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Abstract— Support vector data description (SVDD) is a pow- Instead of estimating the density or quantile, a simplek tas
erful kernel method that has been commonly used for novelty s to model the support of the data distribution directlys #ad
detection. While its quadratic programming formulation has the Duin proposed thesupport vector data descriptio(SVDD)

important computational advantage of avoiding the problem of . - L
local minimum, this has a runtime complexity of O(N*?), where [9], which uses a ball with minimum volume to enclose most

N is the number of training patterns. It thus becomes prohibitive ~ Of the data. Computationally, this leads to a quadratic g
when the data set is large. Inspired from the use of core-sets in ming (QP) problem, which has the important advantage that

approximating the minimum enclosing ball problem in compu- the solution obtained is always globally optimal. Moregver
tational geometry, we propose in this paper an approximation 55 yith other kernel methods, SVDD works well with high-

method that allows SVDD to scale better to larger data sets. di . | dat d b iv k lized b labia t
Most importantly, the proposed method has a running time that ¢IMenNSional data and can be easlly kernelized by replabeg

is only linear in N. Experimental results on two large real-world dot product between patterns with the corresponding kernel
data sets demonstrate that the proposed method can handle dat evaluation.

sets that are much larger than those that can be handled by  Besides using a ball, one can also use a hyperplane.
standard SVDD packages, while its approximate solution still ‘gepg)onf et al.proposed thene-class SVMhat separates the
attains equally good, or sometimes even better, novelty detection : .
performance. nqrmal p_atterns from the outliers (rgpresented by the r_m)rlgl
with maximum margin [10], [11]. Again, computationallyjsh
|. INTRODUCTION leads to a QP problem. Moreover, when Gaussian kernels are
In recent years, there has been a lot of interest on usinged, the one-class SVM solution is equivalent to that of the
kernels in various aspects of machine learning, such asifitas SVDD.
cation, regression, clustering, ranking and principal ponent Recently, Lanckrieet al.proposed theingle-class minimax
analysis [1], [2], [3]. A well-known example in supervisedprobability machine(MPM) [12] that is also based on the
learning is the support vector machines (SVMs). The bagise of hyperplanes. A distinctive aspect of the singlesclas
idea of kernel methods is to map the data from an input spadd®M is that it can provide a distribution-free probability
to a feature spac& via some mapp, and then apply a linear bound. Specifically, given only the mean and covarianceirmatr
procedure there. It is now well-known that the computatidms of a distribution and without making any other distribu-
not involve o explicitly, but depend only on the inner productional assumption, it seeks the smallest half-sp@¢es, b) =
defined inF, which in turn can be obtained efficiently from{z | w’z > b}, not containing the origin, that minimizes
a suitablekernelfunction (the “kernel trick™). the worst-case probability of a data point falling outside o
In this paper, we will focus on the use of kernel method®. However, despite its interesting theoretical propertiee
in novelty detection, in which one aims at differentiatingingle-class MPM has high false negative rate in practiég [1
known objects (or normal patterns) from unknown objectnd some uncertainty information on the covariance magrix i
(or outliers) [4], [5], [6]. There are a large number of realrequired to alleviate this problem.
world novelty detection applications, such as the detaatb =~ While the QP formulations in both SVDD and one-class
unusual vibration signatures in jet engines [7] or the d&iec SVM have the computational advantage of avoiding the prob-
of new events from newswire stories in text mining [8]. A¢em of local minimum, their runtime complexities are of
only the positive information is available, novelty detent O(N?), whereN is the number of training patterns. In order
is more challenging than supervised learning. Traditignal to allow the QP to scale better to larger data setspi&kopf et
novel patterns are detected by either estimating the denst.[11] suggested the use of a modified version of the sequen-
function of the normal patterns, or by finding a small gkt tial minimal optimization (SMO) algorithm [14]. Howeversa
such thatP(x € Q) = « for some fixeda € (0,1] (quantile will be demonstrated experimentally in Section IV, a SMO-
estimation). However, both depend critically on the par@ime based implementation of the one-class SVM can still suffer
form of the density function, and can fail miserably when thigom scale-up problems.
parametric form is incorrect. A more radical possibility to improve the scale-up behavior



is by changing the formulation altogether, such as froidere,v € (0,1) is a user-provided parameter specifying an
guadratic programming to linear programming (LP) [15]. lmpper bound on the fraction of outliers. The corresponding
general, LPs can handle large data sets, especially withste dual problem is:
of column generation algorithms. However, the LP formolati N N
in [15] is based on m|n|m|z_|ng_the me_zan_\{alue of th_e _ouj[puts max, ZO@XQXZ- _ Z aiaxx;
on the normal patterns, which is less intuitive than mininmiz =

i,j=1
the size of the ball as in SVDD or maximizing the margin as !

in one-class SVM. st. 0< o < %, i1=1,...,N,
Viewing from a broader perspective, the ball-finding prob- N

lem in SVDD is related to theninimum enclosing ba(MEB) Zai =1

problem in computational geometry [16], [17], [18]. Given a =

set S of points, the MEB ofS, denoted by MEBS), is the . . . . .
uniqgue minimum radius ball that contains all 8f Recently, This is a quadratic programming problem in thevariables

Badoiuet al.[16] showed that there exist efficient algorithmg'!> " » N As mentioned in Section |, its solution is guaran-
for finding its (1 + ¢)-approximatiod. The main idea is to eed to be globally optimal. By using the Karush-Kuhn-Tucke
use only a small subset of points, called thare-se?, in (KKT) condition, the center can be obtained from thgs as

e N . . i
computing the approximate solution. The resultant coteme ¢ 2.i=1 @:%;. Moreover, the radiugt can also be computed
be shown to be of siz&)(1/e). Subsequently, the algorithmby calculating the distance betweerand any support vector

has a running time that is only linear in the number of point3; on the.boundary of the bqll. . .
and is thus readily scalable. _ Qn testing, a new patteenwill bg predicted to be an out_Iler
However, despite the apparent similarity between the ME its distance from the centet is larger than the radius;

problem and SVDD, these MEB algorithms cannot be readi CS%VIEZG I:)(\nfwgabsﬁ pLi?;]C;Fdezsbnosr%ali F;Za:g/é_zot@it
applied to SVDD. A crucial distinction is that the MEB Y 2 y simply replacta; i

is required to enclose all data points # including even the computations by(x;, x;), wherek(-,-) is some suitable

outliers. SVDD, on the other hand, allows outliers to remai'ﬁemel function.

outside the ball with the use of slack variables. Moreover, lIl. SCALING UP SVDD

most existing algorithms for finding the MEB can only handle

low-dimensional data, whereas SVDD has to operate in theln this Section, we borrow the idea of core-sets in the

possibly infinite-dimensional kernel-induced featurecgpa ~ MEB algorithms to scale up SVDD. The basic procedure is as
Inspired by the MEB algorithms and the use of core-sef@!lows. First, we construct an initial core-set contagionly

we propose in this paper a procedure for speeding up SVD@§e normal pattern (Section I11-A), and patterns are thefedd

Most importantly, we will show that its running time is only!© it incrementally. Instead of using aV' training patterns in

linear in the number of training patterna’y, instead of the SVYDD'S QP, we only use patterns in this core-set to form

O(N3) complexity for standard SVDD. The rest of this papein® QP (Section IlI-B). By keeping the size of the core-set

is organized as follows. Section Il first introduces SvppSmall (say, of sizer << N), the computational complexity of

Section Il then describes our proposed speed-up procedi§8Ch QP will be of0(n®) << O(N*). Moreover, as will be

Experimental results on two large, real-world data sets at8own in Section I1I-C, the number of iterations is indepemtd

presented in Section IV, and the last section gives sorfilV, which then enables the proposed procedure to have a

concluding remarks. runtime complexity that is only linear in the number of tiain
patterns, which is similar to the MEB algorithms discusged i
Il. SUPPORTVECTORDATA DESCRIPTION Section I.
Given a setS = {x1,... ,xx}, SVDD attempts to find a A, Initialization

small ball, with centeke and radiusR, that contains most of . L
) . There are two issues that have to be tackled on initialimatio
the patterns inS. To allow for the presence of outliers, slaclﬁ:

variables¢;’s are introduced as in other kernel methods. Thglrﬁgt\avgr i\éii?eninsd tacl) p:;fr&;hat;;;irglliﬁg tios bgonsoetsr?al
(primal) optimization problem is then P

to the sample mean. In the input space, this sample mean

1 can be easily obtained as an explicit data vector. Howener, i
. 2 .
ming¢,>0c R+ N Zé}- the kernel-induced feature space, the sample mean can only
i=1 be expressed as a linear combination of tNey-mapped
s.t. le=x||? < R*+ &, &>0, i=1,...,N, patterns (where is the nonlinear mapping corresponding to

the kernel function). Computing the distance between @any
'Denote the ball with center and radius- by Be,-. A ball Be,» D S is  mapped pattern and this sample mean thus tékes) time.
;(Véé)(gpg;%t'”;ago” of MEBE) if r < (1+€)r™, wherer® is the radius - copsequently, finding the pattern closest to the sample mean
2To be more specific, a subsat C S is a core-set of if B (14c)r O S, will already takeO(N?) time, defeating our goal of obtaining

where B, = MEB(X). a procedure whose runtime is only lineari\a



Thus, instead, we first randomly sample a fixed numbthis Section, we will still be able to show that the algorithm
(say, ng) of patterns fromS. Standard SVDD is then runin Section IlI-B has a time complexity that is only linear in
on thesen patterns to obtain a ball with centér Among the number of training patterns.
thesen, patterns, the pattera that is closest t@& is picked. Consider first the initialization step. Asg is fixed, both
Intuitively, this z is unlikely to be an outlier and so will be running the initial SVDD and the finding cf only takeO(1)
used in constructing the initial core-set. Moreover, ad bél time. In determining the initial radiug,, the finding ofy
shown in Section 1lI-C, such initialization only takes lare takesO(N) time. So, the total time required for initialization
time. is O(N).

The second issue is on how to set the initial raditysof At the ith iteration, R; is increased by at least
the ball. A smallR; will be desirable so that the initial ball Se
does not contain any outlier. Hence, we first randomly pick a 0eR; > 0eR;_1 > --- > 0eRy > (E)RMEB(S)a
patternx from among those:, patterns above and then find
the patterry € S that is furthest fronx. DefineD = || x—y|. ©n using (1) and (2). Obvioush?, 5 (s) is an upper bound
It is obvious thatD > Ry pp(s), Where Ry pp(s) is the ON the radius of the ball required. Therefore, the total neimb

radius of MEB(S). We then initializeR, = D/k, wherek > 1, of iterations is no more thag: = O(1/¢).

such thatR; is a small number. Moreover, note that At each iteration, one pattern will be added to the core-
set in step 4. Hence, the size 68f is ¢« and consequently;
Ry 2 Rypp(s)/k- (1) is a linear combination of p-mapped patterns. Thus, at the

ith iteration, step 4 requires takégiN) time, while running
o , SVDD in step 5 take®)((i + 1)3) = O(i®) time. The other
After initialization, patterns will be added to the coregiens take only constant time. And so the total time for the
set incrementally. In the following, we denote the centefy, iteration iSO(iN + 43)
radius E_ind the core-set at _thth lteration byc;, R; and 5; The total time for the whole procedure, including initiakz
respectively. Moreover, as in traditional SVDD, we assUmeyn and M — O(1/e) iterations, is then:
that the user will supply the value of, which is an upper
bound on the fraction of outliers. M .
The following iterative procedure is then taken: T = O(N)+Y O(N +i%

1) Initialize R; andz as mentioned in Section IlI-A. Set =1
S1 ={z},c1 =z andi=1.

M M
= O(N i | O(N 3
2) Find the setP; of patterns inS that fall outside the (V) + (Z l) ( )+Z:Z

=1
(1+ ¢)-ball B;, (146, In other words, = O(M?N + M%)

P={xeS||x—c|>1+¢R;} _ O(ﬁ%N—i—%). 3)

B. lterative Procedure

3) Ifthe size ofP; is smaller thanv IV, the expected number ] ) . ] ) ]
of outliers, then terminate. For a fixede, T is thus linear inN, instead ofO(N?) in

4) Otherwise, expand the core-set by including the pattefigditional SVDD.
in P; \ S; that is closest tac;. Denote the expanded

V. EXPERIMENT
core-set byS; ;.

5) Run SVDD onS,,;, and obtain the new centef;, | In this Section, we perform experiments on two real-world
and radiusR; ; ;. datasets, the BiolD Face DatabagSection IV-A) and the
6) Enforce the constraint that MNIST handwritten digits databaséSection IV-B). In the
sequel, we denote the proposed method by CSVDD, which
Rip1 2> (14 0¢)Ri, (2)  stands for “Core-set Support Vector Data Description”. ilt w

defined constant. In otherwordg,e compared with two standard SVDD packages: the data
the radius must increase by at leastR; at the ith description toolbox.c(d_tools) and.the SMO-basgd LIBSVM
iteration. As will be discussed in section IlI-C, this[t9]- All these are implemented in MATLAB, with MOS,EﬁK
constraint is crucial for bounding the time complexity.(Version 3) being used as the underlying QP solver in both

7) Incrementi by 1 and go back to Step 2. dd_toqls anq CSVDD. Experlments arerunona P4-2.24G_Hz

machine, with 1G RAM, running Windows XP. Moreover, in

whered is a small, user-

C. Time Complexity
. SThe BiolD Face Database can be downloaded from
In the MEB problem, it can be shown that the numbqrttp://wmv. humanscan. de/ suppor t/ downl oads/ f acedb. php.

of iterations in a similar procedure as above is@f1/¢?) 4The  MNIST  database can be  downloaded  from
[16] (or evenO(1/€) when the furthest pattern is used irftspi//ftp- kyb. t uebi ngen. npg. de/ pub/ bs/ dat a.

; ; ; ; ; dd_tools and LIBSVM can be downloaded from
each iteration [17]).' However, as mentioned in Sectiondséh http:// waw. ph. tn. tudel ft.nl / ~davi dt/ dd.t ool box. ht i
results Canr‘_Ot be cﬁrectly applied here b_ecause of the MIES€andht t p: / / www. csi e. ntu. edu. tw ~cj | i n/1i bsvmrespectively.
of slack variables in the SVDD formulation. Nevertheless, i SMOSEK can be downloaded froimt t p: / / ww. mosek. com



all the experiments, we sej in the initialization step t0 20, . seme s s o @ ¢
k in (1) to 10, andj in (2) to 0.01e. L—'.;e A = | = 5 .-&.ng.i
Several criteria are used to compare the novelty detectors ih J.k..n.% 4@9..-& 3
The first set of criteria, namely the AUC error, FP and FN,
are based on the ROC (receiver operating characteristaphgr
[20], which plots the true positive (TP) rate on thieaxis and
the false positive (FP) rate on th&-axis. TP and FP are
defined by

(a) Images cropped from the database.

= A5 BN ETY
positives correctly classified nmh‘*ﬁ' g.\;v\l

_tOta! positives 7_ ) (b) Images generated by tensor voting.
P — negatives incorrectly classified
B total negatives L —

TP =

respectively. Here, outliers are treated as positivesenndr- g
mal patterns as negatives. Similarly, the false negatite ra k.* ‘!J’- . : ¢&E§ H! e
(FN) is defined as (c) Non-face images.

positives incorrectly classified
total positives ' Fig. 1. Sample images used in the experiment in Section IV-A.

AUC stands for the area under the ROC curve, and the AUC

error is defined a§1l — AUC). The AUC error is always

between 0 and 1. A perfect novelty detector will have zero
AUC error, while random guessing will have an AUC error of

FN =

TABLE |
RESULTS ON THE FACE DATA SET(NUMBERS IN BRACKETS ARE THE
STANDARD DEVIATIONS).

0.5. The second criterion is the CPU time (in seconds) requir [ size of AUC
by Matlab for the whole procedure. To reduce statistical| trset | method error FN FP
il 100 | ddtools | 0.0489 (0.003)| 0.28 (0.04)| 0.07 (0.01)
varlak_n_llty, results here are based on averages over 2®nmand LIBSVM | 00489 (0.003) 0.28 (0.04) | 0.07 (0.01)
repetitions. CSVDD | 0.0484 (0.004)| 0.02 (0.02)| 0.28 (0.19)
300 | dd_tools | 0.0499 (0.004)| 0.14 (0.01)| 0.09 (0.01)
A. Face Database LIBSVM | 0.0499 (0.004)| 0.14 (0.01)| 0.09 (0.01)

. . . CSVDD | 0.0507 (0.007)] 0.01 (0.01)| 0.30 (0.18
This database contains 1,521 gray level images, each Show=—g30 T dd tools | 0.0488 Eo.oosg 0.10 Eo.mg 011 50.013

ing the frontal view of a face of one out of 23 different LIBSVM | 0.0488 (0.003) 0.10 (0.01)| 0.11 (0.01)

i CSVDD | 0.0504 (0.005)| 0.02 (0.01)| 0.24 (0.06)
tesF persons. Because the images are taken _under a Iar(n=1000 4 tools | 0.0492 (0.002)[0.08 (0.00) | 0-12 (0.07)
variety of background, the fgce; need to.be first manua]ly LIBSVM | 0.0492 (0.002)| 0.08 (0.00)| 0.12 (0.01)
aligned and cropped, producing images with a resultant size CSVDD | 0.0468 (0.005)| 0.01 (0.01)| 0.27 (0.09)

of 25 x 25. Moreover, in order to better evaluate the scale-up| 3000 | dd-tools | 0.0497 (0.001)| 0.06 (0.01)] 0.14 (0.01)
- : ; LIBSVM | 0.0497 (0.001)| 0.06 (0.01) | 0.14 (0.01)

capabilities, we use tensor voting [21] to expand this datab CSVDD | 0.0478 (0.005)| 0.01 (0.01) | 0.23 (0.06)
to a total of 75,787 face images, with grey scale from O to[ 6000 | CSVDD | 0.0531 (0.006)| 0.01 (0.01)| 0.25 (0.06)
255. No preprocessing, such as illumination correctionrame ;8383 gggg 8-8332 Eg-gggg 8-8i Eg-gi; 8-§é Eg-gg;
value normahzatlon and hl_stogram equallza_tlon are peréat. 30000 | CSVDD | 0.0498 (0:005) .02 (0:01) 053 (0:07)
Moreover, to provide outliers in the experiments, we gather
some non-face images from images of natural scenes, build-
ings and textures. Sample images are shown in Figure 1.

During training, we use 100 to 30,000 face images sampledFigure 2 compares their speeds. When the training set is
from the 75,787 images generated above, and no non-faceall, bothdd_tools and LIBSVM are faster than CSVDD.
image is used. The test set consists of 2,000 face and 2,d00s, nevertheless, is not surprising as CSVDD has to run

non-face images. We use the Gaussian kernel the QP multiple times. In fact, under this situation, there
Ix — 2 is no scale-up problem and the standard SVDD packages

k(x,y) = exp (——2) , (4) should be the preferred choice. The real power of CSVDD,
20 however, can be seen as the training set gets larger. This can

with ¢ = 500. Moreover,v is always set to 0.05. be seen more clearly in Figure 2, which shows that CSVDD

Table | compares CSVDD (with = 0.3) with the standard then becomes significantly faster than the other two trarki
SVDD packages ofld_tools and LIBSVM. As can be seen, SVDD approaches. With 6,000 or more training patterns, both
the AUC errors of all three are comparable for this value ofd_tools and LIBSVM cannot be run on the machine used in
¢, and CSVDD has a lower FN but higher FP. Thus, althoughe experiment.

CSVDD is only an approximate solution, results here indidat We then vary the value efused in CSVDD. Table Il shows
that its solution is still close to optimal. that there is only very small difference in terms of novelty
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Fig. 2. CPU time vs number of training patterns (Face database) Fig. 3. Size of the core-set at different valueseaqfFace database).

detection performance whenis changed in the range testedv is set to 0.9. On this database, the LIBSVM package cannot
However, as can be seen in (3), a smaller value ¢dads converge to the correct solution, and so odlg_tools and

to longer training time (Figure 2). Figure 3 plots the size dESVDD can be compared.

the resultant core-set, which is the same as the number of

iterations, with the value of. As expected, the resultant core-

set is only a very small subset of the training set, and its siz n l‘ Il Il r‘ ﬂll r‘ ﬂ i!
also grows slowly with increasing training set size. MooV

as discussed in Section III-C, the number of iterations is of 'I r‘ 'J "“ l‘ r‘ 'I u 'l
O(1/e), and this rising trend withl /e can also be clearly

observed. (a) Digit 1 images.

TABLE I

CSVDD RESULTS AT DIFFERENT VALUES OFe (FACE DATABASE). ["] E‘! Em E[@ r] E H

size of AUC size of AUC =1y
€ tr set error € tr set error . ™ ‘
05| 100 | 0.0526 (0.007)|] 0.2 100 | 0.0484 (0.004)
300 | 0.0496 (0.007) 300 | 0.0490 (0.006) =l Fr
600 | 0.0518 (0.006) 600 | 0.0524 (0.006) . i )
1000 | 0.0492 (0.009) 1000 | 0.0492 (0.005)
3000 | 0.0535 (0.006) 3000 | 0.0503 (0.006) by Outlier i
6000 | 0.0510 (0.006) 6000 | 0.0490 (0.004) (b) Outlier images.
10000 | 0.0488(0.008) 10000 | 0.0484 (0.005)
20000 | 0.0527 (0.008) 20000 | 0.0482 (0.004) _ . . . . _
30000 | 0.0496 (0.005) 30000 | 0.0477 (0.006) Fig. 4. Sample images used in the experiment in Section IV-B.
04| 100 | 0.0528 (0.007)|] 0.15 | 100 | 0.0496 (0.004)
288 8'8212 8882 288 8-8235 Eg-ggﬁg Table 11l compares the novelty detection performance.it ca
7000 0:0476 (0:005) 1000 0:0472 (0:005) be seen that CSVDD is even more accurate tthdriools in
3000 | 0.0510 (0.005) 3000 | 0.0483 (0.003) terms of AUC error. Variations of the CPU time and size of
6000 | 0.0509 (0.005) 6000 | 0.0490 (0.005)]  the core-set with the number of training patterns are shown i
10000 | 0.0539 (0.007) 10000 | 0.0483 (0.003) . . 1 .
20000 | 0.0502 (0.008) 20000 | 0.0488 (0.005) Figures 5 and 6 respectively. Again, standard SVDD is faster
30000 | 0.0518 (0.006) 30000 | 0.0460 (0.004) than CSVDD when the data set is small. However, CSVDD

becomes significantly faster on large data sets. With 3,000 o
more training patterngld_tools cannot be run on the machine
used in the experiment. Finally, other trends as discussed i
B. MNIST Database Section IV-A can also be observed here.

The second set of experiments is performed on the MNIST
database, which contaifi§ x 20 grey-level images of the digits
0,1,...,9. In this experiment, we treat the digit one images In this paper, we proposed a scale-up algorithm for SVDD
as normal patterns and all others as outliers. Sample imagesed on the idea of core-sets in computational geometry.
are shown in Figure 4. A total of 6,742 digit one images aignlike the standard SVDD which has a runtime complexity
used to form the training set, while the test set has 10,000 O(N?3), where N is the number of training patterns, the
images, with 1,135 of them belonging to the digit one. Agaimroposed procedure has a running time which is only linear
we use the same Gaussian kernel in (4), with- 8, and also in N. Experimental results show that this allows SVDD to be

V. CONCLUSION



TABLE Ill
RESULTS ON THEMNIST DATA SET (NUMBERS IN BRACKETS ARE THE
STANDARD DEVIATIONS).

performed on much larger training sets with no degradation,

or even improvement, in novelty detection performance.
Because of the close resemblance between SVDD and one-

class SVM, we will also explore extending our method to

size of AUC one-class SVM in the future.
tr set method error FN FP
100 dd_tools 0.145 (0.057)| 0.20 (0.12)| 0.31 (0.22) ACKNOWLEDGMENT
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