
Scaling up Support Vector Data Description
by Using Core-Sets

Calvin S. Chu Ivor W. Tsang James T. Kwok
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay

Hong Kong
E-mail: {cscalvin,ivor,jamesk}@cs.ust.hk

Abstract— Support vector data description (SVDD) is a pow-
erful kernel method that has been commonly used for novelty
detection. While its quadratic programming formulation has the
important computational advantage of avoiding the problem of
local minimum, this has a runtime complexity of O(N3), where
N is the number of training patterns. It thus becomes prohibitive
when the data set is large. Inspired from the use of core-sets in
approximating the minimum enclosing ball problem in compu-
tational geometry, we propose in this paper an approximation
method that allows SVDD to scale better to larger data sets.
Most importantly, the proposed method has a running time that
is only linear in N . Experimental results on two large real-world
data sets demonstrate that the proposed method can handle data
sets that are much larger than those that can be handled by
standard SVDD packages, while its approximate solution still
attains equally good, or sometimes even better, novelty detection
performance.

I. I NTRODUCTION

In recent years, there has been a lot of interest on using
kernels in various aspects of machine learning, such as classifi-
cation, regression, clustering, ranking and principal component
analysis [1], [2], [3]. A well-known example in supervised
learning is the support vector machines (SVMs). The basic
idea of kernel methods is to map the data from an input space
to a feature spaceF via some mapϕ, and then apply a linear
procedure there. It is now well-known that the computationsdo
not involveϕ explicitly, but depend only on the inner product
defined inF , which in turn can be obtained efficiently from
a suitablekernel function (the “kernel trick”).

In this paper, we will focus on the use of kernel methods
in novelty detection, in which one aims at differentiating
known objects (or normal patterns) from unknown objects
(or outliers) [4], [5], [6]. There are a large number of real-
world novelty detection applications, such as the detection of
unusual vibration signatures in jet engines [7] or the detection
of new events from newswire stories in text mining [8]. As
only the positive information is available, novelty detection
is more challenging than supervised learning. Traditionally,
novel patterns are detected by either estimating the density
function of the normal patterns, or by finding a small setQ
such thatP (x ∈ Q) = α for some fixedα ∈ (0, 1] (quantile
estimation). However, both depend critically on the parametric
form of the density function, and can fail miserably when the
parametric form is incorrect.

Instead of estimating the density or quantile, a simpler task
is to model the support of the data distribution directly. Tax and
Duin proposed thesupport vector data description(SVDD)
[9], which uses a ball with minimum volume to enclose most
of the data. Computationally, this leads to a quadratic program-
ming (QP) problem, which has the important advantage that
the solution obtained is always globally optimal. Moreover,
as with other kernel methods, SVDD works well with high-
dimensional data and can be easily kernelized by replacing the
dot product between patterns with the corresponding kernel
evaluation.

Besides using a ball, one can also use a hyperplane.
Scḧolkopf et al.proposed theone-class SVMthat separates the
normal patterns from the outliers (represented by the origin)
with maximum margin [10], [11]. Again, computationally, this
leads to a QP problem. Moreover, when Gaussian kernels are
used, the one-class SVM solution is equivalent to that of the
SVDD.

Recently, Lanckrietet al.proposed thesingle-class minimax
probability machine(MPM) [12] that is also based on the
use of hyperplanes. A distinctive aspect of the single-class
MPM is that it can provide a distribution-free probability
bound. Specifically, given only the mean and covariance matrix
of a distribution and without making any other distribu-
tional assumption, it seeks the smallest half-spaceQ(w, b) =
{z | w

′
z ≥ b}, not containing the origin, that minimizes

the worst-case probability of a data point falling outside of
Q. However, despite its interesting theoretical properties, the
single-class MPM has high false negative rate in practice [13],
and some uncertainty information on the covariance matrix is
required to alleviate this problem.

While the QP formulations in both SVDD and one-class
SVM have the computational advantage of avoiding the prob-
lem of local minimum, their runtime complexities are of
O(N3), whereN is the number of training patterns. In order
to allow the QP to scale better to larger data sets, Schölkopf et
al. [11] suggested the use of a modified version of the sequen-
tial minimal optimization (SMO) algorithm [14]. However, as
will be demonstrated experimentally in Section IV, a SMO-
based implementation of the one-class SVM can still suffer
from scale-up problems.

A more radical possibility to improve the scale-up behavior



is by changing the formulation altogether, such as from
quadratic programming to linear programming (LP) [15]. In
general, LPs can handle large data sets, especially with theuse
of column generation algorithms. However, the LP formulation
in [15] is based on minimizing the mean value of the outputs
on the normal patterns, which is less intuitive than minimizing
the size of the ball as in SVDD or maximizing the margin as
in one-class SVM.

Viewing from a broader perspective, the ball-finding prob-
lem in SVDD is related to theminimum enclosing ball(MEB)
problem in computational geometry [16], [17], [18]. Given a
set S of points, the MEB ofS, denoted by MEB(S), is the
unique minimum radius ball that contains all ofS. Recently,
Badoiuet al.[16] showed that there exist efficient algorithms
for finding its (1 + ǫ)-approximation1. The main idea is to
use only a small subset of points, called thecore-set2, in
computing the approximate solution. The resultant core-set can
be shown to be of sizeO(1/ǫ). Subsequently, the algorithm
has a running time that is only linear in the number of points,
and is thus readily scalable.

However, despite the apparent similarity between the MEB
problem and SVDD, these MEB algorithms cannot be readily
applied to SVDD. A crucial distinction is that the MEB
is required to enclose all data points inS, including even
outliers. SVDD, on the other hand, allows outliers to remain
outside the ball with the use of slack variables. Moreover,
most existing algorithms for finding the MEB can only handle
low-dimensional data, whereas SVDD has to operate in the
possibly infinite-dimensional kernel-induced feature space.

Inspired by the MEB algorithms and the use of core-sets,
we propose in this paper a procedure for speeding up SVDD.
Most importantly, we will show that its running time is only
linear in the number of training patterns (N ), instead of the
O(N3) complexity for standard SVDD. The rest of this paper
is organized as follows. Section II first introduces SVDD.
Section III then describes our proposed speed-up procedure.
Experimental results on two large, real-world data sets are
presented in Section IV, and the last section gives some
concluding remarks.

II. SUPPORTVECTORDATA DESCRIPTION

Given a setS = {x1, . . . ,xN}, SVDD attempts to find a
small ball, with centerc and radiusR, that contains most of
the patterns inS. To allow for the presence of outliers, slack
variablesξi’s are introduced as in other kernel methods. The
(primal) optimization problem is then

minR,ξi≥0,c R2 +
1

νN

N
∑

i=1

ξi

s.t. ‖c − xi‖
2 ≤ R2 + ξi, ξi ≥ 0, i = 1, . . . , N,

1Denote the ball with centerc and radiusr by Bc,r . A ball Bc,r ⊃ S is
a (1+ ǫ)-approximation of MEB(S) if r ≤ (1+ ǫ)r∗, wherer∗ is the radius
of MEB(S) andǫ > 0.

2To be more specific, a subsetX ⊆ S is a core-set ofS if B
c,(1+ǫ)r ⊃ S,

whereBc,r = MEB(X).

Here, ν ∈ (0, 1) is a user-provided parameter specifying an
upper bound on the fraction of outliers. The corresponding
dual problem is:

maxαi

N
∑

i=1

αix
′
ixi −

N
∑

i,j=1

αiαjx
′
ixj

s.t. 0 ≤ αi ≤
1

νN
, i = 1, . . . , N,

N
∑

i=1

αi = 1.

This is a quadratic programming problem in theN variables
α1, . . . , αN . As mentioned in Section I, its solution is guaran-
teed to be globally optimal. By using the Karush-Kuhn-Tucker
(KKT) condition, the center can be obtained from theαi’s as
c =

∑N
i=1 αixi. Moreover, the radiusR can also be computed

by calculating the distance betweenc and any support vector
xi on the boundary of the ball.

On testing, a new patternz will be predicted to be an outlier
if its distance from the centerc is larger than the radius;
otherwise, it will be predicted as normal. Finally, notice that
SVDD can be easily kernelized by simply replacingx

′
ixj in

the computations byk(xi,xj), wherek(·, ·) is some suitable
kernel function.

III. SCALING UP SVDD

In this Section, we borrow the idea of core-sets in the
MEB algorithms to scale up SVDD. The basic procedure is as
follows. First, we construct an initial core-set containing only
one normal pattern (Section III-A), and patterns are then added
to it incrementally. Instead of using allN training patterns in
SVDD’s QP, we only use patterns in this core-set to form
the QP (Section III-B). By keeping the size of the core-set
small (say, of sizen << N ), the computational complexity of
each QP will be ofO(n3) << O(N3). Moreover, as will be
shown in Section III-C, the number of iterations is independent
of N , which then enables the proposed procedure to have a
runtime complexity that is only linear in the number of training
patterns, which is similar to the MEB algorithms discussed in
Section I.

A. Initialization

There are two issues that have to be tackled on initialization.
First, we have to find a pattern that is very likely to be normal.
A natural choice is to use the pattern inS that is closest
to the sample mean. In the input space, this sample mean
can be easily obtained as an explicit data vector. However, in
the kernel-induced feature space, the sample mean can only
be expressed as a linear combination of theN ϕ-mapped
patterns (whereϕ is the nonlinear mapping corresponding to
the kernel function). Computing the distance between anyϕ-
mapped pattern and this sample mean thus takesO(N) time.
Consequently, finding the pattern closest to the sample mean
will already takeO(N2) time, defeating our goal of obtaining
a procedure whose runtime is only linear inN .



Thus, instead, we first randomly sample a fixed number
(say, n0) of patterns fromS. Standard SVDD is then run
on thesen0 patterns to obtain a ball with centerc̃. Among
thesen0 patterns, the patternz that is closest tõc is picked.
Intuitively, this z is unlikely to be an outlier and so will be
used in constructing the initial core-set. Moreover, as will be
shown in Section III-C, such initialization only takes linear
time.

The second issue is on how to set the initial radiusR1 of
the ball. A smallR1 will be desirable so that the initial ball
does not contain any outlier. Hence, we first randomly pick a
patternx from among thosen0 patterns above and then find
the patterny ∈ S that is furthest fromx. DefineD = ‖x−y‖.
It is obvious thatD ≥ RMEB(S), where RMEB(S) is the
radius of MEB(S). We then initializeR1 = D/k, wherek > 1,
such thatR1 is a small number. Moreover, note that

R1 ≥ RMEB(S)/k. (1)

B. Iterative Procedure

After initialization, patterns will be added to the core-
set incrementally. In the following, we denote the center,
radius and the core-set at theith iteration byci, Ri and Si

respectively. Moreover, as in traditional SVDD, we assume
that the user will supply the value ofν, which is an upper
bound on the fraction of outliers.

The following iterative procedure is then taken:

1) Initialize R1 and z as mentioned in Section III-A. Set
S1 = {z}, c1 = z and i = 1.

2) Find the setPi of patterns inS that fall outside the
(1 + ǫ)-ball B

ci,(1+ǫ)Ri
. In other words,

Pi = {x ∈ S | ‖x − ci‖ > (1 + ǫ)Ri}.

3) If the size ofPi is smaller thanνN , the expected number
of outliers, then terminate.

4) Otherwise, expand the core-set by including the pattern
in Pi \ Si that is closest toci. Denote the expanded
core-set bySi+1.

5) Run SVDD onSi+1, and obtain the new centerci+1

and radiusRi+1.
6) Enforce the constraint that

Ri+1 ≥ (1 + δǫ)Ri, (2)

whereδ is a small, user-defined constant. In other words,
the radius must increase by at leastδǫRi at the ith
iteration. As will be discussed in section III-C, this
constraint is crucial for bounding the time complexity.

7) Incrementi by 1 and go back to Step 2.

C. Time Complexity

In the MEB problem, it can be shown that the number
of iterations in a similar procedure as above is ofO(1/ǫ2)
[16] (or even O(1/ǫ) when the furthest pattern is used in
each iteration [17]). However, as mentioned in Section I, these
results cannot be directly applied here because of the presence
of slack variables in the SVDD formulation. Nevertheless, in

this Section, we will still be able to show that the algorithm
in Section III-B has a time complexity that is only linear in
the number of training patternsN .

Consider first the initialization step. Asn0 is fixed, both
running the initial SVDD and the finding ofz only takeO(1)
time. In determining the initial radiusR1, the finding ofy
takesO(N) time. So, the total time required for initialization
is O(N).

At the ith iteration,Ri is increased by at least

δǫRi > δǫRi−1 > · · · > δǫR1 ≥ (
δǫ

k
)RMEB(S),

on using (1) and (2). Obviously,RMEB(S) is an upper bound
on the radius of the ball required. Therefore, the total number
of iterations is no more thank

δǫ
= O(1/ǫ).

At each iteration, one pattern will be added to the core-
set in step 4. Hence, the size ofSi is i and consequentlyci

is a linear combination ofi ϕ-mapped patterns. Thus, at the
ith iteration, step 4 requires takesO(iN) time, while running
SVDD in step 5 takesO((i + 1)3) = O(i3) time. The other
steps take only constant time. And so the total time for the
ith iteration isO(iN + i3).

The total time for the whole procedure, including initializa-
tion andM = O(1/ǫ) iterations, is then:

T = O(N) +

M
∑

i=1

O(iN + i3)

= O(N) +

(

M
∑

i=1

i

)

O(N) +

M
∑

i=1

i3

= O(M2N + M4)

= O(
1

ǫ2
N +

1

ǫ4
). (3)

For a fixed ǫ, T is thus linear inN , instead ofO(N3) in
traditional SVDD.

IV. EXPERIMENT

In this Section, we perform experiments on two real-world
datasets, the BioID Face Database3 (Section IV-A) and the
MNIST handwritten digits database4 (Section IV-B). In the
sequel, we denote the proposed method by CSVDD, which
stands for “Core-set Support Vector Data Description”. It will
be compared with two standard SVDD packages: the data
description toolbox (dd tools) and the SMO-based LIBSVM5

[19]. All these are implemented in MATLAB, with MOSEK6

(version 3) being used as the underlying QP solver in both
dd tools and CSVDD. Experiments are run on a P4-2.24GHz
machine, with 1G RAM, running Windows XP. Moreover, in

3The BioID Face Database can be downloaded from
http://www.humanscan.de/support/downloads/facedb.php.

4The MNIST database can be downloaded from
ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data.

5dd tools and LIBSVM can be downloaded from
http://www.ph.tn.tudelft.nl/∼davidt/dd toolbox.html
andhttp://www.csie.ntu.edu.tw/∼cjlin/libsvm respectively.

6MOSEK can be downloaded fromhttp://www.mosek.com.



all the experiments, we setn0 in the initialization step to 20,
k in (1) to 10, andδ in (2) to 0.01ǫ.

Several criteria are used to compare the novelty detectors.
The first set of criteria, namely the AUC error, FP and FN,
are based on the ROC (receiver operating characteristic) graph
[20], which plots the true positive (TP) rate on theY -axis and
the false positive (FP) rate on theX-axis. TP and FP are
defined by

TP =
positives correctly classified

total positives
,

FP =
negatives incorrectly classified

total negatives
,

respectively. Here, outliers are treated as positives while nor-
mal patterns as negatives. Similarly, the false negative rate
(FN) is defined as

FN =
positives incorrectly classified

total positives
.

AUC stands for the area under the ROC curve, and the AUC
error is defined as(1 − AUC). The AUC error is always
between 0 and 1. A perfect novelty detector will have zero
AUC error, while random guessing will have an AUC error of
0.5. The second criterion is the CPU time (in seconds) required
by Matlab for the whole procedure. To reduce statistical
variability, results here are based on averages over 20 random
repetitions.

A. Face Database

This database contains 1,521 gray level images, each show-
ing the frontal view of a face of one out of 23 different
test persons. Because the images are taken under a large
variety of background, the faces need to be first manually
aligned and cropped, producing images with a resultant size
of 25× 25. Moreover, in order to better evaluate the scale-up
capabilities, we use tensor voting [21] to expand this database
to a total of 75,787 face images, with grey scale from 0 to
255. No preprocessing, such as illumination correction, mean
value normalization and histogram equalization are performed.
Moreover, to provide outliers in the experiments, we gather
some non-face images from images of natural scenes, build-
ings and textures. Sample images are shown in Figure 1.

During training, we use 100 to 30,000 face images sampled
from the 75,787 images generated above, and no non-face
image is used. The test set consists of 2,000 face and 2,000
non-face images. We use the Gaussian kernel

k(x,y) = exp

(

−
‖x − y‖2

2σ2

)

, (4)

with σ = 500. Moreover,ν is always set to 0.05.
Table I compares CSVDD (withǫ = 0.3) with the standard

SVDD packages ofdd tools and LIBSVM. As can be seen,
the AUC errors of all three are comparable for this value of
ǫ, and CSVDD has a lower FN but higher FP. Thus, although
CSVDD is only an approximate solution, results here indicated
that its solution is still close to optimal.

(a) Images cropped from the database.

(b) Images generated by tensor voting.

(c) Non-face images.

Fig. 1. Sample images used in the experiment in Section IV-A.

TABLE I

RESULTS ON THE FACE DATA SET(NUMBERS IN BRACKETS ARE THE

STANDARD DEVIATIONS).

size of AUC
tr set method error FN FP
100 dd tools 0.0489 (0.003) 0.28 (0.04) 0.07 (0.01)

LIBSVM 0.0489 (0.003) 0.28 (0.04) 0.07 (0.01)
CSVDD 0.0484 (0.004) 0.02 (0.02) 0.28 (0.19)

300 dd tools 0.0499 (0.004) 0.14 (0.01) 0.09 (0.01)
LIBSVM 0.0499 (0.004) 0.14 (0.01) 0.09 (0.01)
CSVDD 0.0507 (0.007) 0.01 (0.01) 0.30 (0.18)

600 dd tools 0.0488 (0.003) 0.10 (0.01) 0.11 (0.01)
LIBSVM 0.0488 (0.003) 0.10 (0.01) 0.11 (0.01)
CSVDD 0.0504 (0.005) 0.02 (0.01) 0.24 (0.06)

1000 dd tools 0.0492 (0.002) 0.08 (0.00) 0.12 (0.01)
LIBSVM 0.0492 (0.002) 0.08 (0.00) 0.12 (0.01)
CSVDD 0.0468 (0.005) 0.01 (0.01) 0.27 (0.09)

3000 dd tools 0.0497 (0.001) 0.06 (0.01) 0.14 (0.01)
LIBSVM 0.0497 (0.001) 0.06 (0.01) 0.14 (0.01)
CSVDD 0.0478 (0.005) 0.01 (0.01) 0.23 (0.06)

6000 CSVDD 0.0531 (0.006) 0.01 (0.01) 0.25 (0.06)
10000 CSVDD 0.0499 (0.004) 0.02 (0.01) 0.21 (0.05)
20000 CSVDD 0.0492 (0.005) 0.01 (0.01) 0.26 (0.08)
30000 CSVDD 0.0498 (0.005) 0.02 (0.01) 0.23 (0.07)

Figure 2 compares their speeds. When the training set is
small, bothdd tools and LIBSVM are faster than CSVDD.
This, nevertheless, is not surprising as CSVDD has to run
the QP multiple times. In fact, under this situation, there
is no scale-up problem and the standard SVDD packages
should be the preferred choice. The real power of CSVDD,
however, can be seen as the training set gets larger. This can
be seen more clearly in Figure 2, which shows that CSVDD
then becomes significantly faster than the other two traditional
SVDD approaches. With 6,000 or more training patterns, both
dd tools and LIBSVM cannot be run on the machine used in
the experiment.

We then vary the value ofǫ used in CSVDD. Table II shows
that there is only very small difference in terms of novelty



10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

size of training set (in log scale)

C
P

U
 ti

m
e 

(in
 s

ec
on

d,
 lo

g 
sc

al
e)

CSVDD (ε=0.15)
CSVDD (ε=0.2)
CSVDD (ε=0.3)
CSVDD (ε=0.4)
CSVDD (ε=0.5)
SVDD
LIBSVM

Fig. 2. CPU time vs number of training patterns (Face database).

detection performance whenǫ is changed in the range tested.
However, as can be seen in (3), a smaller value ofǫ leads
to longer training time (Figure 2). Figure 3 plots the size of
the resultant core-set, which is the same as the number of
iterations, with the value ofǫ. As expected, the resultant core-
set is only a very small subset of the training set, and its size
also grows slowly with increasing training set size. Moreover,
as discussed in Section III-C, the number of iterations is of
O(1/ǫ), and this rising trend with1/ǫ can also be clearly
observed.

TABLE II

CSVDD RESULTS AT DIFFERENT VALUES OFǫ (FACE DATABASE).

size of AUC size of AUC
ǫ tr set error ǫ tr set error

0.5 100 0.0526 (0.007) 0.2 100 0.0484 (0.004)
300 0.0496 (0.007) 300 0.0490 (0.006)
600 0.0518 (0.006) 600 0.0524 (0.006)
1000 0.0492 (0.009) 1000 0.0492 (0.005)
3000 0.0535 (0.006) 3000 0.0503 (0.006)
6000 0.0510 (0.006) 6000 0.0490 (0.004)
10000 0.0488(0.008) 10000 0.0484 (0.005)
20000 0.0527 (0.008) 20000 0.0482 (0.004)
30000 0.0496 (0.005) 30000 0.0477 (0.006)

0.4 100 0.0528 (0.007) 0.15 100 0.0496 (0.004)
300 0.0510 (0.007) 300 0.0482 (0.004)
600 0.0514 (0.007) 600 0.0495 (0.004)
1000 0.0476 (0.005) 1000 0.0472 (0.005)
3000 0.0510 (0.005) 3000 0.0483 (0.003)
6000 0.0509 (0.005) 6000 0.0490 (0.005)
10000 0.0539 (0.007) 10000 0.0483 (0.003)
20000 0.0502 (0.008) 20000 0.0488 (0.005)
30000 0.0518 (0.006) 30000 0.0460 (0.004)

B. MNIST Database

The second set of experiments is performed on the MNIST
database, which contains20×20 grey-level images of the digits
0, 1, . . . , 9. In this experiment, we treat the digit one images
as normal patterns and all others as outliers. Sample images
are shown in Figure 4. A total of 6,742 digit one images are
used to form the training set, while the test set has 10,000
images, with 1,135 of them belonging to the digit one. Again,
we use the same Gaussian kernel in (4), withσ = 8, and also

10
2

10
3

10
4

10
5

20

40

60

80

100

120

140

size of training set (in log scale)

si
ze

 o
f c

or
e−

se
t

CSVDD (ε=0.15)
CSVDD (ε=0.2)
CSVDD (ε=0.3)
CSVDD (ε=0.4)
CSVDD (ε=0.5)

Fig. 3. Size of the core-set at different values ofǫ (Face database).

ν is set to 0.9. On this database, the LIBSVM package cannot
converge to the correct solution, and so onlydd tools and
CSVDD can be compared.

(a) Digit 1 images.

(b) Outlier images.

Fig. 4. Sample images used in the experiment in Section IV-B.

Table III compares the novelty detection performance. It can
be seen that CSVDD is even more accurate thandd tools in
terms of AUC error. Variations of the CPU time and size of
the core-set with the number of training patterns are shown in
Figures 5 and 6 respectively. Again, standard SVDD is faster
than CSVDD when the data set is small. However, CSVDD
becomes significantly faster on large data sets. With 3,000 or
more training patterns,dd tools cannot be run on the machine
used in the experiment. Finally, other trends as discussed in
Section IV-A can also be observed here.

V. CONCLUSION

In this paper, we proposed a scale-up algorithm for SVDD
based on the idea of core-sets in computational geometry.
Unlike the standard SVDD which has a runtime complexity
of O(N3), whereN is the number of training patterns, the
proposed procedure has a running time which is only linear
in N . Experimental results show that this allows SVDD to be



TABLE III

RESULTS ON THEMNIST DATA SET (NUMBERS IN BRACKETS ARE THE

STANDARD DEVIATIONS).

size of AUC
tr set method error FN FP
100 dd tools 0.145 (0.057) 0.20 (0.12) 0.31 (0.22)

CSVDD (ǫ = 0.3) 0.033 (0.038) 0.15 (0.15) 0.28 (0.35)
CSVDD (ǫ = 0.4) 0.039 (0.074) 0.16 (0.17) 0.33 (0.41)
CSVDD (ǫ = 0.5) 0.035 (0.035) 0.15 (0.17) 0.31 (0.41)

300 dd tools 0.162 (0.040) 0.13 (0.09) 0.42 (0.19)
CSVDD (ǫ = 0.3) 0.036 (0.041) 0.09 (0.10) 0.40 (0.42)
CSVDD (ǫ = 0.4) 0.054 (0.110) 0.11 (0.12) 0.41 (0.43)
CSVDD (ǫ = 0.5) 0.078 (0.148) 0.14 (0.13) 0.31 (0.41)

600 dd tools 0.159 (0.030) 0.09 (0.06) 0.50 (0.19)
CSVDD (ǫ = 0.3) 0.126 (0.148) 0.09 (0.10) 0.49 (0.35)
CSVDD (ǫ = 0.4) 0.176 (0.219) 0.19 (0.23) 0.44 (0.33)
CSVDD (ǫ = 0.5) 0.175 (0.218) 0.13 (0.18) 0.54 (0.38)

1000 dd tools 0.161 (0.020) 0.10 (0.05) 0.49 (0.14)
CSVDD (ǫ = 0.3) 0.084 (0.114) 0.10 (0.11) 0.37 (0.37)
CSVDD (ǫ = 0.4) 0.097 (0.145) 0.12 (0.15) 0.37 (0.36)
CSVDD (ǫ = 0.5) 0.119 (0.175) 0.12 (0.13) 0.39 (0.38)

2000 dd tools 0.162 (0.020) 0.08 (0.04) 0.53 (0.15)
CSVDD (ǫ = 0.3) 0.053 (0.078) 0.07 (0.09) 0.28 (0.30)
CSVDD (ǫ = 0.4) 0.063 (0.096) 0.08 (0.09) 0.28 (0.31)
CSVDD (ǫ = 0.5) 0.086 (0.139) 0.10 (0.11) 0.27 (0.30)

3000 CSVDD (ǫ = 0.3) 0.067 (0.104) 0.09 (0.11) 0.24 (0.26)
CSVDD (ǫ = 0.4) 0.091 (0.144) 0.10 (0.13) 0.24 (0.26)
CSVDD (ǫ = 0.5) 0.090 (0.131) 0.10 (0.09) 0.26 (0.31)

6000 CSVDD (ǫ = 0.3) 0.067 (0.091) 0.09 (0.05) 0.18 (0.20)
CSVDD (ǫ = 0.4) 0.091 (0.140) 0.12 (0.12) 0.19 (0.20)
CSVDD (ǫ = 0.5) 0.106 (0.170) 0.15 (0.18) 0.18 (0.18)

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

size of training set (in log scale)

C
P

U
 ti

m
e 

(in
 s

ec
on

d,
 lo

g 
sc

al
e)

CSVDD (ε=0.3)
CSVDD (ε=0.4)
CSVDD (ε=0.5)
SVDD

Fig. 5. CPU time vs number of training patterns (MNIST database).

10
2

10
3

10
4

0

100

200

300

400

500

600

size of training set (in log scale)

si
ze

 o
f c

or
e−

se
t

CSVDD (ε=0.3)
CSVDD (ε=0.4)
CSVDD (ε=0.5)

Fig. 6. Size of the core-set at different values ofǫ (MNIST database).

performed on much larger training sets with no degradation,
or even improvement, in novelty detection performance.

Because of the close resemblance between SVDD and one-
class SVM, we will also explore extending our method to
one-class SVM in the future.

ACKNOWLEDGMENT

The authors would like to thank Wing Yu for providing
the extended BioID Face database and Ka-Chun Wong for
useful discussions. This research has been partially supported
by the Research Grants Council of the Hong Kong Special
Administrative Region under grant HKUST6195/02E.

REFERENCES

[1] N. Cristianini and J. Shawe-Taylor,An Introduction to Support Vector
Machines. Cambridge University Press, 2000.

[2] B. Scḧolkopf and A. Smola,Learning with Kernels. MIT, 2002.
[3] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[4] M. Markou and S. Singh, “Novelty detection: A review, Part I: Statistical

approaches,”Signal Processing, vol. 83, no. 12, pp. 2481–2497, 2003.
[5] ——, “Novelty detection: A review, Part II: Neural network based

approaches,”Signal Processing, vol. 83, no. 12, pp. 2499–2521, 2003.
[6] S. Marsland, “Novelty detection in learning systems,”Neural Computing

Surveys, vol. 3, pp. 157–195, 2003.
[7] P. Hayton, B. Scḧolkopf, L. Tarassenko, and P. Anuzis, “Support vector

novelty detection applied to jet engine vibration spectra,” in Advances
in Neural Information Processing Systems 13, T. Leen, T. Dietterich,
and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001.

[8] Y. Yang, J. Zhang, J. Carbonell, and C. Jin, “Topic-conditioned novelty
detection,” inProceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[9] D. Tax and R. Duin, “Support vector domain description,”Pattern
Recognition Letters, vol. 20, pp. 1991–1999, 1999.

[10] B. Scḧolkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” inAdvances in Neural
Information Processing Systems 12, S. Solla, T. Leen, and K.-R. M̈uller,
Eds. San Mateo, CA: Morgan Kaufmann, 2000, pp. 582–588.

[11] B. Scḧolkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural
Computation, vol. 13, no. 7, pp. 1443–1471, July 2001.

[12] G. Lanckriet, L. El Ghaoui, and M. Jordan, “Robust novelty detection
with single-class MPM,” inAdvances in Neural Information Processing
Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge,
MA: MIT Press, 2003.

[13] ——, “Robust novelty detection with single-class MPM,”in IMA
Workshop on Semidefinite Programming and Robust Optimization, 2003.

[14] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” inAdvances in Kernel Methods – Support Vector
Learning, B. Scḧolkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA: MIT Press, 1999, pp. 185–208.

[15] C. Campbell and K. Bennet, “A linear programming approach to novelty
detection,” inAdvances in Neural Information Processing Systems 14,
T. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA:
MIT Press, 2002.

[16] M. Badoiu, S. Har-Peled, and P. Indyk, “Approximate clustering via
core-sets,” inProceedings of 34th Annual ACM Symposium on Theory
of Computing, Montréal, Qúebec, Canada, 2002, pp. 250–257.

[17] M. Badoiu and K. Clarkson, “Smaller core-sets for balls,” in Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Baltimore, Maryland, USA, 2002, pp. 801–802.

[18] P. Kumar, J. Mitchell, and A. Yildirim, “Computing core-sets and
approximate smallest enclosing hyperspheres in high dimensions,” in
5th Workshop on Algorithm Engineering and Experiments, 2003.

[19] C.-C. Chang and C.-J. Lin,LIBSVM: a Library for Support Vector
Machines, 2001.

[20] A. Bradley, “The use of the area under the ROC curve in theevaluation
of machine learning algorithms,”Pattern Recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[21] G. Medioni, M.-S. Lee, and C.-K. Tang,A Computational Framework
for Feature Extraction and Segmentation. Elsevier Science, 2000.


