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Abstract
Matrix factorization tries to recover a low-rank
matrix from limited observations. A state-of-the-
art algorithm is the Soft-Impute, which exploits
a special “sparse plus low-rank” structure of the
matrix iterates to allow efficient SVD in each it-
eration. Though Soft-Impute is also a proximal
gradient algorithm, it is generally believed that
acceleration techniques are not useful and will
destroy the special structure. In this paper, we show
that Soft-Impute can indeed be accelerated without
compromising the “sparse plus low-rank” structure.
To further reduce the per-iteration time complex-
ity, we propose an approximate singular value
thresholding scheme based on the power method.
Theoretical analysis shows that the proposed al-
gorithm enjoys the fast O(1/T 2) convergence rate
of accelerated proximal gradient algorithms. Ex-
tensive experiments on both synthetic and large
recommendation data sets show that the proposed
algorithm is much faster than Soft-Impute and other
state-of-the-art matrix completion algorithms.

1 Introduction
In many applications, the data are stored in a matrix. Given
a partially observed matrix O, matrix factorization attempts
to recover a low-rank matrix X that best approximates O
on the observed entries [Candès and Recht, 2009]. Matrix
factorization has been widely used in a variety of domains.
Examples include collaborative filtering for recommender
systems [Mazumder et al., 2010], link prediction for social
networks [Kim and Leskovec, 2011], image inpainting [Liu
et al., 2013], and multilabel learning [Cabral et al., 2011].

However, direct minimization of the matrix rank is NP-
hard, and the nuclear norm (which is the sum of singular
values) is often used instead. Mathematically, let O ∈ Rm×n
(where, without loss of generality, we assume that m ≥ n),
and the positions of the observed entries be indicated by
Ω ∈ {0, 1}m×n, such that Ωij = 1 if Oij is observed, and 0
otherwise. Matrix factorization is formulated as the following
optimization problem

min
X

1

2
‖PΩ(X −O)‖2F + λ‖X‖∗, (1)

where [PΩ(A)]ij = Aij if Ωij = 1, and 0 otherwise; and
‖X‖∗ is the nuclear norm of X . It is known that the nuclear
norm is the tightest convex lower bound of the rank [Recht
et al., 2010]. Besides, though the nuclear norm is only a
surrogate, there are theoretical guarantees that the underlying
matrix can be recovered [Candès and Recht, 2009].

Computationally, though the nuclear norm is nonsmooth,
problem (1) can be solved by various optimization tools. An
early attempt is based on reformulating (1) as a semidefinite
program (SDP) [Candès and Recht, 2009]. However, SDP
solvers have large time and space complexities, and are
only suitable for small data sets. For large-scale matrix
completion, Cai et al. [2010] pioneered the use of first-
order methods and proposed the singular value thresholding
(SVT) algorithm. However, a singular value decomposition
(SVD) is required in each SVT iteration. This takes O(mn2)
time and can be computationally expensive. In [Toh and
Yun, 2010], this is reduced to a partial SVD by computing
only the leading singular values/vectors using PROPACK (a
variant of the Lanczos algorithm) [Larsen, 1998]. Another
major breakthrough is made by the Soft-Impute algorithm
[Mazumder et al., 2010], which utilizes a special “sparse plus
low-rank” structure associated with the SVT to efficiently
compute the SVD. Empirically, this allows Soft-Impute to
perform matrix completion on the entire Netflix data set with
a reasonable time.

The SVT algorithm can also be viewed as a proximal
gradient algorithm [Tibshirani, 2010]. Hence, it converges
with a O(1/T ) rate, where T is the number of iterations
[Beck and Teboulle, 2009; Nesterov, 2013]. Later, this is
further “accelerated”, and the convergence rate is improved
to O(1/T 2) [Ji and Ye, 2009; Toh and Yun, 2010]. However,
Tibshirani [2010] suggested that this is not useful, as the spe-
cial “sparse plus low-rank” structure crucial to the efficiency
of Soft-Impute no longer exist. In other words, the gain in
convergence rate is more than compensated by the increase
in per-iteration time complexity.

In this paper, we show that accelerating Soft-Impute
is indeed possible while simultaneously preserving the
“sparse plus low-rank” structure. Moreover, instead of using
PROPACK to compute the (exact) partial SVD as in [Toh
and Yun, 2010], we propose to use the power method [Halko
et al., 2011] to obtain only an approximation of the dominant
singular subspace. This is more efficient than PROPACK
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and also allows warm-start, which is particularly useful
because of the iterative nature of Soft-Impute. Since the SVT
obtained is then only approximate, we use recent results in
proximal gradient algorithms [Schmidt et al., 2011] to show
that convergence can still be as fast as performing exact SVT
in each iteration. Hence, the resultant algorithm has low
per-iteration complexity and fast O(1/T 2) convergence rate.

The rest of the paper is organized as follows. Section 2
provides a brief review on the related work. The proposed
accelerated inexact Soft-Impute algorithm is described in
Section 3. Experimental results are presented in Section 4,
and the last section gives some concluding remarks.

Notation
In the sequel, the transpose of vector/ matrix is denoted by
the superscript >. For a vector x, ‖x‖1 =

∑
i |xi| is its `1-

norm, and ‖x‖ =
√∑

i x
2
i its `2-norm. For a matrixX , σ1 ≥

σ2 ≥ . . . are its singular values, tr(X) =
∑
iXii is its trace,

‖X‖1 =
∑
i,j |Xij |, ‖X‖F = tr(X>X) is the Frobenius

norm, and ‖X‖∗ =
∑
i σi the nuclear norm. Moreover, I

denotes the identity matrix. For a function f , we let f ′ be
a subgradient in the subdifferential ∂f(x) = {g | f(y) ≥
f(x)+gT (y−x), ∀y}. When f is differentiable, we use∇f
for its gradient. Finally, we use Ω⊥ to denote the complement

of a set Ω. For a matrixA, [PΩ(A)]ij =

{
Aij Ωij = 1
0 otherwise ,

and [P⊥Ω (A)]ij =

{
0 Ωij = 1
Aij otherwise .

2 Related Work
2.1 Proximal Gradient Algorithms
Consider minimizing composite functions of the form:

F (x) ≡ f(x) + g(x), (2)

where f, g are convex, f is smooth but g is possibly nons-
mooth. The proximal gradient algorithm [Beck and Teboulle,
2009; Nesterov, 2013; Parikh and Boyd, 2014] generates a
sequence of estimates {xt} as

xt+1 = proxµg(zt) ≡ arg min
x

1

2
‖x− zt‖2 + µg(x), (3)

where
zt = xt − µ∇f(xt), (4)

and proxµg(·) is called the proximal operator. When f has ρ-
Lipschitz continuous gradient (i.e., ‖∇f(x1) − ∇f(x2)‖ ≤
ρ‖x1 − x2‖) and a fixed stepsize µ ≤ 1/ρ is used, this
algorithm converges with rate O(1/T ), where T is the
number of iterations [Parikh and Boyd, 2014]. Moreover, it
can be accelerated by replacing (4) with

yt = (1 + θt)xt − θtxt−1, zt = yt − µ∇f(yt). (5)

Here, several choices for θt can be used. The resultant
accelerated proximal gradient (APG) algorithm converges
with the optimal O(1/T 2) rate [Nesterov, 2013].

In the sequel, as our focus is on matrix completion, the
variable x in (2) is a matrix X .

2.2 Soft-Impute
Soft-Impute is a state-of-the-art algorithm for large-scale
matrix completion [Mazumder et al., 2010]. At iteration t,
the missing values in O are filled in as

Zt = PΩ(O) + P⊥Ω (Xt) = PΩ(O −Xt) +Xt, (6)

where Xt is the current iterate. Xt+1 is then generated as

Xt+1 = SVTλ(Zt), (7)

where SVTλ(·) is the singular value thresholding (SVT)
operator defined as follows.

Lemma 2.1 ([Cai et al., 2010]). Let the SVD of a matrix Z
be UΣV >. The solution to the optimization problem

min
X

1

2
‖X − Z‖2F + λ‖X‖∗

is a low-rank matrix given by

SVTλ(Z) ≡ U(Σ− λI)+V
>, (8)

where [(A)+]ij = max(Aij , 0).

To computeXt+1 in (7), we thus need to first perform SVD
on Zt. In general, obtaining the rank-k SVD of a m × n
matrix Z takes O(mnk) time. Its most expensive steps are
on computing matrix-vector multiplications of the form Zu
and v>Z, where u ∈ Rn and v ∈ Rm.

To make Soft-Impute efficient, an important observation
by Mazumder et al. is that Zt in (6) has a special “sparse
plus low-rank” structure, namely that PΩ(O − Xt) is sparse
and Xt is low-rank. Let the rank of Xt be r, and its SVD be
UtΣtVt

>. For any u ∈ Rn, Ztu can then be computed as

Ztu = PΩ(O −Xt)u+ UtΣt(Vt
>u). (9)

Constructing PΩ(O −Xt) takes O(r‖Ω‖1) time while com-
puting PΩ(O − Xt)u takes O(‖Ω‖1) time, and computing
UtΣt(Vt

>u) takes O((m + n)r) time. Thus, to obtain the
rank-k SVD of Zt, Soft-Impute needs only O((r+k)‖Ω‖1 +
rk(m+ n)) time. Moreover, its convergence rate is O(1/T ).

In (1), take f(X) ≡ 1
2‖PΩ(X − O)‖2F and g(X) ≡

λ‖X‖∗. Note that ∇f(X) = PΩ(X − O), and ‖∇f(X1) −
∇f(X2)‖2F = ‖PΩ(X1−X2)‖2F ≤ ‖X1−X2‖2F . Hence, f is
convex and has 1-Lipschitz-continuous gradient (i.e., ρ = 1);
while g is also convex but nonsmooth. It is obvious that Zt in
(4) is the same as that in (6). Using µ = 1/ρ = 1, it can be
easily shown that proxµg(Zt) = proxg(Zt) in (3) is indeed
equal to SVTλ(Zt). Hence, interestingly, Soft-Impute is also
a proximal gradient algorithm [Tibshirani, 2010].

3 Accelerated Inexact Soft-Impute
Since Soft-Impute is a proximal gradient algorithm, it is natu-
ral to consider accelerating it with the schemes in Section 2.1.
However, Tibshirani [2010] suggested that this is not useful,
as the special “sparse plus low-rank” structure crucial to the
efficiency of Soft-Impute will be lost. In this Section, we
show that this structure can indeed be preserved, and thus
acceleration is possible.
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3.1 Accelerating Soft-Impute
To accelerate Soft-Impute, recall from Sections 2.1 and 2.2
that we have to compute proxg(Z̃t) = SVTλ(Z̃t), where

Z̃t = Yt −∇f(Yt) = PΩ(O − Yt) + Yt
= PΩ(O − Yt) + (1 + θt)Xt − θtXt−1. (10)

The efficiency of Soft-Impute hinges on the “sparse plus
low-rank” structure of Zt in (6), which allows matrix-vector
multiplications of the form Ztu and v>Zt to be computed
inexpensively. In the following, we show that Z̃t also has a
similar structure.

Assume that Xt and Xt−1 have ranks rt and rt−1, and
their SVDs are UtΣtV >t and Ut−1Σt−1V

>
t−1, respectively.

Using these SVDs, the sparse PΩ(O − Yt) can be con-
structed in O((rt + rt−1)‖Ω‖1) time. Using (10), for any
u ∈ Rn, PΩ(O − Yt)u can be obtained in O(‖Ω‖1) time;
and (1 + θt)Xtu − θtXt−1u = (1 + θt)UtΣt(Vt

>u) −
θtUt−1Σt−1(Vt−1

>u) in O((m + n)(rt−1 + rt)) time. The
same applies to the computation of v>Z̃t for any v ∈ Rm.
Thus, the rank-k SVD of Z̃t can be obtained inO((rt+rt−1+
k)‖Ω‖1 + (rt−1 + rt)k(m + n)) time, which is only about
twice that of Soft-Impute.

3.2 Approximating the SVT
Note from (8) that SVTλ(Z̃t) only involves the leading
singular vectors of Z̃t (whose singular values are greater than
or equal to λ), and thus only a partial SVD is needed. Let k̂
be the number of such singular values. The power method
(Algorithm 1) [Halko et al., 2011] is a fast and accurate
algorithm for obtaining an approximation Q ∈ Rm×k (where
k ≥ k̂) of such a subspace. Besides the power method,
algorithms such as PROPACK [Larsen, 1998] have also been
used [Toh and Yun, 2010]. However, the power method is
more efficient than PROPACK [Wu and Simon, 2000], and it
also allows warm-start, which is particularly useful because
of the iterative nature of Soft-Impute.

Algorithm 1 PowerMethod(Z̃, R, ε̃). In step 3, QR(·) is the
QR factorization.

Require: Z̃ ∈ Rm×n, initial R ∈ Rk×n for warm-start,
tolerance ε̃;

1: Initialize Y1 ← Z̃R;
2: for τ = 1, 2, . . . , do
3: Qτ+1 = QR(Yτ );
4: Yτ+1 = Z̃(Z̃>Qτ+1);
5: if ‖Qτ+1Qτ+1

> −QτQτ>‖F ≤ ε̃ then
6: break;
7: end if
8: end for
9: return Qτ+1;

With thisQ, SVT(Z̃t) can be obtained from a much smaller
SVT as follows.
Proposition 3.1. LetQ ∈ Rm×k where k ≥ k̂, be orthogonal
and contains the subspace spanned by the top k̂ left singular
vectors of Z̃t. Then, SVTλ(Z̃t) = Q SVTλ(Q>Z̃t).

Algorithm 2 shows how to approximate SVTλ(Z̃t). Let
the target (exact) rank-k SVD of Z̃t be ŨkΣ̃kṼ

>
k . Step 1 first

approximates Ũk by the power method. In steps 2 to 5, a
much smaller, and thus less expensive, (exact) SVTλ(Q>Z̃t)

is obtained from (8). Finally, SVTλ(Z̃t) is recovered using
Proposition 3.1.

Algorithm 2 Algorithm to approximate the SVT of Z̃t
(approx-SVT(Z̃t, R, λ, ε̃)).

Require: Z̃t ∈ Rm×n, R ∈ Rn×k, thresholds λ and ε̃;
1: Q = PowerMethod(Z̃t, R, ε̃);
2: [U,Σ, V ] = SVD(Q>Z̃t);
3: U = {ui | σi > λ};
4: V = {vi | σi > λ};
5: Σ = (Σ− λI)+;
6: return QU,Σ and V .

The main computation is on the power method (step 1),
whose most expensive operations, in turn, are on matrix
multiplications (steps 1 and 4 of Algorithm 1). By using the
special structure of Z̃t in (10) as discussed in Section 3.1,
the time complexity of Algorithm 2 can be reduced from
O(mnk) to O((rt+ rt−1 +k)‖Ω‖1 + (rt−1 + rt)k(m+n)).

The following Proposition guarantees the quality of X̂t =
(QU)ΣV > returned from Algorithm 2.

Proposition 3.2. Let σt,k be the kth singular value of Z̃t,
ηt = σt,k+1/σt,k < 1, αt, βt, γt be constants depending on
Z̃t, and that the power method terminates after j iterations.
Assume that k ≥ k̂, and ε̃ ≥ αtηjt

√
1 + η2

t . Then,

hλ‖·‖∗(X̂t; Z̃t)≤hλ‖·‖∗(SVTλ(Z̃t); Z̃t)+
ηt

1− ηt
ε̃βtγt, (11)

where hλ‖·‖∗(X; Z̃t) ≡ 1
2‖X−Z̃t‖

2+λ‖X‖∗ is the objective
in the proximal step.

3.3 Proposed Algorithm
The whole procedure is shown in Algorithm 3. The core steps
are 8–11, where an approximate SVT is performed. Similar
to [Lin et al., 2010; Toh and Yun, 2010], steps 9–10 use the
column space of the last two iterations (Vt and Vt−1) to warm-
start the power method. For further speedup, at step 5, we
employ a continuation strategy as in [Toh and Yun, 2010;
Mazumder et al., 2010], in which λt is initialized to a
large value and then decreased gradually. Moreover, as
in [O’Donoghue and Candes, 2012; Nesterov, 2013], the
algorithm is restarted (at step 12) if F (X) starts to increase.

3.4 Convergence of the Inexact APG Algorithm
Since X̂t only approximates SVT(Z̃t), the proximal objective
hλ‖·‖∗(·; Z̃t) is not exactly minimized. The convergence of
such inexact APG algorithms has been recently studied in
[Schmidt et al., 2011]. In general, for problem (2), an inexact
APG algorithm may commit two types of errors: (i) an error
et in the calculation of ∇f(·), and (ii) an error εt in the
proximal objective achieved by xt+1, i.e.,

hµg(xt+1; zt) ≤ εt + hµg(proxµg(zt); zt). (12)

4004



Algorithm 3 Accelerated Inexact Soft-Impute (AIS-Impute).
Require: partially observed matrix O, parameter λ, decay

parameter ν ∈ (0, 1), threshold ε;
1: [U0, λ0, V0] = rank-1 SVD(PΩ(O));
2: initialize c = 1, ε̃0 = ‖PΩ(O)‖F ,X0 = X1 = λ0U0V

>
0 ;

3: for t = 1, 2, . . . do
4: ε̃t = νtε̃0;
5: λt = νt(λ0 − λ) + λ;
6: θt = (c− 1)/(c+ 2);
7: Yt = Xt + θt(Xt −Xt−1);
8: Z̃t = Yt + PΩ(O − Yt);
9: Vt−1 = Vt−1 − Vt(Vt>Vt−1), remove zero columns;

10: Rt = QR([Vt, Vt−1]);
11: [Ut+1,Σt+1, Vt+1] = approx-SVT(Z̃t, Rt, λt, ε̃t);
12: if F (Ut+1Σt+1V

>
t+1) > F (UtΣtV

>
t ) then

13: c = 1;
14: else
15: c = c+ 1;
16: end if
17: if |F (Ut+1Σt+1V

>
t+1)− F (UtΣtV

>
t )| ≤ ε then

18: break;
19: end if
20: end for
21: return Xt+1 = Ut+1Σt+1V

>
t+1.

The following Theorem shows that the convergence rate
remains unchanged if the errors decrease at appropriate rates.
Theorem 3.3 ([Schmidt et al., 2011]). Assume that (i) f is
convex and has Lipschitz-continuous gradient; and (ii) g is
convex and possibly nonsmooth. If ‖et‖ and

√
εt decrease as

O(1/t2+δ) for some δ > 0, the inexact APG algorithm still
converges with rate O(1/T 2).

In the proposed Algorithm 3, there is no error in ∇f(·)
and so et = 0. As for εt, we have from Proposition 3.2 that
εt ≤ ηt

1−ηt ε̃tβtγt. From step 4, ε̃t = O(νt) where ν ∈ (0, 1).
Thus, εt converges to zero at a linear rate and is faster than
the O(1/t2+δ) rate required in Theorem 3.3. This is formally
stated in the following Theorem.
Theorem 3.4. Assume the conditions in Proposition 3.2,
Algorithm 3 converges to the optimal solution of (1) with a
rate of O(1/T 2).

4 Experiments
In this section, we perform experiments on both synthetic
data (Section 4.1) and the entire MovieLens and Netflix
recommendation data sets (Section 4.2).

4.1 Synthetic Data
We generate a m × m data matrix O = UV + G, where
the elements of U ∈ Rm×5, V ∈ R5×m are sampled i.i.d.
from the normal distribution N (0, 1), and elements of G
sampled from N (0, 0.05). A total of ‖Ω‖1 = 15m log(m)
random elements in O are observed. Half of them are used
for training, and the other half as validation set for parameter
tuning. Testing is performed on the unobserved (missing)
elements.

The following variants of proximal gradient algorithms are
compared:

• accelerated proximal gradient algorithm (denoted
“APG”)1 [Ji and Ye, 2009; Toh and Yun, 2010];

• Soft-Impute2 [Mazumder et al., 2010];

• the proposed accelerated inexact Soft-Impute algorithm
(denoted “AIS-Impute”) in Algorithm 3.

APG and AIS-Impute are in Matlab, while Soft-Impute
is in R (and is called from Matlab). For performance
evaluation, we use (i) the normalized mean squared error

NMSE =
√
‖P⊥Ω (X − UV )‖F /‖P⊥Ω (UV )‖F , where X is

the recovered matrix; and (ii) the rank of X . We vary m in
{500, 1000, 1500, 2000}. Each experiment is repeated five
times. Experiments are performed on a PC with Intel i7 CPU
and 16GB RAM.

Results are shown in Table 1. As can be seen, all
algorithms are equally good at recovering the missing matrix
entries, but AIS-Impute is much faster. A more detailed tim-
ing comparison is in Figure 1. APG and AIS-Impute converge
much faster than Soft-Impute w.r.t. the number of iterations
(Figure 1(a)), as their convergence rates are O(1/T 2) rather
than O(1/T ). Because of its inexact proximal step, AIS-
Impute has a slightly higher objective than APG. However,
when measured against time (Figure 1(b)), APG is the slowest
as it does not utilize the “sparse plus low-rank” structure.
Overall, AIS-Impute is the fastest, as it has both low per-
iteration complexity and fast O(1/T 2) convergence rate.

(a) objective vs #iterations. (b) objective vs time.

Figure 1: Performance on synthetic data (with m = 2000).

4.2 Recommendation Data
MovieLens Data
The MovieLens data set3 (Table 2) contains ratings (from 1
to 5) of different users on movies, and has been commonly
used in matrix completion experiments [Mazumder et al.,
2010; Hsieh and Olsen, 2014]. Following [Wang et al.,
2014], we use 50% of the observed ratings for training,
25% for validation and the rest for testing. Besides the
proximal gradient algorithms in Section 4.1, we also com-
pare with other state-of-the-art non-proximal-gradient-based
matrix completion algorithms, including

1http://www.math.nus.edu.sg/∼mattohkc/NNLS.html
2http://cran.r-project.org/web/packages/softImpute/index.html
3http://grouplens.org/datasets/movielens/
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Table 1: Results on the synthetic data (time is in seconds). Here, number in brackets is the data sparsity.
m = 500 (18.64%) m = 1000 (10.36%) m = 1500 (7.31%) m = 2000 (5.70%)

NMSE rank time NMSE rank time NMSE rank time NMSE rank time
APG 0.0183 5 5.1 0.0223 5 45.5 0.0251 5 172.7 0.0273 5 483.9

Soft-Impute 0.0183 5 1.3 0.0223 5 4.4 0.0251 5 13.3 0.0273 5 18.7
AIS-Impute 0.0183 5 0.3 0.0223 5 1.1 0.0251 5 2.0 0.0273 5 2.9

• active subspace selection (denoted “active”) 4 algorithm
[Hsieh and Olsen, 2014]: In each iteration, this algo-
rithm uses the power method to identify the active row
and column subspaces, and then reduces the nuclear
norm optimization problem to a smaller problem;

• a Frank-Wolfe based algorithm with local acceleration
(denoted “boost”)5 [Zhang et al., 2012];

• a recent variant of Soft-Impute, which replaces the SVD
in the soft-thresholding step by alternating least squares
(denoted as “ALT-Impute”) [Hastie et al., 2014] and

• a second-order trust-region algorithm 6 (denoted “TR”)
that alternates between fixed-rank optimization and
rank-one updates [Mishra et al., 2013].

For performance evaluation, as in [Hsieh and Olsen, 2014;
Mazumder et al., 2010], we use (i) the root mean squared
error RMSE =

√
‖PΩ(X −O)‖2F /‖Ω‖1; and (ii) the rank

of X . The experiment is repeated five times.

Table 2: Recommendation data sets used in the experiments.
#users #movies #ratings

MovieLens-100K 943 1,682 100,000
MovieLens-1M 6,040 3,449 999,714

MovieLens-10M 69,878 10,677 10,000,054

Results are shown in Table 3, and convergence of the
objective and testing RMSE are shown in Figure 2. Again, all
algorithms are equally good at recovering the missing matrix
entries. In terms of speed, AIS-Impute is the fastest. ALT-
Impute has the same convergence rate as Soft-Impute, but is
faster (than Soft-Impute) as it does not require performing
SVD. As for boost, it only needs to perform a sparse rank-
one SVD in each iteration. However, much time is spent on
maintaining the recovery matrix in factorized form and also
local acceleration. TR is the slowest, as it has to solve many
fixed-rank optimization problems.

In Proposition 3.2, we assume that the rank of Rt is not
smaller than the rank of Ut+1 (step 11 of Algorithm 3).
Figure 3 compares their values throughout the iterations. As
can be seen, this assumption always holds and the two ranks
gradually converge to the final recovered rank.

Netflix Data
In this Section, we demonstrate the speedup of AIS-Impute
over ALT-Impute and Soft-Impute on the Netflix data set,

4http://www.cs.utexas.edu/∼cjhsieh/nuclear active 1.1.zip
5http://users.cecs.anu.edu.au/∼xzhang/GCG/
6https://sites.google.com/site/bamdevm/codes/tracenorm

(a) MovieLens-100K. (b) MovieLens-1M.

Figure 3: Ranks of Rt and Ut+1 as Algorithm 3 iterates.

which contains ratings of 480,189 users on 17,770 movies.
1% of the ratings matrix are observed. We randomly sample
50% of the observed ratings for training, and the rest for
testing. As in [Mazumder et al. 2010], several choices of
λ are used.

Results are shown in Table 4, and convergence of the
objective and testing RMSE w.r.t. the running time are shown
in Figure 4. As can be seen, all algorithms can recover the
same RMSE and rank. However, AIS-Impute does not involve
with SVD and has a betterO(1/T 2) rate. Thus, it is again the
fastest.

5 Conclusion
In this paper, we show that Soft-Impute, as a proximal
gradient algorithm, can be accelerated without losing the
“sparse plus low-rank” structure crucial to the efficiency
of Soft-Impute. To further reduce the per-iteration time
complexity, we proposed an approximate-SVT scheme based
on the power method. Theoretical analysis shows that the
proposed algorithm still enjoys the fastO(1/T 2) convergence
rate. Extensive experiments on both synthetic and large
recommendation data sets show that the proposed algorithm
is much faster than the state-of-the-art.
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