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Abstract
Learning of low-rank matrices is fundamental to
many machine learning applications. A state-of-
the-art algorithm is the rank-one matrix pursuit
(R1MP). However, it can only be used in matrix
completion problems with the square loss. In this
paper, we develop a more flexible greedy algorithm
for generalized low-rank models whose optimiza-
tion objective can be smooth or nonsmooth, general
convex or strongly convex. The proposed algorithm
has low per-iteration time complexity and fast con-
vergence rate. Experimental results show that it is
much faster than the state-of-the-art, with compa-
rable or even better prediction performance.

1 Introduction
In many machine learning problems, the data samples can be
naturally represented as low-rank matrices. For example, in
recommender systems, the ratings matrix is low-rank as users
(and items) tend to form groups. The prediction of unknown
ratings is then a low-rank matrix completion problem [Candès
and Recht, 2009]. In social network analysis, the network can
be represented by a matrix with entries representing similari-
ties between node pairs. Unknown links are treated as miss-
ing values and predicted as in matrix completion [Chiang et
al., 2014]. Low-rank matrix learning also have applications
in image and video processing [Candès et al., 2011], multi-
task learning [Argyriou et al., 2006], multilabel learning [Tai
and Lin, 2012], and robust matrix factorization [Eriksson and
van den Hengel, 2012].

The low-rank matrix optimization problem is NP-hard
[Recht et al., 2010], and direct minimization is difficult. To
alleviate this problem, one common approach is to factorize
the target m⇥ n matrix X as a product of two low-rank ma-
trices U and V , where U 2 Rm⇥r and V 2 Rn⇥r with
r ⌧ min{m,n}. Gradient descent and alternating mini-
mization are often used for optimization [Srebro et al., 2004;
Eriksson and van den Hengel, 2012; Wen et al., 2012]. How-
ever, as the objective is not jointly convex in U and V , this
approach can suffer from slow convergence [Hsieh and Olsen,
2014].

Another approach is to replace the matrix rank by the nu-
clear norm (i.e., sum of its singular values). It is known that

the nuclear norm is the tightest convex envelope of the matrix
rank [Candès and Recht, 2009]. The resulting optimization
problem is convex, and popular convex optimization solvers
such as the proximal gradient algorithm [Beck and Teboulle,
2009] and Frank-Wolfe algorithm [Jaggi, 2013] can be used.
However, though convergence properties can be guaranteed,
singular value decomposition (SVD) is required in each iter-
ation to generate the next iterate. This can be prohibitively
expensive when the target matrix is large. Moreover, nu-
clear norm regularization often leads to biased estimation.
Compared to factorization approaches, the obtained rank can
be much higher and the prediction performance is inferior
[Mazumder et al., 2010].

Recently, greedy algorithms have been explored for low-
rank optimization [Shalev-shwartz et al., 2011a; Wang et al.,
2014]. The idea is similar to orthogonal matching pursuit
(OMP) [Pati et al., 1993] in sparse coding. For example, the
state-of-the-art in matrix completion is the rank-one matrix
pursuit (R1MP) algorithm [Wang et al., 2014]. In each it-
eration, it performs an efficient rank-one SVD on a sparse
matrix, and then greedily adds a rank-one matrix to the ma-
trix estimate. Unlike other algorithms which typically require
a lot of iterations, it only takes r iterations to obtain a rank-
r solution. Its prediction performance is also comparable or
even better than others.

However, R1MP is only designed for matrix completion
with the square loss. As recently discussed in [Udell et al.,
2015], different loss functions may be required in different
learning scenarios. For example, in link prediction, the pres-
ence or absence of a link is naturally represented by a bi-
nary variable, and the logistic loss is thus more appropriate.
In robust matrix learning applications, the `

1

loss or Huber
loss can be used to reduce sensitivity to outliers [Candès et
al., 2011]. While computationally R1MP can be used with
these loss functions, its convergence analysis is tightly based
on OMP (and thus the square loss), and cannot be easily ex-
tended.

This motivates us to develop more general greedy algo-
rithms that can be used in a wider range of low-rank matrix
learning scenarios. In particular, we consider low-rank matrix
optimization problems of the form

min

X
f(X) : rank(X)  r, (1)

where r is the target rank, and the objective f can be smooth
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or nonsmooth, (general) convex or strongly convex. The pro-
posed algorithm is an extension of R1MP, and can be reduced
to R1MP when f is the square loss. In general, when f is con-
vex and Lipschitz-smooth, convergence is guaranteed with a
rate of O(1/T ). When f is strongly convex, this is improved
to a linear rate. When f is nonsmooth, we obtain a O(1/

p
T )

rate for (general) convex objectives and O(log(T )/T ) for
strongly convex objectives. Experiments on large-scale data
sets demonstrate that the proposed algorithms are much faster
than the state-of-the-art, while achieving comparable or even
better prediction performance.
Notation: The transpose of vector / matrix is denoted by the
superscript >. For matrix A = [Aij ] 2 Rm⇥n (without loss
of generality, we assume that m  n), its Frobenius norm
is kAkF =

qP
i,j A

2

ij , `
1

norm is ||X||
1

=

P
i,j |Xij |,

nuclear norm is kAk⇤ =

P
i �i(A), where �i(A)’s are the

singular values, and �
max

(A) is its largest singular value. For
two vectors x, y, the inner product hx, yi =

P
i xiyi; whereas

for two matrices A and B, hA,Bi =

P
i,j AijBij . For a

smooth function f , rf denotes its gradient. When f is con-
vex but nonsmooth, g 2 {u | f(y) � f(x) + hu, x � yi}
is its subgradient at x. Moreover, given ⌦ 2 {0, 1}m⇥n,
[P

⌦

(A)]ij = Aij if ⌦ij = 1, and 0 otherwise.

2 Review: Rank-One Matrix Pursuit
The rank-one matrix pursuit (R1MP) algorithm [Wang et al.,
2014] is designed for matrix completion [Candès and Recht,
2009]. Given a partially observed m ⇥ n matrix O = [Oij ],
indices of the observed entries are contained in the matrix
⌦ 2 {0, 1}m⇥n, where ⌦ij = 1 if Oij is observed and 0
otherwise. The goal is to find a low-rank matrix that is most
similar to O at the observed entries. Mathematically, this is
formulated as the following optimization problem:

min

X

X

(i,j)2⌦

(Xij �Oij)
2

: rank(X)  r, (2)

where r is the target rank. Note that the square loss has to be
used in R1MP.

The key observation is that if X has rank r, it can be written
as the sum of r rank-one matrices, i.e., X =

Pr
i=1

✓iuiv
>
i ,

where ✓i 2 R and kuik
2

= kvik
2

= 1. To solve (2), R1MP
starts with an empty estimate. At the tth iteration, the (ut, vt)
pair that is most correlated with the current residual Rt =

P
⌦

(O � Xt�1

) is greedily added. It can be easily shown
that this (ut, vt) pair are the leading left and right singular
vectors of Rt, and can be efficiently obtained from the rank-
one SVD of Rt. After adding this new utv

>
t basis matrix, all

coefficients of the current basis can be updated as

(✓
1

, . . . , ✓t) arg min

✓1,...,✓t

�����P⌦

 
tX

i=1

✓iuiv
>
i �O

!�����

2

F

. (3)

Because of the use of the square loss, this is a simple least-
squares regression problem with closed-form solution.

To save computation, R1MP also has an economic variant.
This only updates the combination coefficients of the current

estimate and the rank-one update matrix as:

(µ, ⇢) argmin

µ,⇢

�����P⌦

 
µ

t�1X

i=1

✓iuiv
>
i +⇢utv

>
t �O

!�����

2

F

. (4)

The whole procedure is shown in Algorithm 1.

Algorithm 1 R1MP [Wang et al., 2014].
1: Initialize: X

0

= 0;
2: for t = 1, . . . , T do
3: Rt = P

⌦

(O �Xt�1

);
4: [ut, st, vt] = rank1SVD(Rt);
5: update coefficients using (3) (standard version), or (4)

(economic version);
6: Xt =

Pt
i=1

✓iuiv
>
i ;

7: end for
8: return XT .

Note that each R1MP iteration is computationally inexpen-
sive. Moreover, as the matrix’s rank is increased by one in
each iteration, only r iterations are needed in order to obtain a
rank-r solution. It can also be shown that the residual’s norm
decreases at a linear rate, i.e., kRtk2F  �t�1kP

⌦

(O)k2F for
some � 2 (0, 1).

3 Low-Rank Matrix Learning with Smooth
Objectives

Though R1MP is scalable, it can only be used for matrix com-
pletion with the square loss. In this Section, we extend R1MP
to problems with more general, smooth objectives. Specifi-
cally, we only assume that the objective f is convex and L-
Lipschitz smooth. This will be further extended to nonsmooth
objectives in Section 4.
Definition 1. f is L-Lipschitz smooth if f(X)  f(Y ) +

hX � Y,rf(Y )i+ L
2

kX � Y k2F for any X,Y .

3.1 Proposed Algorithm
Let the matrix iterate at the tth iteration be Xt�1

. We fol-
low the gradient direction rf(Xt�1

) of the objective f ,
and find the rank-one matrix M that is most correlated with
rf(Xt�1

):
max

M
hM,rf(Xt�1

)i : rank(M) = 1, kMkF = 1. (5)

Similar to [Wang et al., 2014], its optimal solution is given
by utv

>
t , where (ut, vt) are the leading left and right singu-

lar vectors of rf(Xt�1

). We then set the coefficient ✓t for
this new rank-one update matrix to �st/L, where st is the
singular value corresponding to (ut, vt). Optionally, all the
coefficients ✓

1

, . . . , ✓t can be refined as

(✓
1

, . . . , ✓t) arg min

✓1,...,✓t
f

 
tX

i=1

✓iuiv
>
i

!
. (6)

As in R1MP, an economic variant is to update the coeffi-
cients as [µ✓

1

, . . . , µ✓t�1

, ⇢], where µ and ⇢ are obtained as

(µ, ⇢) argmin

µ,⇢
f

 
µ

t�1X

i=1

✓iuiv
>
i + ⇢utv

>
t

!
. (7)
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The whole procedure, which will be called “greedy low-
rank learning” (GLRL), is shown in Algorithm 2. Its eco-
nomic variant will be called EGLRL. Obviously, on matrix
completion problems with the square loss, Algorithm 2 re-
duces to R1MP.

Algorithm 2 GLRL for low-rank matrix learning with
smooth convex objective f .

1: Initialize: X
0

= 0;
2: for t = 1, . . . , T do
3: [ut, st, vt] = rank1SVD(rf(Xt�1

));
4: Xt = Xt�1

� st
L utv

>
t ;

5: (optional:) refine coefficients using (6) (standard ver-
sion) or (7) (economic version);

6: end for
7: return XT .

Note that (6), (7) are smooth minimization problems (with
 r and 2 variables, respectively). As the target matrix
is low-rank, r should be small and thus (6), (7) can be
solved inexpensively. In the experiments, we use the pop-
ular limited-memory BGFS (L-BFGS) solver [Nocedal and
Wright, 2006]. Empirically, fewer than five L-BFGS itera-
tions are needed. Preliminary experiments show that using
more iterations does not improve performance.

Unlike R1MP, note that the coefficient refinement at step 5
is optional. Convergence results in Theorems 2 and 3 below
still hold even when this step is not performed. However,
as will be illustrated in Section 5.1, coefficient refinement is
always beneficial in practice. It results in a larger reduction of
the objective in each iteration, and thus a better rank-r model
after running for r iterations.

3.2 Convergence
The analysis of R1MP is based on orthogonal matching
pursuit [Pati et al., 1993]. This requires the condition
1

2

krf(X)k2F = f(X), which only holds when f is the
square loss. In contrast, our analysis for Algorithm 2 here
is novel and can be used for any Lipschitz-smooth f .

The following Proposition shows that the objective is de-
creasing in each iteration. Because of the lack of space, all
the proofs will be omitted.
Proposition 1. If f is L-Lipschitz smooth,

f(Xt)  f(Xt�1

)�
�2

t�1

2L
krf(Xt�1

)k2F ,

where

�t�1

=

�
max

(rf(Xt�1

))

krf(Xt�1

)kF
2


1p
m
, 1

�
. (8)

If f is strongly convex, a linear convergence rate can be
obtained.
Definition 2. f is µ-strongly convex if f(X) � f(Y ) +

hX � Y,rf(Y )i+ µ
2

kX � Y k2F for any X,Y .
Theorem 2. Let X⇤ be the optimal solution of (1). If f is
µ-strongly convex and L-Lipschitz smooth, then

f(XT )� f(X⇤) 
✓
1� d2

1

µ

L

◆T

[f(X
0

)� f(X⇤)] ,

where d
1

= min

T
t=1

�t.

If f is only (general) convex, the following shows that Al-
gorithm 2 converges at a slower O(1/T ) rate.
Theorem 3. If f is (general) convex and L-Lipschitz smooth,
then

f(XT )� f(X⇤) 
2d2

2

L [f(X
0

)� f(X⇤)]

d2
1

T [f(X
0

)� f(X⇤)] + 2d2
2

L
,

where d
2

= max

T
t=1

kXt �X⇤kF .

The square loss in (2) is only general convex and 1-
Lipschitz smooth. From Theorem 3, one would expect GLRL
to only have a sublinear convergence rate of O(1/T ) on ma-
trix completion problems. However, our analysis can be re-
fined in this special case. The following Theorem shows that
a linear rate can indeed be obtained, which also agrees with
Theorem 3.1 of [Wang et al., 2014].
Theorem 4. When f is the square loss, f(XT ) � f(X⇤) 
(1� d2

1

)

T
[f(X

0

)� f(X⇤)].

3.3 Per-Iteration Time Complexity
The per-iteration time complexity of Algorithm 2 is low.
Here, we take the link prediction problem in Section 5.1
as an example. With f defined only on the observed en-
tries of the link matrix, rf is sparse, and computation of
rf(Xt�1

) in step 3 takes O(||⌦||
1

) time. The rank-one SVD
on rf(Xt�1

) can be obtained by the power method [Halko
et al., 2011] in O(||⌦||

1

) time. Refining coefficients using (6)
takes O(t||⌦||

1

) time for the tth iteration. Thus, the total per-
iteration time complexity of GLRL is O(t||⌦||

1

). Similarly,
the per-iteration time complexity of EGLRL is O(||⌦||

1

). In
comparison, the state-of-the-art AIS-Impute algorithm [Yao
and Kwok, 2015] (with a convergence rate of O(1/T 2

)) takes
O(r2||⌦||

1

) time in each iteration, whereas the alternating
minimization approach in [Chiang et al., 2014] (whose con-
vergence rate is unknown) takes O(r||⌦||

1

) time per iteration.

3.4 Discussion
To learn the generalized low-rank model, Udell et al. (2015)
followed the common approach of factorizing the target ma-
trix as a product of two low-rank matrices and then perform-
ing alternating minimization [Srebro et al., 2004; Eriksson
and van den Hengel, 2012; Wen et al., 2012; Chiang et al.,
2014; Yu et al., 2014]. However, this may not be very effi-
cient, and is much slower than R1MP on matrix completion
problems [Wang et al., 2014]. More empirical comparisons
will be demonstrated in Section 5.1.

Similar to R1MP, the greedy efficient component optimiza-
tion (GECO) [Shalev-shwartz et al., 2011a] is also based on
greedy approximation but can be used with any smooth ob-
jective. However, GECO is even slower than R1MP [Wang et
al., 2014]. Moreover, it does not have convergence guarantee.

4 Low-Rank Matrix Learning with
Nonsmooth Objectives

Depending on the application, different (convex) nonsmooth
loss functions may be used in generalized low-rank matrix
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models [Udell et al., 2015]. For example, the `
1

loss is use-
ful in robust matrix factorization [Candès et al., 2011], the
scalene loss in quantile regression [Koenker, 2005], and the
hinge loss in multilabel learning [Yu et al., 2014]. In this
Section, we extend the GLRL algorithm, with simple modifi-
cations, to nonsmooth objectives.

4.1 Proposed Algorithm
As the objective is nonsmooth, one has to use the subgradi-
ent gt of f(Xt�1

) at the tth iteration instead of the gradient
in Section 3. Moreover, refining the coefficients as in (6) or
(7) will now involve nonsmooth optimization, which is much
harder. Hence, we do not optimize the coefficients. To ensure
convergence, a sufficient reduction in the objective in each it-
eration is still required. To achieve this, instead of just adding
a rank-one matrix, we add a rank-k matrix (where k may be
greater than 1). This matrix should be most similar to gt,
which can be easily obtained as:

M⇤ ⌘ arg min

M :rank(M)=k
kM � gtk2F =

kX

i=1

siuiv
>
i , (9)

where {(u
1

, v
1

), . . . , (uk, vk)} are the k leading left and right
singular vectors of gt, and {s

1

, . . . , sk} are corresponding
singular values. The proposed procedure is shown in Algo-
rithm 3. The stepsize in step 3 is given by

⌘t =

⇢
c
1

/t if f is µ-strongly convex
c
2

/
p
t if f is (general) convex , (10)

where c
1

� 1/µ and c
2

> 0.

Algorithm 3 GLRL for low-rank matrix learning with nons-
mooth objective f .

1: Initialize: X
0

= 0 and choose ⌫ 2 (0, 1);
2: for t = 1, . . . , T do
3: set ⌘t as in (10);
4: compute subgradient gt of f(Xt�1

), ht = 0;
5: for i = 1, 2, . . . do
6: [ui, si, vi] = rank1SVD(gt � ht);
7: ht = ht + siuiv

>
i ;

8: if kgt � htk2F  ⌫kgt�1

� ht�1

k2F then
9: break;

10: end if
11: end for
12: Xt = Xt�1

� ⌘tht;
13: end for
14: return XT .

4.2 Convergence
The following Theorem shows that when f is nonsmooth
and strongly convex, Algorithm 3 has a convergence rate of
O(log T/T ).
Theorem 5. Assume that f is µ-strongly convex, and
kgtkF  b

1

for some b
1

(t = 1, . . . , T ), then

min

t=0,...,T
f(Xt)� f(X⇤) 

1

T

✓
(1 + log T )

c
1

b2
1

2

+ b
2

◆
,

where c
1

is as defined in (10), and b
2

is a constant (depending
on X

0

, µ, ⌫ and c
1

).

When f is only (general) convex, the following Theorem
shows that the rate is reduced to O(1/

p
T ).

Theorem 6. Assume that f is (general) convex, kgtkF 
b
1

for some b
1

and kXt � X⇤kF  b
3

for some b
3

(t =

1, . . . , T ), then

min

t=0,...,T
f(Xt)� f(X⇤) 

c
2

(b2
1

+ b2
3

)

2

p
T

� 2b
1

b
3

(1�
p
⌫)T

,

where c
2

is as defined in (10).

For other convex nonsmooth optimization problems, the
same O(log(T )/T ) rate for strongly convex objectives and
and O(1/

p
T ) rate for general convex objectives have also

been observed [Shalev-Shwartz et al., 2011b]. However, their
analysis is for different problems, and cannot be readily ap-
plied to our low-rank matrix learning problem here.

4.3 Per-Iteration Time Complexity
To study the per-iteration time complexity, we take the robust
matrix factorization problem in Section 5.2 as an example.
The main computations are on steps 4 and 6. In step 4, since
the subgradient gt is sparse (nonzero only at the observed en-
tries), computing gt takes O(||⌦||

1

) time. At outer iteration
t and inner iteration i, gt in step 6 is sparse and ht has low
rank (equal to i � 1). Thus, gt � ht admits the so-called
“sparse plus low-rank” structure [Mazumder et al., 2010;
Yao et al., 2015]. This allows matrix-vector multiplications
and subsequently rank-one SVD to be performed much more
efficiently. Specifically, for any v 2 Rn, the multiplication
(gt�ht)v takes only O(||⌦||

1

+(i�1)n) time (and similarly
for the multiplication u>

(gt � ht) with any u 2 Rm), and
rank-one SVD using the power method takes O(||⌦||

1

+ (i�
1)n) time. Assuming that it inner iterations are run at (outer)
iteration t, it takes a total of O(it||⌦||1 + (it � 1)

2n) time.
Typically, it is small (empirically, usually 1 or 2).

In comparison, though the ADMM algorithm in [Lin et al.,
2010] has a faster O(1/T ) convergence rate, it needs SVD
and takes O(m2n) time in each iteration. As for the Wiberg
algorithm [Eriksson and van den Hengel, 2012], its conver-
gence rate is unknown and a linear program with mr+ ||⌦||

1

variables needs to be solved in each iteration. As will be seen
in Section 5.2, this is much slower than GLRL.

5 Experiments
In this section, we compare the proposed algorithms with the
state-of-the-art on link prediction and robust matrix factoriza-
tion. Experiments are performed on a PC with Intel i7 CPU
and 32GB RAM. All the codes are in Matlab.

5.1 Social Network Analysis
Given a graph with m nodes and an incomplete adjacency
matrix O 2 {±1}m⇥m, link prediction aims to recover a
low-rank matrix X 2 Rm⇥m such that the signs of Xij’s
and Oij’s agree on most of the observed entries. This can be
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(a) Epinions (training). (b) Epinions (testing). (c) Slashdot (training). (d) Slashdot (testing).

Figure 1: Training and testing accuracies (%) vs CPU time (seconds) on the Epinions (left) and Slashdot (right) data sets.

formulated as the following optimization problem [Chiang et
al., 2014]:

min

X

X

(i,j)2⌦

log(1 + exp(�XijOij)) : rank(X)  r, (11)

where ⌦ contains indices of the observed entries. Note that
(11) uses the logistic loss, which is more appropriate as Oij’s
are binary.

The objective in (11) is convex and smooth. Hence, we
compare the proposed GLRL (Algorithm 2 with coefficient
update step (6)) and its economic variant EGLRL (using co-
efficient update step (7)) with the following:

1. AIS-Impute 1 [Yao and Kwok, 2015]: This is an accel-
erated proximal gradient algorithm with further speedup
based on approximate SVD and the special “sparse plus
low-rank” matrix structure in matrix completion;

2. Alternating minimization (“AltMin”) [Chiang et al.,
2014]: This factorizes X as a product of two low-rank
matrices, and then uses alternating gradient descent for
optimization.

As a further baseline, we also compare with the GLRL vari-
ant that does not perform coefficient update. We do not com-
pare with greedy efficient component optimization (GECO)
[Shalev-shwartz et al., 2011a], matrix norm boosting [Zhang
et al., 2012] and active subspace selection [Hsieh and Olsen,
2014], as they have been shown to be slower than AIS-Impute
and AltMin [Yao and Kwok, 2015; Wang et al., 2014].

Experiments are performed on the Epinions and Slashdot
data sets2 [Chiang et al., 2014] (Table 1). Each row/column
of the matrix O corresponds to a user (users with fewer than
two observations are removed). For Epinions, Oij = 1 if
user i trusts user j, and�1 otherwise. Similarly for Slashdot,
Oij = 1 if user i tags user j as friend, and �1 otherwise.

Table 1: Signed network data sets used.
#rows #columns #observations

Epinions 42,470 40,700 7.5⇥ 10

5

Slashdot 30,670 39,196 5.0⇥ 10

5

As in [Wang et al., 2014], we fix the number of power
method iterations to 30. Following [Chiang et al., 2014], we

1https://github.com/quanmingyao/AIS-impute
2https://snap.stanford.edu/data/

use 10-fold cross-validation and fix the rank r to 40. Note
that AIS-Impute uses the nuclear norm regularizer and does
not explicitly constrain the rank. We select its regularization
parameter so that its output rank is 40. To obtain a rank-r so-
lution, GLRL is simply run for r iterations. For AIS-Impute
and AltMin, they are stopped when the relative change in the
objective is smaller than 10

�4. The output predictions are bi-
narized by thresholding at zero. As in [Chiang et al., 2014],
the sign prediction accuracy is used as performance measure.

Table 2 shows the sign prediction accuracy on the test set.
All methods, except the GLRL variant that does not perform
coefficient update, have comparable prediction performance.
However, as shown in Figure 1, AltMin and AIS-Impute are
much slower (as discussed in Section 3.3). EGLRL has the
lowest per-iteration cost, and is also faster than GLRL.

Table 2: Testing sign prediction accuracy (%) on link pre-
diction. The best and comparable results (according to the
pairwise t-test with 95% confidence) are highlighted.

Epinions Slashdot
AIS-Impute 93.3±0.1 84.2±0.1

AltMin 93.5±0.1 84.9±0.1
GLRL w/o coef upd 92.4±0.1 82.6±0.3

GLRL 93.6±0.1 84.1±0.4
EGLRL 93.6±0.1 84.4±0.3

5.2 Robust Matrix Factorization
Instead of using the square loss, robust matrix factorization
uses the `

1

loss to reduce sensitivities to outliers [Candès et
al., 2011]. This can be formulated as the optimization prob-
lem [Lin et al., 2010]:

min

X

X

(i,j)2⌦

|Xij �Oij | s.t. rank(X)  r.

Note that the objective is only general convex, and its sub-
gradient is bounded ( k⌦kF ). Since there is no smooth
component in the objective, AIS-Impute and AltMin cannot
be used. Instead, we compare GLRL in Algorithm 3 (with
⌫ = 0.99 and c

2

= 0.05) with the following:
1. Alternating direction method of multipliers (ADMM)3

[Lin et al., 2010]: The rank constraint is replaced by
3http://perception.csl.illinois.edu/matrix-rank/Files/

inexact alm rpca.zip
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(a) 100K. (b) 1M. (c) 10M.

Figure 2: Training (top) and testing (bottom) MABS vs CPU time (seconds) on the MovieLens data sets.

the nuclear norm regularizer, and ADMM [Boyd et al.,
2011] is then used to solve the equivalent problem:
minX,Y

P
(i,j)2⌦

|Xij �Oij |+ �kY k⇤ s.t. Y = X .

2. The Wiberg algorithm [Eriksson and van den Hengel,
2012]: It factorizes X into UV > and optimizes them by
linear programming. Here, we use the linear program-
ming solver in Matlab.

Experiments are performed on the MovieLens data sets4

(Table 3), which have been commonly used for evaluating
recommender systems [Wang et al., 2014]. They contain rat-
ings {1, 2, . . . , 5} assigned by various users on movies. The
setup is the same as in [Wang et al., 2014]. 50% of the ratings
are randomly sampled for training while the rest for testing.
The ranks used for the 100K, 1M, 10M data sets are 10, 10,
and 20, respectively. For performance evaluation, we use the
mean absolute error on the unobserved entries ⌦?:

MABS =

1

||⌦?||
1

X

(i,j)2⌦

?

| ˆXij �Oij |,

where ˆX is the predicted matrix [Eriksson and van den Hen-
gel, 2012]. Experiments are repeated five times with random
training/testing splits.

Table 3: MovieLens data sets used in the experiments.
#users #movies #ratings

100K 943 1,682 10

5

1M 6,040 3,449 10

6

10M 69,878 10,677 10

7

Results are shown in Table 4. As can be seen, ADMM
performs slightly better on the 100K data set, and GLRL is
more accurate than Wiberg. However, ADMM is computa-
tionally expensive as SVD is required in each iteration. Thus,

4http://grouplens.org/datasets/movielens/

it cannot be run on the larger 1M and 10M data sets. Figure 2
shows the convergence of MABS with CPU time. As can be
seen, GLRL is the fastest, which is then followed by Wiberg,
and ADMM is the slowest.

Table 4: Testing MABS on the MovieLens data sets. The best
results (according to the pairwise t-test with 95% confidence)
are highlighted. ADMM cannot converge in 1000 seconds on
the 1M and 10M data sets, and thus is not shown.

100K 1M 10M
ADMM 0.717±0.004 — —
Wiberg 0.726±0.001 0.728±0.006 0.715±0.005
GLRL 0.724±0.004 0.694±0.001 0.683±0.001

6 Conclusion
In this paper, we propose an efficient greedy algorithm for the
learning of generalized low-rank models. Our algorithm is
based on the state-of-art R1MP algorithm, but allows the op-
timization objective to be smooth or nonsmooth, general con-
vex or strongly convex. Convergence analysis shows that the
proposed algorithm has fast convergence rates, and is compat-
ible with those obtained on other (convex) smooth/nonsmooth
optimization problems. Specifically, on smooth problems, it
converges with a rate of O(1/T ) on general convex problems
and a linear rate on strongly convex problems. On nonsmooth
problems, it converges with a rate of O(1/

p
T ) on general

convex problems and O(log(T )/T ) rate on strongly convex
problems. Experimental results on link prediction and ro-
bust matrix factorization show that the proposed algorithm
achieves comparable or better prediction performance as the
state-of-the-art, but is much faster.
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