0478 1.8488 1.2765 0.7187 0.6386 0.4175 0.3776 0.5587 0.5571 0.8525
1.75 3.0048 1.7744 1.2638 0.7393 0.6575 0.4412 0.3977 0.5587 0.5722 0.8525
2.00 2.9863 1.7737 1.2375 0.7528 0.6763 0.4412 0.4023 0.5787 0.5950 0.8837
2.25 2.9544 1.7611 1.2441 0.7949 0.6927 0.4644 0.4199 0.7129 0.6128 09114
2.50 2.9498 1.7643 1.2717 0.8071 0.7120 0.5012 0.4625 0.7289 0.7831 09114
2.75 2.9503 1.7718 1.2833 0.8179 0.7417 0.5170 0.6449 0.7611 0.8276 0.9186
3.00 2.9368 1.7539 1.3050 0.8523 0.7676 0.5558 0.6898 0.8044 0.8276 0.9525

#Numbers in bold indicate the lowest RMSE obtained over different block sizes for a given threshold.

(c)

(b)

Fig. 6. Effects of using different block sizes on fusion performance: (a) block size =4 x 4; (b) block size =32 x 32; (c) block size =120 x 128.

Table 5

Results on fusing images in Figs. 5(b) and (c) using the wavelet transform?®

Wavelet Decomposition level

1 2 3 4 5 6 7
Db4 7.3326 5.0334 2.9996 2.1537 2.0655 2.0652 2.0598
Dbl0 7.4248 5.0764 2.8370 2.0179 1.9483 1.9408 1.9400
Coif5 7.5434 5.0950 2.7625 1.8964 1.7911 1.7887 1.7821
Sym8 7.4810 5.0769 2.9147 1.9943 1.9044 1.9036 1.9016
Bior3.5 9.1313 8.0289 5.3517 3.3348 2.9505 2.8909 2.8909

#Numbers in bold indicate the lowest RMSE obtained over different decomposition levels for a given basis.
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and 4, threshold values in the range 0.5-2.0 often pro-
duce good results. Moreover, notice from Eq. (4) that if
the threshold is set too large, the algorithm degenerates
to pixel-by-pixel gray level averaging.

4.3. Comparison with wavelet transform based methods

In this section, we compare the proposed method
with the wavelet transform method. Five wavelet filter
banks, Daubechies ‘db4’ and ‘dbl10’, Coiflets ‘coif5’,
Symlets ‘sym8’, and Biorthogonal ‘bior3.5’ [5], with
decomposition levels from 1 to 7, are used to fuse images
in Figs. 5(c) and (d). Following [13], we employ a region-
based activity measurement for the active level of the
decomposed wavelet coefficients, a maximum selection
rule for coefficient combination, together with a win-
dow-based consistency verification scheme. The optimal
RMSE in Table 5, obtained by using the ‘coif5’ wavelet
filter bank at a decomposition level of 7, is still inferior
to most of the results in Table 4.

4.4. Subjective evaluation

In this section, we use images (Figs. 7-9) that contain
multiple objects at different distances from the camera.

(c)

(b)

(d

S. Li et al. | Information Fusion 2 (2001) 169-176

One or more objects thus naturally become(s) out of
focus when the image is taken. For example, the focus in
Fig. 7(a) is on the Pepsi can, while that in Fig. 7(b) is on
the testing card. The ‘true’ gray value of each pixel is,
however, not available and so only a subjective com-
parison is intended here.

Results on using the wavelet based approach and the
proposed algorithm for fusing Figs. 7(a) and (b) are
shown in Figs. 7(c) and (d), respectively. Notice that the
tiny area above the string ‘Re’ in the upper right corner
of Fig. 7(c) is blurred, while that in Fig. 7(d) is clear.
Also, the table edge in Fig. 7(d) is smooth, as in the
source images, while that in Fig. 7(c) contains wrinkles.
Similar phenomena can also be observed in Figs. 8§ and 9.

5. Conclusion

In this paper, we propose a new approach for
multifocus images fusion by using the spatial fre-
quency. The method is computationally simple and can
be used in real-time applications. Extensive experi-
ments on studying the fusion performance with differ-
ent block sizes and thresholds have been made.
Comparison with wavelet transform based methods

Fig. 7. The ‘Pepsi’ source images (size =512 x 512) and fusion results: (a) focus on the Pepsi can; (b) focus on the testing card; (c) fused image using
the wavelet transform (coif5 with decomposition level of 6); (d) fused image using the proposed algorithm (block size =32 x 32, TH = 1.0).
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(d)

Fig. 8. The ‘Lab’ source images (size =480 x 640) and fusion results: (a) focus on the clock; (b) focus on the student; (c) fused image using the wavelet
transform (db8 with decomposition level of 5); (d) fused image using the proposed algorithm (block size =40 x 40, TH = 0.75).
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Fig. 9. The ‘Disk’ source images (size =480 x 640) and fusion results: (a) focus on the left; (b) focus on the right; (c) fused image using the wavelet
transform (db8 with decomposition level of 5); (d) fused image using the proposed algorithm (block size =32 x 32, TH = 0.75).
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shows that the proposed method is superior both
quantitatively and visually.

A number of issues still need to be addressed in the
future. First, adaptive methods for choosing the block
size and threshold need further investigation. We will
also study how the proposed method can be extended to
other image fusion tasks, such as the fusion of visual
images with thermal or millimeter-wave images.
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