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Text detection is important in the retrieval of texts from digital pictures, video databases and webpages.
However, it can be very challenging since the text is often embedded in a complex background. In this paper,
we propose a classification-based algorithm for text detection using a sparse representation with
discriminative dictionaries. First, the edges are detected by the wavelet transform and scanned into patches
by a sliding window. Then, candidate text areas are obtained by applying a simple classification procedure
using two learned discriminative dictionaries. Finally, the adaptive run-length smoothing algorithm and
projection profile analysis are used to further refine the candidate text areas. The proposed method is
evaluated on the Microsoft common test set, the ICDAR 2003 text locating set, and an image set collected
from the web. Extensive experiments show that the proposed method can effectively detect texts of various
sizes, fonts and colors from images and videos.
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1. Introduction

With the rapid development of digital devices, images and videos
are now popular media in our daily lives. Texts, which are often
embedded in images and videos, contain lots of semantic information
useful for video comprehension. They can thus play an important role
in content-based multimedia indexing and retrieval. In recent years,
the automatic detection of texts from images and videos has gained
increasing attention. However, the large variations in text fonts,
colors, styles, and sizes, as well as the low contrast between the text
and the often complicated background, often make text detection
extremely challenging.

A lot of efforts have been put on addressing these problems [1–11],
and these can be roughly divided into four categories. The first
category uses connected component analysis (CCA) [1], in which
pixels with similar colors are grouped into connected components,
and then into text regions. CCA is fast. However, it fails when the texts
are not homogeneous and text parts are not dominant in the image.
The second category is based on edges [2], which assume high-
contrast differences between the text and background. It is fast, and
can have a high recall. However, it often produces many false alarms
since the background may also have strong edges similar to the text.
The third category is based on textures [3], and assumes that texts
have specific texture patterns. It is more time-consuming and can fail
when the background is cluttered with text. The fourth category is
based on frequencies [4], in which the text is extracted from the
background in the frequency (e.g., wavelet) domain. This is also time-
consuming, and the frequency representation may not be better than
the spatial representation. Recently, there is a lot of interest on using
pattern classification techniques (such as AdaBoost [7], support vector
machines [5,8,10], belief propagation [11] and neural networks [9])
for text localization. With the help of elaborately designed features
that incorporate various properties of the text (such as geometry,
color, texture and frequency), these techniques are often successful in
discriminating text from its background.

On the other hand, the use of a sparse representation has recently
drawn much attention in diverse classification applications. These
include face recognition [12], signal classification [13] and texture
classification [14]. With the assumption that natural images admit a
sparse decomposition in some redundant basis (or so-called dictio-
nary), various representations, including the curvelets, wedgelets,
bandlets and various variants of wavelets, have been proposed. Recent
works showed that these non-parametric dictionaries can signifi-
cantly outperform the standard, off-the-shelf dictionaries [15,16].

Recently, Pan et al. [17] proposed the use of a sparse representa-
tion for text detection. It extracts text-like edges from an image by
using a dictionary obtained by K-SVD [20]. However, as the K-SVD
dictionary is designed for coding and denoising, it can be confused by
complex backgrounds with text-like areas. In this paper, we overcome
this deficiency by using a discriminative dictionary. Specifically, two
overcomplete dictionaries are trained. The first dictionary provides a
sparse representation for the text and a non-sparse representation for
the background, while the second dictionary does the opposite.
Subsequently, the image can be separated into text and background
regions by comparing the reconstruction errors from each of these
dictionaries. Finally, text detection can be efficiently performed by

mailto:mingzhao_frank@yahoo.cn
mailto:shutao_li@yahoo.com.cn
mailto:jamesk@cse.ust.hk
http://dx.doi.org/10.1016/j.imavis.2010.04.002
http://www.sciencedirect.com/science/journal/02628856


1591M. Zhao et al. / Image and Vision Computing 28 (2010) 1590–1599
applying the adaptive run-length smoothing algorithm [24] and
projection profile analysis [27]. Contrary to the existing approaches,
the proposed method utilizes edge information and sparse represen-
tation to locate text candidates, whichmakes it provide high precision
rate and recall rate for texts with various sizes, fonts, colors and
language. The proposed method has a three-step refinement scheme,
which works well for extracting texts from complex and textured
backgrounds. However, because of using horizontal and vertical
directions wavelet basis and projection analysis, our method may not
perform well on skewed texts detection.

The rest of this paper is organized as follows. In Section 2, the
sparse representation and discriminative dictionary are briefly
reviewed. In Section 3, we introduce the training of the discriminative
dictionaries for text detection. Details of the proposed text detection
method are presented in Section 4, and the experimental results are
shown in Section 5. Finally, the conclusion is discussed in Section 6.

2. Sparse representation and discriminative dictionary

Sparse representation models have recently been used in image
understanding tasks such as texture segmentation and feature
selection [18,19]. The sparse representation of a signal over an
overcomplete dictionary is achieved by optimizing an objective
function that includes two terms: one measures the signal recon-
struction error and the other measures the signal sparsity. Suppose
that the data x in Rn admits a sparse approximation over an over-
complete dictionary D (where D∈Rn×K with K≫n) with K atoms.
Then x can be approximately represented as a linear combination of a
few atoms from D. There are a number of algorithms that can be used
to learn D. One of the most popular algorithms is K-SVD [20], in which
an overcomplete dictionary is obtained by solving the following opti-
mization problem:

min
α;D

∑
M

l=1
‖xl−Dαl‖

2
2 s:t:‖αl‖0≤L; ð1Þ

where xl is the signal,D in Rn×K is the dictionary to be learned (each of
its atoms is a unit vector in the l2 norm), αl in RK is the sparse repre-
sentation of the lth signal using the dictionary D, and ‖•‖0 is the l0 norm
(that counts the number of nonzero entries in the vector argument).
Thus, Eq. (1)finds the optimaldictionarywith the lowest reconstruction
error, subject to the constraint that each signal must have fewer than
L atoms in its decomposition. Computationally, an iterative procedure
can be used. First, the dictionary D is initialized, and then the training
procedure alternates between sparse coding and dictionary update.

While K-SVD can obtain a good reconstructive representation,
it may not perform well in a classification setting. As a remedy, Maira
et al. proposed an algorithm that learns multiple discriminative dic-
tionaries [21]. Given N classes of signals Si, i=1,.…, N, it attempts to
learn N dictionaries Di, with one dictionary per class. This yields the
following optimization problem:

min
Djf gN

j=1

∑
N

i=1
∑
l∈Si

cλi R4 xl;Dj

� �n oN

j = 1

� �
+ λγR4 xl;Dið Þ; ð2Þ

whereR4
xl;Dð Þ≡min

αl

‖xl−Dαl‖
2
2 s:t:ϕ αlð Þ≤0; ð3Þ

where, R⁎(xl, Di) is the reconstruction error of the signal xl using
dictionary Di, γ controls the tradeoff between reconstruction and
discrimination. Moreover, Ci

λ is a softmax cost function (with
parameter λ), which is the multi-class version of the logistic regression
function, which serves to make dictionary Di a better representation
than dictionaries Dj (i≠ j) for signals from class Si.

Computationally, the optimization procedure is implemented as
a sequence of truncated Newton iterations with respect to the
dictionaries. It is shown in [21] that each such iteration of updating
dictionary Dj is equivalent to solving a problem of the form:

min
D′∈ℝn×k

i≠j

∑
N

i=1
∑
l∈Si

wl‖xl−D0αlj‖
2
2; ð4Þ

where αlj 's are the coefficients of the decompositions of xl using
dictionary Dj, and wl are the weights coming from a local linear
approximation of Ciλ. They have to be recomputed at each step of the
optimization procedure. Empirically, the resultant sparse discrimina-
tive representation performs better in classification tasks.

3. Discriminative dictionaries for text detection

In this paper, two overcomplete dictionaries are trained. The first
dictionary provides a sparse representation for the text, while the
second one provides a sparse representation for the background. To
train the text dictionary, we choose as training samples isolated
machine-printed characters extracted from 5 synthesized document
images. These images contain 1500 commonly used Chinese characters,
26 English letters and 10Arabic numbers of various fonts and sizes. Two
of the document images are shown in Fig. 1(a). Moreover, since wewill
mainly consider the detection of English and Chinese texts in the
experiments, so only English and Chinese characters are included in the
training set. As will be seen in the experiments, this still allows the
detection of texts with similar shapes as Chinese or English (such as
French). Obviously, this can also be extended to the detection of texts in
other languages by simply including characters of those languages into
the training set. As for the backgrounddictionary, 56non-text real scene
images shown in Fig. 1(b) are used to construct the training set. These
images are collected from thewebsiteswhich includenatural landscape,
buildings, human beings, animals and vehicles.

Here, we will not utilize the color information of the images.
Hence, all the training images obtained above are first converted to
grayscale. Afterwards, edges are extracted by the Canny edge detector
[22]. Finally, a small sliding window scans the image into patches with
a raster-scan order, and all the non-edge patches are discarded. Note
that the size of the sliding window is important. If it is too large, the
resultant vectors will be high-dimensional, increasing the difficulty
and time consumption of the classification process. If it is too small,
the edge segments do not contain enough character or background
information for discrimination. In the experiments, we found that
16×16 is a good tradeoff. Finally, a total of 200,000 text patches and
200,000 background patches are generated.

We then use the discriminative dictionary training algorithm in
[21] to construct two dictionaries, D1 for the text and D2 for the
background. In the experiment, each dictionary has 512 atoms.
Moreover, 10 iterations of the algorithm are run. At each iteration, we
prune the two sets by keeping the “best 90% classified patches” [21]. It
is hoped that the overlap between the text and background sets can
then be minimized. Finally, 41,178 patches remain in each set after
training. The resultant text and background dictionaries are shown in
Fig. 2.

4. Text detection via discriminative dictionaries

A flowchart of the proposed text detection algorithm is shown in
Fig. 3. There are three key steps, each of which will be described in
details below.

4.1. Edge detection with wavelets

Edges in the image are first extracted by the wavelet transform.
In general, edges are created by objects which have different local



Fig. 1. Discriminative dictionary training samples: (a) text training samples; (b) background training samples.
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intensity profiles due to occlusions, shadows, and textures. To label an
edge precisely, it is thus necessary to analyze its local properties,
which can be characterized mathematically by singularities in terms
of the Lipschitz exponents. The wavelet theory shows that the
Fig. 2. Text and background dictionaries learned. (
Lipschitz exponents can be computed from the evolution across scales
of the wavelet transform local extrema, and the local extrema of the
wavelet transform correspond to the zero crossings of its derivative.
Mallat and Zhong [23] pointed out that finding the local maxima of
a): text dictionary; (b) background dictionary.



Fig. 3. Flowchart of the proposed text detection method.

Fig. 4. Wavelet transform edge detection: (a) original signal; (b) thr
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a wavelet transform is equivalent to the multi-scale Canny edge
detection [22].

As an example, we visualize the edges of the simpler one-
dimensional signal in Fig. 4(a). Fig. 4(b) shows its discrete dyadic
wavelet transform computed on three scales. Fig. 4(c) shows the
corresponding derivatives and locations of the local maxima. As can
be seen, each Dirac impulse in Fig. 4(c) indicates the position and
amplitude of a local maximum in Fig. 4(b), which in turn indicates the
edge position in Fig. 4.

Considering that most of the texts are in the horizontal or vertical
directions, the orthogonal wavelet basis will be used in the following.
However, this may not performwell on skewed texts. If it is necessary
to detect skewed texts, we should introduce skew text line detection
firstly. There are many skewed text line detection methods up to now
[32,33]. We can detect the skewed angle by utilizing the skewed text
line detectionmethod, and then convert the skewed text to horizontal
text. Afterwards, we can implement the proposed text detection
method. The wavelet basis functions for the horizontal and vertical
directions are:

ψH x;yð Þ = −xe
−
x2 + y2

2
;

ψV x;yð Þ = −ye
−
x2 + y2

2
;

ð5Þ
ee scales of the wavelet transform of (a); (c) derivatives of (b).
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Therefore, the wavelet transforms of a signal at the original basis
and their derivatives are:

WH
2 j f x;yð Þ = f 4ψH

2 j x;yð Þ;
WV

2 j f x;yð Þ = f 4ψV
2 j x;yð Þ;

ð6Þ

Here, f represents the input image, ‘*’ indicates the convolution,
and j denotes the scale of the wavelet transform. Note that many
extant text detection methods use the Canny edge detection operator.
However, we use wavelets instead because the wavelet transform is
multi-scale. In particular, the scale j above controls the threshold for
which edges are to be detected. When the scale is large, the wavelet
transform tends to remove small signal fluctuations such as complex
background edges. However, unobvious text edges may also disap-
pear when the scale is too large. In the experiments, we use j=3. A
comparison of the performance of wavelet edge detection and
classical edge detection methods is shown in Fig. 5. As can be seen,
wavelet edge detection gives more precise text edges. Moreover,
edges of the background can be more easily discriminated from the
text edges. More edge detection results on images and video frames
are shown in Fig. 6.

4.2. Edge classification using a sparse representation

In this step, we find all the possible text edges by performing
classification with the use of a sparse representation. As in dictionary
learning, a window of the same size is slided over the transformed
edge image and the edge image is segmented into many non-
overlapping patches (which are represented as column vectors in
Fig. 7(b)). Each patch is then classified by comparing the two
reconstruction errors Ri

⁎, i=1, 2, resulting from the text and
background dictionaries:

R4
i x;Dið Þ≡‖x−Diα4 x;Dið Þ‖22; ð7Þ

whereα4 x;Dð Þ = min
α∈ℝk

‖x−Dα‖22;s:t:‖α‖0≤L ð8Þ

Here Di, i=1, 2, indicates the trained text dictionary and the
background dictionary, respectively. If R1⁎ is smaller than R2⁎, the text
dictionary is better than the background dictionary in representing
the patch. Therefore, the patch should be classified as text. Conversely,
if R1⁎is larger than R2⁎, the patch should belong to the background.
Then, the background patches are set to zero, and text patches are
reserved. Afterwards, we reconstruct the edge image from those
patches for the following refinement process.

4.3. Text area refinement

Sometimes, image blocks with several closely parallel edges may
be falsely detected as text. This can be especially problematic for
textures such as square objects, leaves, etc. In the following, we will
use the horizontal and vertical projection profile analysis with
Fig. 5. Edge detection results for the letter “R” in a complex background: (a) original image
(d) edges obtained by the wavelet detector.
adaptive run-length smoothing algorithm (ARSLA) [24] to separate
the true texts from the candidate ones.

The classical run-length smoothing algorithm (RLSA) [30] is
applicable to binary images, which takes advantage of the white
runs existing in the horizontal and vertical directions. It is a low-
complexity technique and can segment candidate text edges into
rectangular blocks and then classify them into either text or
background. In each direction, RLSA eliminates white runs whose
lengths are smaller than a threshold smoothing value. Recall that the
input patches are of size 16×16 pixels, the smoothing values in both
the horizontal and vertical directions are thus also set to 16 pixels.
However, RLSA may sometimes group inhomogeneous connected
components or different slanted lines together. The ARLSA is an
extension which overcomes these drawbacks. Empirically, ARLSA can
also handle images containing characters with variable font sizes.

In our algorithm, ARLSA is first performed in the horizontal
direction (Fig. 8(b)). Afterwards, a morphological open operation is
used to remove isolated edges (Fig. 8(c)). The structuring element is a
3×3matrix of all ‘1's. Then, the projection profile analysis is applied in
the horizontal direction. The text line is extracted from the horizontal
run histogram as a couple of parallel rectilinear lines. From the input
image, the horizontal projections are computed. The number of runs
in the ith pixel row is stored. Let H be the horizontal projection. The
text line can be associated with the most significant part of a peak in
H. The maximum (minimum) of the first derivative of the projection
on the left (right) of the peak approximately represents the upper-
line (baseline) of the text line. The longer andmore rectilinear the text
line is, the better the body evaluation is. The valleys of the histogram
represent the separation between two consecutive text lines. The
horizontal projection profile analysis extracts text lines from the
candidate text area. Next, we perform the vertical ARLSA and vertical
projection profile analysis in those text lines which have been
extracted from the horizontal projection analysis. Sample results
from the vertical ARLSA and projection analysis are shown in Fig. 9
(a)–(e).

After performing these in the horizontal and vertical directions,
isolated edges are sorted out as false text alarms and discarded. A
sample result of this refinement process is shown in Fig. 9(f). Finally,
the left-most, right-most, top and bottom coordinates are used to
create a bounding rectangle.

5. Experimental results

In this section, experiments are performed on three test sets. The
first one is the Microsoft common test set for video text detection [25]
with 45 video frames. The second one is the ICDAR 2003 text locating
test set [31], which includes 258 real scene pictures. The last one is
collected from the web, and includes 102 images/video frames
collected from movies, news clips, sports videos and music videos.
These cover a variety of texts in different fonts, sizes, styles and
languages, light texts on complex backgrounds, texts of poor qualities,
etc. Moreover, for fair comparison, these images are not used in the
training of the discriminative dictionaries.
; (b) edges obtained by the Canny detector; (c) edges obtained by the Sobel detector;



Fig. 6. Wavelet edge detection for real scene text images: (a) and (b): original images; (c) and (d): the corresponding edge maps obtained by the wavelet detector.
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Two metrics that have been commonly employed in information
retrieval, namely,

Precision =
Number of correctly detected text

Number of detected text
ð9Þ

Recall =
Number of correctly detected text

Number of text
ð10Þ

will be used for performance evaluation. Here, the text is considered
as having been detected correctly if the overlapped area between the
Fig. 7. Candidate text edges extracted by the discriminative dictionaries: (a) edge map of
detection result and ground truth is larger than 90% of the ground
truth. The algorithm is implemented in Matlab 7.0, and experiments
are performed on a PC with an AMD Sempron 1.83 GHz CPUwith 1 GB
RAM running Windows XP.

5.1. Effect of the sparsity factor

The proposed method has three main parameters: size of the
patch (n), size of the dictionaries (K) and the sparsity factor (L). For a
reasonable tradeoff between complexity and performance, we set
the input image; (b) edge map partition and vectorization; (c) candidate text region.



Fig. 8. Adaptive run-length smoothing algorithm and projection analysis in the horizontal direction: (a) candidate text region; (b) horizontal adaptive run-length smoothing
algorithm in the horizontal direction; (c) morphological open operation; (d) projection profile analysis in the horizontal direction; (e) extracted text lines.
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n=256 and K=512. Here, we first study the effect of the sparsity
factor. Experiments are performed on the Microsoft common test set,
with L {6, 7, 8, 9, 10}. Fig. 10 shows the effect on the precision and
recall. As can be seen, the best choice is L=8, which leads to a
precision of 98.8% and a recall of 94.2%. Therefore, in the following
experiments, the sparsity factor (L) is always set to 8.
Fig. 9. Adaptive run-length smoothing algorithm and projection analysis in the vertical direct
the horizontal direction; (c) morphological open operation; (d) projection profile analysis i
result.
5.2. Effect of the font size of the text

As mentioned in the previous section, the size of the sliding
window is set to 16×16 so as to have a reasonable tradeoff between
training time and performance. Because of this fixed size, the sliding
window may not be able to capture enough information when the
ion: (a) extracted text lines; (b) horizontal adaptive run-length smoothing algorithm in
n the vertical direction; (f) result of vertical projection analysis; (e) final text detection



Fig. 10. Effect of different sparsity factors on precision and recall.
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text's font size is too large, leading to a subsequent degradation in
performance. This is demonstrated in the following experiment. First,
we choose ten images that do not contain any text. Texts of twelve
different sizes, from 8-point to 164-point per character, are then
added to these non-text images, leading to a total of 10×12=120
images. The resultant detection results are shown in Fig. 11. As can be
seen, both precision and recall fall sharply when the text size is
roughly larger than 130 points. Hence, in order to handle large texts
(with a font size larger than 130 points), a downsampling operation
can be used to first reduce the size of text into one-quarter of its
original size. Afterwards the proposedmethod can be implemented in
the different size images.

5.3. Comparison with various text detection methods

In this section, the following methods will be compared:

1) The proposed method, which will be denoted as “wavelet+
discriminative dictionary”;

2) A variant of the proposed method, which uses the Canny edge
detector instead of the wavelet detector (“Canny+discriminative
dictionary”);

3) Pan et al.'s method [17] (“Canny+K-SVD”);
4) The use of a support vector machine (SVM) classifier operating on

the wavelet features directly (“wavelet+SVM”). In this experi-
ment, the RBF Kernel function with gamma of 0.5 is used for the
Fig. 11. Effect of the text's font size on precision and recall.
SVM. The training set used by the SVM is as the same as the
discriminative dictionary.

Experiments are performed on a total of 405 images from all the
three databases.

Table 1 shows the results. As can be seen, the precision and recall
of the wavelet-basedmethod are 2.3% and 2.2% higher than that of the
Canny-basedmethod. Hence, wavelet edge detection is more accurate
than the Canny filter when the background is complex. The
disadvantage of the wavelet-based method is that it is more
computationally expensive during text candidate detection. However,
only a small additional computation cost is needed in the subsequent
processes. Also, we can see from Table 1 that the recall and precision
of the two discriminative dictionary-based methods are higher than
those of Pan et al.'s method [17]. It thus verifies our original
hypothesis that using multiple discriminative dictionaries is better
than using a single reconstructive dictionary in text candidate
detection. Moreover, note that the proposed method is also better
than that of using a support vector machine (SVM) classifier directly
on the wavelet features. This is probably because the edge map
extracted by the wavelet transform is sparse and thus a sparse
representation is useful. Table 1 also reports the average processing
time for a 640×480 image. As can be seen, the speed of the proposed
method is comparable with those of the others.

Fig. 12 shows some representative results of the proposed text
detection method. As can be seen, these include a wide range of texts.
In particular,

• Fig. 12(a), (d), (e), (f), (i) and (j) contain texts in real scene pictures,
while Fig. 12(b), (c), (g) and (l) contain texts that are added on the
image or video frames;

• Fig. 12(b), (c) and (l) contain non-English/Chinese texts of different
sizes;

• Fig. 12(d), (e) and (j) contain texts embedded in complicated
backgrounds;

• Fig. 12(f) contains texts with two different languages;
• Fig. 12(f) and (k) contain texts with different colors;
• Fig. 12(g) contains texts of different fonts and sizes;
• Fig. 12(j) contains light text on a complicated background;
• Fig. 12(h) does not contain any text, and it demonstrates that the
proposed method can successfully avoid false alarms in a non-text
image.

Moreover, a number of methods have reported results on the
Microsoft common test set. These include

(1) Ye et al. [8]: a feature selection algorithm which uses a SVM
classifier to verify multi-scale wavelet features in the text/non-
text classification tasks;

(2) Mancas-Thillou et al. [26]: it uses two metrics to merge similar
colors together for text-driven segmentation in the RGB color
space;

(3) Lienhart et al. [27]: it detects texts by using a complex-valued
multilayer feed-forward network trained to detect text at a
fixed scale and position;
Table 1
Performance of various text detection approaches.

Method Precision Recall Average processing time for
a 640×480 image (in sec)

Wavelet+discriminative
dictionary

78.73% 76.33% 25.9

Canny+discriminative
dictionary

76.43% 74.10% 25.9

Canny+K-SVD [17] 70.62% 72.32% 20.8
Wavelet+SVM 76.21% 74.63% 19.7



Fig. 12. Sample text detection results using the proposed method.
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(4) Shivakumara et al.'s method [27]: it is based on candidate text
block selection and segmentation of text portion of the image;

(5) Gllavata et al.'s method [29]: it is based on wavelet coefficients
classification.

Hence, in Table 2, we also compare the performance of the
proposed method with the above methods on this data set. As can be
seen, the proposed method and Ye et al.'s method exhibit similar
recall, and are far better than the other three methods, while the
proposed method is more accurate than Ye et al.'s method. Mancas-
Thillou et al.'s method and Lienhart et al.'s method exhibit a medium
recall and precision. Shivakumara et al.'s method uses an improved
edge feature extracting algorithm for text detection, which exhibits a
medium recall and a high false rate. Gllavata et al.'s method shows
the lowest precision as well as the lowest recall. This is mainly
because of the noisy and complex background that often occurs in
images. As can be seen, the proposed method can locate the text area
much more precisely.



Table 2
Comparison of the various methods on the Microsoft common test set.

Method Recall Precision

Ye et al. [8] 94.2% 97.6%
Mancas-Thillou et al. [26] 91.0% 93.6%
Lienhart etl al. [27] 91.4% 94.4%
Shivakumara etl al. [28] 92% 90.4%
Gllavata etl al. [29] 90% 87%
Our method 94.2% 98.8%
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6. Conclusion

In this paper, we proposed a sparse representation classification
method based on discriminative dictionaries. We first extracted the
edges of an input image by the wavelet transform. They are then
classified by using sparse representations with discriminative dictio-
naries. Finally, the text regions are located by performing ARLSA and
projection profile analysis on the edge classification results. Experi-
mental results show that the proposed text detection method
outperforms the other techniques. In particular, it allows robust text
detection, without having to place assumptions on the text size, color
or other textural properties. Moreover, it can detect overlay texts in
images and video frames, as well as texts in the scene images.
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