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ABSTRACT
Maximum margin discriminant analysis (MMDA) was pro-
posed that uses the margin idea for feature extraction. It
often outperforms traditional methods like kernel principal
component analysis (KPCA) and kernel Fisher discriminant
analysis (KFD). However, as in other kernel methods, its
time complexity is cubic in the number of training points
m, and is thus computationally inefficient on massive data
sets. In this paper, we propose an (1 + ε)2-approximation
algorithm for obtaining the MMDA features by extending
the core vector machines. The resultant time complexity
is only linear in m, while its space complexity is indepen-
dent of m. Extensive comparisons with the original MMDA,
KPCA, and KFD on a number of large data sets show that
the proposed feature extractor can improve classification ac-
curacy, and is also faster than these kernel-based methods
by more than an order of magnitude.

Categories and Subject Descriptors: I.2.6 [Learning]:
Kernel Methods; I.5.2 [Design Methodology]: Feature Ex-
tractions.

General Terms: Algorithms.

Keywords: Kernel Feature Extraction, SVM, Scalability.

1. INTRODUCTION
Superfluous features are abundant in real-world data. It is

thus often worthwhile to perform dimensionality reduction
that maps the original features to a new lower-dimensional
feature space, while ensuring that the overall structure of
the data points remains intact. A popular example is kernel
principal component analysis (KPCA) [9]. While KPCA is
unsupervised, the use of supervised information as in ker-
nel Fisher discriminant analysis (KFD) [7] can lead to even
better feature extractors. In the special case where the two
classes are normally distributed with the same covariance,
the direction found by KFD is Bayes optimal. However,
when these assumptions are not met, the KFD directions
may be far from optimal.

On the other hand, SVM has good generalization per-
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formance by separating the classes with a large margin [9].
However, a single SVM is not always perfect, especially when
one hyperplane may not fit the data well. Mangasarian et
al. [6] proposed a multisurface version of the SVM that uses
multiple hyperplanes to fit the patterns with both large mar-
gin and small variance. Other proposals include the combi-
nation of multiple SVMs [4].

Maximum margin discriminant analysis (MMDA) [5] is
a recent method that exploits the key ideas of KFD and
SVM. In contrast to KFD, MMDA does not require normal-
ity assumptions on the data. Its goal is to project the data
onto the normal of the hyperplane that best separates the
classes. The first MMDA feature is obtained by using the
standard SVM. Then, after obtaining d orthogonal MMDA
features, the (d + 1)th feature is found by optimizing the
SVM in the remaining feature subspace. As in other feature
extractors, this orthogonality constraint reduces the depen-
dence among features, and thus usually only a few features
are needed. Computationally, feature extraction in MMDA
is formulated as a quadratic program (QP) which is similar
to that of the SVM. However, given m training patterns, a
naive QP solver requires O(m3) training time and at least
O(m2) space. Thus, a major challenge is how to scale this
up to massive data sets.

Recently, the core vector machines (CVM) is proposed
that exploits the “approximateness” in the design of SVM
implementations [10]. By utilizing an approximation algo-
rithm for the minimum enclosing ball problem in computa-
tional geometry, the CVM has an asymptotic time complex-
ity that is linear in m and a space complexity that is even
independent of m. Experiments on large classification [10]
and regression [11] data sets demonstrated that the CVM is
as accurate as other state-of-the-art SVM implementations,
but is much faster and can handle much larger data.

In this paper, we attempt to integrate MMDA with the
CVM. However, as the original CVM does not utilize orthog-
onal constraints on the weight vectors, the QP of MMDA
is not of the form required by the CVM. Thus, we propose
an extension of the MEB problem that places orthogonality
constraints on the MEB’s center. By adapting the CVM
and its associated optimization problem, we can then per-
form MMDA on massive data sets in an efficient manner.

The rest of this paper is organized as follows. Sections 2
and 3 provide introductions on MMDA and CVM, respec-
tively. Section 4 then describes the proposed extension of
CVM algorithm. Experimental results are presented in Sec-
tion 5, and the last section gives some concluding remarks.
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2. MAXIMUM MARGIN DISCRIMINANT
ANALYSIS (MMDA)

Given a training set D = {(xi, yi)}m
i=1, where xi ∈ R

d is
the input and yi ∈ ±1 the class label1. The L2-SVM finds
the hyperplane that maximizes the margin with minimum
squared error. Its primal can be formulated as:

min
1

2
‖w‖2 +

C

2

mX
i=1

ξ2
i : yi(w

′ϕ(xi) + b) ≥ 1 − ξi. (1)

Here, ϕ is the nonlinear feature map associated with kernel
k, ξi’s are the slack variables and C weights the misclassi-
fication cost. Note that ξi ≥ 0 is automatically satisfied at
optimality. In the following, we will denote this maximum
margin separation problem by MMS(D, C).

MMDA extracts the features one by one. Let the fea-
tures that have already been extracted be w1,w2, . . . ,ws.
MMDA (Algorithm 1) requires the new feature w to be or-
thogonal to all these previous wq’s, i.e.,

min MMS(D, C) : w′
qw = 0, q = 1, . . . , s. (2)

Notice that as MMS(D, C) is a QP, so is (2).

Algorithm 1 Margin Maximizing Discriminant Analysis

w1 = MMS(D, C)
for s = 1, . . . , d − 1 do

ws+1 = argw min MMS(D, C) : w′
qw = 0, q = 1, . . . , s.

end for

As an illustration, Figure 1 shows the feature spaces ex-
tracted by KFD and MMDA on the Optdigits data set2. As
can be seen, both KFD (except for the two circled points)
and MMDA separate the classes well.
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Figure 1: Digits 0, 6 and 9 in the 2D feature spaces
extracted by KFD and MMDA.

3. CORE VECTOR MACHINES (CVM)
Given a set of points S = {x1, . . . ,xm}, the minimum

enclosing ball of S (denoted MEB(S)) is the smallest ball3

B(c, R) in the feature space induced by the kernel k that
contains all the points in S. Its dual is the QP:

max α′diag(K) − α′Kα : α ≥ 0, α′1 = 1, (3)

where α = [αi, . . . , αm]′ is the vector of Lagrange multipli-
ers, 0,1 ∈ R

m are vectors of zeros and ones, and K = Φ′Φ
1For multi-class problems, we use the standard one-vs-all
technique to convert it to multiple binary classification prob-
lems. MMDA features are then extracted from each of these
pairwise classifiers.
2Details of this data set will be given in Table 1.
3Here, we denote the ball with center c and radius R by
B(c, R). Moreover, we denote the center and radius of a
ball B by cB and rB .

(where Φ = [ϕ(x1), . . . , ϕ(xm)]) is the kernel matrix. As-
sume that k satisfies

k(x,x) = κ, (4)

a constant, for any pattern x. Using the constraint α′1 = 1,
we have α′diag(K) = κ. By dropping this constant κ from
the objective in (3), we obtain a simpler QP:

max−α′Kα s.t. α ≥ 0, α′1 = 1. (5)

Conversely, whenever k satisfies (4), any QP of the form (5)
can be regarded as a MEB problem. This establishes an im-
portant relationship between the MEB problem and kernel
methods. For example, it can be shown that the two-class
L2-SVM, having training data {zi = (xi, yi)}m

i=1, is equiva-
lent to finding the MEB in the feature space associated with

the kernel k̃(zi, zj) = yiyjk(xi,xj) + yiyj +
δij

C
[10].

While the learning problem can be formulated as a MEB
problem, this offers no immediate computational advantage
as traditional algorithms for finding exact MEBs do not scale
well with dimensionality. However, recently, Bădoiu and
Clarkson proposed a simple yet efficient (1+ε)-approximation
algorithm using the idea of core sets [1]. Let the MEB
estimate at the tth iteration be B(ct, Rt). It is then ex-
panded by including the furthest point outside the (1 + ε)-
ball B(ct, (1 + ε)Rt). This is repeated until all the points
in S are covered by B(ct, (1 + ε)Rt). By incorporating this
approximation algorithm into the CVM (Algorithm 2), the
resultant asymptotic time complexity is only linear in the
training set size m while its space complexity is even inde-
pendent of m [10].

Algorithm 2 Core Vector Machine

1: Initialize S0, c0 and R0.
2: Terminate if there is no training point zi falling outside

the (1 + ε)-ball B(ct, (1 + ε)Rt).
3: Find zi such that ϕ̃(zi) is furthest away from ct. Set

St+1 = St ∪ {zi}.
4: Find the new MEB(St+1) and set ct+1 = cMEB(St+1)

and Rt+1 = rMEB(St+1)

5: Increment t by 1 and go back to Step 2.

4. INTEGRATING MMDA WITH CVM

4.1 The Non-Conforming QP
A prerequisite4 for the applicability of the CVM algorithm

is that the QP must be of the form in (5). However, as will be
shown in this section, this condition is not met by MMDA.

Consider (2) with the use of the L2-SVM in (1). As in the
original CVM [10, 11], we slightly modify the formulation in
(1) and write its primal as:

min ‖w̃‖2 + b̃2 − 2ρ + C
mX

i=1

ξ̃2
i (6)

s.t. yi(w̃
′ϕ(xi) + b̃) ≥ ρ − ξ̃i, i = 1, . . . , m, (7)

u′
qw̃ = 0, q = 1, . . . , s, (8)

4Recently, this is relaxed to allow QPs of a more general
form [11]. However, even this extension cannot cover the
type of QPs associated with MMDA.
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where uq = w̃q/‖w̃q‖. Introducing Lagrange multipliers
α̃i’s and γ̃i’s for the constraints in (7) and (8), respectively,
we obtain the dual:

max−α̃′K̃α̃ − 2α̃′YΦ′Uγ̃ − γ̃ ′U′Uγ̃ : α̃ ≥ 0, α̃′1 = 1, (9)

where α̃ = [α̃1, . . . , α̃m]′ and γ̃ = [γ̃1, . . . , γ̃s]
′ are the dual

variables, Y = diag(y1, . . . , ym), U = [u1, . . . ,us], and

K̃ = Y

„
K + 11′ +

1

C
I

«
Y, (10)

is the transformed “kernel” matrix. By using the Karush-
Kuhn-Tucker (KKT) conditions, the primal variables

w̃ =
mX

i=1

α̃iyiϕ(xi) +
sX

q=1

γ̃quq, b̃ =
mX

i=1

α̃iyi, ξ̃i =
α̃i

C
(11)

can be recovered from the optimal α̃ and γ̃. Substituting
uq = w̃q/‖w̃q‖ back into (11) recursively, the extracted fea-
ture w̃ is then expressed as a linear combination of ϕ(xi)’s.

Should it happen that all the γ̃q’s in the optimal solution
are zero, then only the first term in (9) remains and so the
dual takes the form in (5). Moreover, it is easy to see that

the diagonal entry of the “kernel” matrix K̃ in (10) (which

plays the role of K in (5)) is [K̃]ii = κ+1+ 1
C

, and thus (4)
is satisfied. Hence, as mentioned in Section 3, this MMDA
problem can be regarded as a MEB problem. However, in
general, not all γ̃q’s are zero. Thus, (9) will not have the
form of (5), and an extension of the CVM is required.

4.2 MEB with Orthogonality Constraints
Consider adding a set of constraints to the MEB problem

such that the center c is required to be orthogonal to the
existing u1,u2, . . . ,us. We then have

min R2 (12)

s.t. ‖c − ϕ(xi)‖2 ≤ R2, i = 1, . . . , m, (13)

u′
qc = 0, q = 1, . . . , s. (14)

Introducing Lagrangian multipliers αi, γi for the constraints
(13) and (14) respectively, the dual can be written as

max α′diag(K) − α′Kα − 2α′Φ′Uγ − γ ′U′Uγ

s.t. α ≥ 0, α′1 = 1, (15)

w.r.t. α = [α1, . . . , αm]′ and γ = [γ1, . . . , γs]
′. Proceeding

as in Section 3, we combine (4) with the constraint α′1 = 1
and obtain α′diag(K) = κ. Dropping this constant from
the objective in (15), we obtain the simpler problem:

max−α′Kα − 2α′Φ′Uγ − γ ′U′Uγ : α ≥ 0, α′1 = 1. (16)

The center c =
Pm

i=1 αiϕ(xi) +
Ps

q=1 γquq and radius R =p
α′diag(K) − α′Kα − 2α′Φ′Uγ − γ ′U′Uγ are then recov-

ered from the optimal α and γ. Conversely, whenever the
kernel k satisfies (4), any QP of the form (16) can be re-
garded as a MEB problem with orthogonality constraints
on the center.

Returning to MMDA’s QP in (9), we can rewrite it as:

max −α̃′K̃α̃ − 2α̃′Φ̃
′
[U′ 0]′γ̃ − γ̃ ′U′Uγ̃ (17)

s.t. α̃ ≥ 0, α̃′1 = 1,

where ei ∈ R
m is all zeros except that the ith position is

equal to one, and Φ̃ = [ϕ̃(x1), . . . , ϕ̃(xm)], with ϕ̃(zi) =

h
yiϕ(xi)

′, yi,
yi√
C
e′

i

i
. Note that Φ̃

′
[U′ 0]′ = YΦ′U, where

0 is the s×(m+1) zero matrix. From (3), as k̂(z, z) = κ+1+
1
C

≡ κ̃ is a constant, k̃ again satisfies (4). In other words, the
optimization problem associated with MMDA in (6) can be
viewed as a constrained MEB problem in (12), with ϕ being
replaced by the new feature map ϕ̂. Once transformed to
a MEB problem, the CVM procedure (Algorithm 2) can be
easily adapted to cater for the new set of constraints in (8).
Thus, the approximate MEB(S) can be obtained by solving
for MEB(St) iteratively.

4.3 Determining MEB(St)
Recall that finding the MEB(St) involves a QP. In the

implementation of [10], we used an efficient decomposition
method called sequential minimal optimization (SMO) [8] as
the internal QP solver. However, here, the extra constraints
in (14) lead to some Lagrangian multipliers γ̃t that are not
involved in the equality constraint of (17). This hinders the
use of SMO. Moreover, the equality constraints in (17) leads

to the infeasibility of α̃t = [α̃
(t)
1 , . . . , α̃

(t)
t+1] when the value

of a single α̃
(t)
i is changed from a feasible α̃t [3].

Here, we propose instead an efficient incremental update
algorithm for finding the MEB(St). Due to the lack of space,
only the major steps will be outlined. By considering its
optimality conditions, the dual of (16) can be solved via the
kernel adatron (KA) [2], which is essentially a variant of the
Gauss-Seidel (GS) iteration approach for solving the linear

system [3]:

»
K̃ YΦ′U

U′ΦY U′U

– »
α̃
γ̃

–
=

»
1
0

–
, s.t. α̃ ≥ 0

until the KKT conditions:

0 ≤ α̃⊥K̃α̃+YΦ′Uγ̃−1≥0 and U′ΦYα̃+U′Uγ̃ =0 (18)

are met. [α̃′ γ̃ ′]′ is then normalized such that α̃′1 = 1.
To be more specific, this incremental update is used to

solve the corresponding QP of the MEB(St), which is formed

with K̃t,Φt and Yt defined on the core-set St analogous to
K̃,Φ and Y on the whole training set S. The new feasible
solution of the Lagrangian multipliers for constraints in (7)
of the patterns from St and the orthogonality constraints
in (8): α̃t = [α̃′

t−1 0]′ and γ̃t = γ̃t−1 respectively, which are
adapted from the optimal α̃t−1 and γ̃t−1 of the MEB(St−1)
as a warm start. For S0, we initialize α̃0 = [1] and γ̃0 = 0 as
a feasible starting point. Then, α̃t and γ̃t of the MEB(St)
are updated by gradient descent for each variable by fixing
others as in the GS iteration [3]:

	γ̃(t)
q = −(U′ΦtYtα̃t + U′Uγ̃t)q/[U′U]qq,

	α̃
(t)
i = −(K̃tα̃t + YtΦ

′
tUγ̃t − 1)i/[K̃t]ii,

and the new value of α̃t are projected into the feasible region
which satisfies the box constraints α̃t ≥ 0. This process is
repeated until the KKT conditions in (18) defined on St are
satisfied. Then, normalize [α̃′

t γ̃ ′
t]
′ s.t. α̃′

t1 = 1. After-
wards, ct and Rt of the MEB(St) can be used to find the
furthest point (Step 3 of Algorithm 2) to construct St+1.

4.4 Properties
Here, we list some properties of the modified CVM algo-

rithm. The proofs are very similar to those in [10] and so
are skipped here.
Bound on the number of iterations: There exists a
subset St, with size 2/ε, of the whole training set S such
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that the distance between cMEB(St) and any point zi of S is
at most (1 + ε)rMEB(S).
Recall that one point from S is added to the MEB at each
iteration of Step 3 (Algorithm 2), this property thus ensures
that the proposed method converges in at most 2/ε iter-
ations, independent of the feature dimensionality and the
size of S.
Convergence to (approximate) optimality: When ε =
0, the algorithm finds the exact MMDA solution. When ε >
0 and the algorithm terminates at the τ th iteration, and we

have max
“

R2
τ

p∗+κ̃
, p∗+κ̃

R2
τ

”
≤ (1 + ε)2, where p∗ is the optimal

value of MMDA’s objective in (6).
In other words, this is an (1 + ε)2-approximation algorithm.
As ε is usually very small, the approximate solution obtained
is thus very close to the exact, optimal solution.
Complexities: Recall that the main motivation for using
an approximation algorithm is that its time and space com-
plexities are much smaller than those of an exact algorithm.
For the proposed algorithm, it can be shown that when prob-
abilistic speedup is used in Step 3, the total time for solving

the (s + 1)th SVM is O
“

1
ε2

`
1
ε2

+ s
´3

”
, while the whole al-

gorithm takes O(1/ε2) space, which are independent of m
for a fixed ε. Here, we ignore the O(m) space requirements
for storing the m training patterns, as they may be stored
outside the core memory.

5. EXPERIMENTS
In this section, we perform experiments on a number of

real-world data sets5 (Table 1). The following feature ex-
tractors (all implemented in MATLAB) are compared: 1)
the original MMDA, which is based on SMO [8]; 2) the pro-
posed method, denoted MMDA(CVM), with probabilistic
speedup and ε fixed6 at 0.001; 3) kernel PCA (KPCA); and
4) kernel Fisher discriminant analysis (KFD). Methods that
did not finish in 24 hours will be indicated by “–”.

data set #classes #attribs #tr patns #test patns
optdigits 10 64 3,823 1,797
satimage 6 36 4,435 2,000
pendigits 10 16 7,494 3,498
letters 26 16 16,000 4,000
mnist 10 780 60,000 10,000
usps 2 676 266,079 75,383
face 2 361 346,260 24,045

Table 1: Data sets used in the experiments.

In our experiments, the C parameter in (6) is fixed at the
value of 1. We use the Gaussian kernel exp(−‖x − z‖2/β),
where β = 1

m2

Pm
i,j=1 ‖xi − xj‖2 is the average square dis-

tance between patterns. Experiments are performed on an
AMD Athlon 4400+ PC with 4GB of RAM.

5.1 Varying the Number of Features
As the performance of classification algorithms critically

depend on the input features, we first examine the behav-
ior of classification performance and extraction time of these

5The first five data sets are from the UCI ma-
chine learning repository, while the last two are from
http://www.cs.ust.hk/∼ivor/cvm.html.
6Preliminary results show that this fixed value of ε leads to
both fast training and good feature extraction.

kernel feature extractors using different numbers of extracted
features. Here, experiments are only performed on the first
three smaller data sets in Table 1. The classification perfor-
mance is obtained from the testing accuracy of an artificial
neural network (ANN) using the extracted features as in-
put. This ANN is a feed-forward multilayer perceptron with
a single layer of 10 hidden units, and training is performed
via standard back-propagation. Note that the rank of the
between-class matrix in KFD is at most Nc − 1 (where Nc

is the number of classes) [7], and so the number of features
for KFD is always fixed at Nc − 1.

Figure 2 shows that the CPU time of MMDA extraction
increases with the number of extracted features. On the
other hand, the CPU time for KPCA and KFA is almost
fixed, as both are dominated by the eigendecomposition of
the m×m kernel matrix, which is always required no matter
how many features are to be extracted. Furthermore, the
results also confirm that the proposed CVM-based kernel
MMDA implementation is often much faster than the other
feature extractors.

As for testing accuracy, the performance with KPCA fea-
tures usually improves at first, and then becomes stabilized
or sometimes even degraded as features with lower classifi-
cation information are included. For both MMDA feature
extractors, their classification performance appear to be op-
timal and better than the others when there are around 3Nc

to 5Nc features. Hence, in the sequel, we will only conduct
experiments using Nc, 3Nc and 5Nc MMDA features.

5.2 Using Decision Tree as Classifier
In this section, we experiment with another classifier, the

C4.5 decision tree, on all the data sets in Table 1. Recall
that both KPCA and KFD involve solving an m×m eigen-
system, which is computationally expensive on large data
sets. To alleviate this problem, we will only use a random
sample of size 3,500 when these two methods are used on
the letters, mnist, usps and face data sets. Moreover, for
simplicity, we fix the number of extracted features at 5Nc

for both KPCA and MMDA.
Results are shown in Tables 2 and 3. As can be seen,

the features extracted by MMDA(CVM) often lead to small
trees and high testing accuracy. As decision trees use the
extracted features for node splitting. A small tree indicates
that the set of extracted features carry useful classification
information. Note also that KPCA and KFD perform poorly
on letters, mnist and face. This demonstrates that, in gen-
eral, random sampling is not a good approach to reduce the
computational complexity.

data set w/o feature KPCA KFD MMDA MMDA
extraction (SVM) (CVM)

optdigits 143 117 19 19 19
satimage 109 113 43 119 79
pendigits 161 75 21 19 19
letters 777 323 109 449 285
mnist 1,631 197 23 – 619
usps 876 43 3 – 29
face 759 51 3 – 25

Table 2: Sizes of the resultant decision trees.

5.3 Using 1-NN and ANN as Classifier
In this section, we feed the extracted features to the 1-

nearest neighbor (1-NN) classifier, and the artificial neural
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data set w/o feature KPCA KFD MMDA MMDA
extraction (SVM) (CVM)

optdigits 82.80 81.40 94.40 94.90 95.40
satimage 86.30 87.10 88.60 87.90 87.80
pendigits 89.70 89.30 95.90 97.20 97.10
letters 81.00 58.90 79.30 85.30 90.30
mnist 36.20 10.10 10.30 – 93.30
usps 98.00 97.00 92.50 – 99.30
face 96.90 80.70 65.70 – 98.40

Table 3: Testing accuracies (in %) obtained by the
decision tree using the extracted features.

network (with the same ANN setting as in Section 5.1). Re-
call that the first MMDA feature is obtained by using the
standard SVM. Hence, to demonstrate the usefulness of the
extra MMDA features, we also compare with the standard
SVM as a baseline. Moreover, as mentioned in Section 5.1,
we only experiment with Nc, 3Nc and 5Nc MMDA features.

Table 4 shows the classification accuracies. The follow-
ing general observations can be made: 1) Feature extraction
can improve classification accuracy. In particular, the use of
MMDA features can outperform a SVM. 2) MMDA, using
either the original or new implementation, leads to better
classification accuracies than the other feature extraction
methods. 3) For MMDA, extracting several (3Nc − 5Nc)
features is often beneficial. Moreover, note that KPCA and
KFD sometimes perform miserably on the large data sets
because of the random sampling problem mentioned in Sec-
tion 5.2.

5.4 Computational Advantages
Table 5 shows the CPU time needed in the feature extrac-

tion process. As expected, MMDA(CVM) is always faster
than the original MMDA implementation, and the improve-
ment can sometimes be of two orders of magnitude. Be-
sides, on the three largest data sets, the original MMDA
implementation cannot even converge in 24 hours, while
MMDA(CVM) successfully extracts good features in only
several hundred/thousand seconds. MMDA(CVM) is also
always faster than KPCA and KFD on the small data sets.
On the larger data sets, recall that we have used random
sampling for KPCA and KFD and that explains why MMDA
appears slower. However, one should also be reminded that
such a random sampling scheme also leads to poor general-
ization performance of KPCA/KFD in our experiments.

As mentioned in Section 4.1, each MMDA feature, in the
same manner as KPCA features and KFD features, can be
expressed as a linear combination of kernel evaluations. Ta-
ble 6 compares the average numbers of kernel evaluations
involved in the different types of features extracted. As can
be seen, the MMDA(CVM) features are much sparser than
the others, including the original MMDA features. As ker-
nel evaluations often dominant the computational cost in
testing, MMDA(CVM) is thus much faster.

6. CONCLUSIONS
In this paper, we investigated the problem of feature ex-

traction in large classification tasks. Ideally, a good feature
extractor should 1) produce features that can lead to a high
classification accuracy; and 2) be computationally efficient
during both training and testing. While the original MMDA
can extract features useful for classification, it is computa-

tionally inefficient on large data sets. Here, we extended the
CVM algorithm and proposed an (1+ ε)2-approximation al-
gorithm for extracting kernel-based MMDA features. We ex-
amined some of its theoretical aspects, and demonstrated its
efficiency through various experiments. The training time
complexity only depends on ε and, in practice, it is 10-100
times faster than the original MMDA implementation. The
features extracted by the proposed method are also sparser,
and involve fewer kernel evaluations. This in turn allows
new features to be computed much faster during testing.
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Figure 2: Performance at different numbers of extracted features. Top: CPU time; Bottom: Testing accuracy.

feature extractor classifier optdigits satimage pendigits letters mnist usps face
w/o feature SVM 96.66 89.60 96.74 90.95 – – –
extraction 1-NN 96.38 89.35 97.43 95.20 94.34 – –

ANN 94.37 87.40 95.19 70.95 90.39 99.12 97.40
KPCA 1-NN 94.94 87.95 97.37 88.45 9.58 99.38 –

ANN 93.65 87.70 96.05 76.90 10.28 98.60 83.61
KFD 1-NN 97.94 85.85 98.03 91.42 11.35 96.87 –

ANN 97.82 88.75 97.68 85.20 10.28 96.80 1.96
MMDA(SVM) #features= Nc 1-NN 97.16 87.25 97.66 96.55 – – –

3Nc 95.66 88.95 97.91 96.05 – – –
5Nc 95.38 89.90 98.03 95.42 – – –

#features= Nc ANN 95.65 88.95 97.19 80.20 – – –
3Nc 97.09 89.65 97.80 82.02 – – –
5Nc 96.48 88.70 97.74 82.65 – – –

MMDA(CVM) #features= Nc 1-NN 97.44 88.65 97.74 96.78 93.42 99.43 –
3Nc 96.44 89.00 97.71 96.53 94.70 99.43 –
5Nc 95.94 89.50 97.68 96.28 95.18 99.41 –

#features= Nc ANN 96.27 89.75 97.22 80.97 92.99 99.30 98.28
3Nc 97.77 89.30 97.85 82.45 93.28 99.33 98.39
5Nc 97.36 89.95 98.08 82.67 93.34 99.34 98.34

Table 4: Testing accuracies on the various data sets.

feature extractor optdigits satimage pendigits letters mnist usps face
KPCA 2,632 1,804 1,680 2,029 2,639 4,479 2,216
KFD 1,340 1,339 1,335 1,340 1,297 2,038 1,674

MMDA(SVM) #features= Nc 84 121 127 1,911 – – –
3Nc 476 421 570 9,646 – – –
5Nc 1,495 900 1,674 20,860 – – –

MMDA(CVM) #features= Nc 41 23 20 92 1,610 2,359 105
3Nc 181 78 95 301 4,928 6,585 337
5Nc 332 136 174 512 8,179 10,630 556

Table 5: CPU time (in seconds) required in the feature extraction process.

feature extractor optdigits satimage pendigits letters mnist usps face
KPCA 3,823 4,435 7,494 3,500 3,500 3,500 3,500
KFD 3,823 4,435 7,494 3,500 3,500 3,500 3,500

MMDA(SVM) #features= Nc 303 548 293 870 – – –
3Nc 841 1,056 1,149 1,772 – – –
5Nc 1,278 1,553 1,875 2,420 – – –

MMDA(CVM) #features= Nc 279 308 292 351 434 423 403
3Nc 359 334 349 357 434 398 409
5Nc 367 342 353 360 427 396 411

Table 6: Average number of kernel evaluations involved in each extracted feature.
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