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Abstract Surrogate maximization (or minimization) (SM) algorithms are a family of al-
gorithms that can be regarded as a generalization of expectation-maximization (EM) al-
gorithms. An SM algorithm aims at turning an otherwise intractable maximization problem
into a tractable one by iterating two steps. The S-step computes a tractable surrogate function
to substitute the original objective function and the M-step seeks to maximize this surrogate
function. Convexity plays a central role in the S-step. SM algorithms enjoy the same conver-
gence properties as EM algorithms. There are mainly three approaches to the construction
of surrogate functions, namely, by using Jensen’s inequality, first-order Taylor approxima-
tion, and the low quadratic bound principle. In this paper, we demonstrate the usefulness
of SM algorithms by taking logistic regression models, AdaBoost and the log-linear model
as examples. More specifically, by using different surrogate function construction methods,
we devise several SM algorithms, including the standard SM, generalized SM, gradient SM,
and quadratic SM algorithms, and their two variants called the conditional surrogate maxi-
mization (CSM) and surrogate conditional maximization (SCM) algorithms.

Keywords Surrogate function · Convexity · Logistic regression · AdaBoost · Log-linear
model

1 Introduction

In machine learning and statistics, optimization plays a very important role because many
problems require performing maximization or minimization of some objective function.
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One widely used objective function is the log-likelihood function. Since it is closely re-
lated to convex (or concave) functions (Rockafellar 1970), convexity (or concavity) also
plays a central role in such problems. A successful example is the well-known expectation-
maximization (EM) algorithm (Dempster et al. 1977). Becker et al. (1997) and Lange et
al. (2000) showed that the EM algorithm can be derived from either Jensen’s inequality or
the concavity property of the log function. Along this line, a family of EM-like algorithms
without missing data (Becker et al. 1997) have been devised to handle cases involving no
missing data. Lange et al. (2000) unified this family of algorithms under the framework of
the so-called optimization transfer algorithms, in which all algorithms rely on optimizing a
function that serves as a surrogate for the original objective function. By invoking convexity
arguments, a general principle providing guidelines on constructing these surrogate func-
tions, as well as some specific examples, have been discussed (Lange et al. 2000). Depend-
ing on the context, this often relies on three important tools, namely, Jensen’s inequality,
first-order Taylor approximation, and the low quadratic bound principle.

Optimization transfer algorithms are very efficient because they can make an otherwise
hard or very complicated optimization problem simpler. For example, an optimization trans-
fer algorithm can decouple the correlation among parameters so that they can be estimated
in parallel. It can also locally linearize a convex function near some value so as to make the
problem at hand tractable. It can avoid the computational problem of inverting large matri-
ces as required by Newton’s method. Moreover, optimization transfer enjoys the same local
convergence properties as standard EM.

Other names have been used for optimization transfer methods. In the context of multi-
dimensional scaling (MDS) (Borg and Groenen 1997), optimization transfer is referred to
as iterative majorization; while in convex optimization (Boyd and Vandenberghe 2004), it
is usually called the auxiliary function method. To contrast optimization transfer methods
with the standard EM algorithm for missing data problems, Meng (2000) suggested using
SM algorithm as the alternative name for optimization transfer. Here, “S” stands for the
surrogate step while “M” stands for the maximization (or minimization, depending on the
optimization problem at hand) step. In this paper we also prefer the name “SM algorithms”
as it reflects more accurately the spirit of this family of algorithms. Like EM algorithms,
SM algorithms are also gaining popularity in computational statistics. However, although
EM algorithms are commonly used in machine learning nowadays, this is not the case for
SM algorithms. This paper attempts to demonstrate the power and potential of SM algo-
rithms in machine learning, by using generalized linear models, such as logistic regression
and log-linear models, as specific examples for illustration.

We address two major issues in devising SM algorithms, namely, how a surrogate func-
tion is defined and how the resultant surrogate function is maximized. On the first problem,
there exist three main approaches, namely, by using Jensen’s inequality, first-order Taylor
approximation, and the low quadratic bound principle. The first two approaches follow read-
ily from the properties of convex functions, while the third one uses a quadratic function to
approximate the original objective function. On the second problem, in general different
maximization methods are required for different surrogate functions. This leads to the stan-
dard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their two variants
called the conditional surrogate maximization (CSM) and surrogate conditional maximiza-
tion (SCM) algorithms (Meng 2000).

1.1 Contributions

To demonstrate how the three approaches mentioned above can be used to construct a sur-
rogate function, we consider the optimization problem corresponding to the binary logistic
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regression model. Based on Jensen’s inequality, we decouple the correlation among the esti-
mated parameters and decompose the original high-dimensional optimization problem into
a set of one-dimensional sub-problems which can then be handled separately. Although we
cannot obtain a one-step closed-form iterative procedure, we present a gradient SM algo-
rithm by borrowing ideas from the gradient EM algorithm (Lange 1995). Moreover, we
show that the iterative procedure of (Collins et al. 2002) can be regarded as a generalized
SM algorithm analogous to the generalized EM algorithm (Dempster et al. 1977). Based
on the first-order Taylor approximation, we express the original objective function as the
difference of two convex functions (i.e., a convex function plus a concave function), lead-
ing to a quadratic surrogate function. Based on the low quadratic bound principle (Böhning
and Lindsay 1988), we devise quadratic SM algorithms. The essence of quadratic SM al-
gorithms is to approximate the Hessian matrix in the pure Newton method with a simpler
positive semidefinite matrix, and we will adopt a constant matrix in our case here. Thus,
we only have to compute the inverse of the Hessian matrix just once and inversion of large
matrices at each iteration can be avoided.

While Lange et al. (2000) also used these three approaches to construct their SM algo-
rithms, they considered different approaches for different optimization problems. In contrast,
we consider the use of the three approaches for the same optimization problem. Thus, our
treatment allows us to show that different construction approaches can be used to devise
different SM algorithms for the same optimization problem. In addition, based on combina-
tions of Jensen’s inequality, first-order Taylor approximation and the low quadratic bound
principle, we present the fourth approach for constructing surrogate functions. Quite surpris-
ingly, the SM algorithms obtained turn out to be equivalent to the parallel Bregman distance
algorithms of (Collins et al. 2002), and thus our method can be seen as providing a new
derivation for their algorithms. Compared with (Della Pietra et al. 2001) and (Collins et
al. 2002), the mathematical skills required for our approach are much simpler because we
only need to utilize Jensen’s inequality or first-order Taylor approximation over a convex
function.

Our other contributions are to devise CSM and SCM algorithms for the binary logistic re-
gression model, and SM algorithms for multi-class logistic regression models and AdaBoost.
More importantly, our approaches naturally guarantee convergence of the corresponding it-
erative algorithms. Moreover, we derive an SM algorithm for the log-linear model. On the
one hand, this illustrates an application of the SM algorithm to a constrained optimization
problem. On the other hand, our SM algorithm may be seen as an amendment of the gen-
eralized iterative scaling (GIS) (Darroch and Ratcliff 1972) as the constraint in GIS is not
exactly satisfied. In summary, we believe that SM algorithms can find wide applications in
machine learning even beyond generalized linear models.

1.2 Related work

The idea behind SM algorithms has been used in logistic regression models and Ada-
Boost (see, e.g., Minka 2003; Lebanon and Lafferty 2001). However, our work has been
mainly motivated by some recent works (Collins et al. 2002; Kivinen and Warmuth 1999;
Lafferty 1999) which are based on Bregman distance optimization methods. Simply put, the
Bregman distance between two vectors is defined via a convex function on a convex set that
contains these two vectors. Della Pietra et al. (1997) applied Bregman distance optimiza-
tion to log-linear models, while Della Pietra et al. (1997) and Collins et al. (2002) discussed
its relationship with GIS for log-linear models (Darroch and Ratcliff 1972). Like GIS, the
core spirit of Bregman distance optimization is from convex analysis (Rockafellar 1970).
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However, this approach requires considerable mathematical skills to construct a Bregman
function that matches the problem in question. Furthermore, in order to use Bregman dis-
tance optimization, it is common to reformulate the unconstrained optimization problem as
an equivalent constrained optimization problem subject to some constraints. This makes the
problem much more technically involved. Della Pietra et al. (2001) also recognized these
difficulties and sought to use the Legendre transformation technique (Rockafellar 1970).
The main difference between (Della Pietra et al. 2001) and (Collins et al. 2002) is that the
former works with the argument at which a convex conjugate takes on its value, while the
latter works with the value of the functional itself. This makes it more natural to formulate
a duality theorem.

The rest of this paper is organized as follows. Sect. 2 presents the generic principle of
SM algorithms and Sect. 3 presents two extensions of SM algorithms. This is then applied
to the binary logistic regression model in Sects. 4 and 5. In Sects. 6–8, we further present
SM algorithms for the multi-class logistic regression model, AdaBoost, and the log-linear
model, respectively. The last section gives some concluding remarks.

2 Generic structure of SM algorithms

In many applications we have to consider the problem of maximizing an arbitrary function
L(θ) with respect to (w.r.t.) some parameter vector θ ∈ R

q . Given an estimate θ(t) at the t th
iteration, a typical SM algorithm (Lange et al. 2000; Meng 2000) consists of the following
two steps:

Surrogate Step (S-Step): Substitute L(θ) by a surrogate function Q(θ |θ(t)), such that

L(θ) ≥ Q(θ |θ(t)) (1)

for all θ , with equality holding at θ = θ(t).
Maximization Step (M-Step): Obtain the next parameter estimate θ(t+1) by maximiz-
ing the surrogate function Q(θ |θ(t)) w.r.t. θ , i.e.,

θ(t+1) = arg max
θ

Q(θ |θ(t)). (2)

Note that the SM algorithms can be applied equally well to the minimization of L(θ),
by simply reversing the inequality sign in (1) and changing the “max” to “min” in (2).
Therefore, in the sequel, “M” stands for either maximization or minimization depending on
the optimization problem at hand.

Depending on the surrogate functions obtained, different SM algorithms can be devised
accordingly. In the standard SM algorithm, a closed-form solution for θ(t+1) exists in the
M-step. However, it is not always possible to obtain a closed-form solution for θ(t+1) in
the M-step. In the same spirit as the generalized EM algorithm (Dempster et al. 1977), we
can devise a generalized SM algorithm, where, instead of maximizing Q(θ |θ(t)), we only
attempt to find a θ(t+1) such that Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)). Alternatively, in the
same spirit as the gradient EM algorithm (Lange 1995), we may also devise a gradient SM
algorithm, as

θ(t+1) = θ(t) − (∇2Q(θ(t)|θ(t)))−1∇Q(θ(t)|θ (t)),

which is indeed the pure Newton method over Q(θ |θ(t)) instead of L(θ) because L(θ) −
Q(θ |θ(t)) has a stationary point at θ = θ(t) so that ∇L(θ(t)) = ∇Q(θ(t)|θ(t)).
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2.1 Convergence properties

Let Ω ⊆ R
q be a set of feasible parameter values and

L : θ ∈ Ω �→ L(θ) ∈ R

defines the objective function to be maximized. We regard each SM iteration as a point-
to-set mapping A such that θ(t) becomes θ(t+1) ∈ A(θ(t)). That is, the generalized SM
algorithm leads us to the following problem

Find θ̂ ∈ Ω such that L(θ̂) ≥ L(θ) for all θ ∈ Ω.

Given an initial value θ(0), we can generate an iterative sequence {θ(t)} such that θ(t+1) ∈
A(θ(t)). It follows from the definition of the standard (or generalized) SM algorithm that

L(θ(t+1)) ≥ Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)) = L(θ(t)).

Let {L(θ(t))} be bounded above. Then L(θ(t)) converges monotonically to some L∗ < ∞.
The standard (generalized) SM algorithm enjoys the same convergence properties

(Dempster et al. 1977; Wu 1983) as the standard (generalized) EM algorithm. Throughout
this subsection, we make the following assumptions:

L is continuous in Ω and differentiable in the interior of Ω, (3)

Ω0 = {θ ∈ Ω : L(θ) ≥ L(θ(0))} is compact for any L(θ(0)) > −∞, (4)

Q(θ |φ) is continuous in both θ and φ in Ω, and differentiable in θ in the interior of Ω.

(5)
From the convergence results in (Wu 1983, Theorems 2 and 3), it is straightforward to obtain
the convergence results to our generalized SM (standard) algorithm. Specifically, let M and
S be the set of local maxima and the set of stationary points, respectively, of L in the interior
of Ω . The condition that Q(θ |φ) is continuous in both θ and φ in Ω is a sufficient condition
for that A is a closed point-to-set mapping over the complement of S (M). Since L(θ) −
Q(θ |θ(t)) has a stationary point at θ = θ(t), we have ∇L(θ(t)) = ∇Q(θ(t)|θ(t)) 
= 0 for
any θ(t) 
∈ S . This implies that θ(t) is not a local maximum of Q(θ |θ(t)) over θ ∈ Ω . From
the definition of the M-step, we have Q(θ(t+1)|θ(t)) > Q(θ(t)|θ(t)), hence L(θ(t+1)) >

L(θ(t)) for all θ(t) 
∈ S . Therefore, it follows from Zangwill’s global convergence theorem
(Wu 1983) that

Theorem 1 Suppose that the conditions (3), (4) and (5) are satisfied. Then all the limit
points of any iterative sequence {θ(t)} of a generalized SM algorithm are stationary points
of L(θ) and L(θ(t)) converges monotonically to L(θ ∗) for some stationary point θ ∗. Fur-
thermore, if Q also satisfies

sup
θ∈Ω

Q(θ |φ̂) > Q(φ̂|φ̂) for any φ̂ ∈ S\M, (6)

then all the limit points of any sequence {θ(t)} of the SM algorithm are local maxima of
L(θ) and L(θ(t)) converges monotonically to L(θ ∗) for some local maximum θ ∗.
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Condition (5) is in fact very weak as it is usually satisfied in most practical cases. For
example, this condition always holds in Sects. 4–8. Condition (6) is typically hard to ver-
ify. However, if L(θ) is concave in θ and bounded above (< ∞), then L(θ) has a unique
stationary point which is the global maximum. Thus, we have the following theorem.

Theorem 2 Suppose that the conditions (3), (4) and (5) are satisfied. If L(θ) is concave
in θ and bounded above, then the limit point of any sequence {θ(t)} of a generalized SM
algorithm is the global maximum of L(θ) and L(θ(t)) converges monotonically to L(θ ∗)
for the global maximum θ ∗.

2.2 Construction of surrogate functions

Clearly, construction of the surrogate function is key to SM algorithms in turning an oth-
erwise intractable optimization problem into a tractable one. On the one hand, the closer is
the surrogate function to L(θ), the more efficient is the SM algorithm. On the other hand, a
good surrogate function should preferably have a closed-form solution in the M-step. Lange
et al. (2000) discussed some general principles and presented three methods for the design
of surrogate functions in which convexity of functions plays a central role.

Suppose a function f : S → (−∞,+∞] is convex on a closed convex set S ⊆ R
q . The

first method stems from Jensen’s inequality

f

(
k∑

i=1

αiui

)
≤

k∑
i=1

αif (ui ),

where αi ≥ 0 (i = 1, . . . , k) and
∑k

i=1 αi = 1, or its variant

f

(
k∑

i=1

αiui

)
≤

k∑
i=1

αif (ui ) +
(

1 −
k∑

i=1

αi

)
f (0),

where
∑k

i=1 αi ≤ 1.
The following two extensions of Jensen’s inequality are also useful. The first one is

f (cT u) ≤
∑

i

ciwi

cT w
f

(
cT w
wi

ui

)
,

where all elements of c = [ci] and w = [wi] are positive, while the second one is

f

(
k∑

i=1

ciui

)
≤

k∑
i=1

αif

(
ci

αi

(ui − vi ) +
k∑

j=1

cj vj

)
,

where αi ≥ 0 (i = 1, . . . , k) and
∑k

i=1 αi = 1, and αi > 0 whenever ci 
= 0 (De Pierro 1995).
These inequalities can be used to decouple the correlation among the ui ’s.

The second construction method makes use of the following property: When f (·) is also
differentiable on its domain S , it can be linearized by first-order Taylor approximation, as

f (u) ≥ f (v) + ∇f (v)T (u − v), for u,v ∈ S.

Since most continuous functions can be expressed as the difference of two convex functions,
we can often use this trick to construct a surrogate function. For example, if for any f (u) =
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g(u) − h(u) where both g(u) and h(u) are convex, we can write f (u) ≤ g(u) − h(v) −
∇h(v)T (u−v). The use of differences of convex (d.c.) functions is a very important strategy
in convex optimization and has received much attention recently in machine learning. For
example, the recently proposed convex-concave computational procedure (CCCP) (Yuille
and Rangarajan 2001) is essentially based on this strategy.

The third method uses the low quadratic bound principle (Böhning and Lindsay 1988).
Suppose there exists a u-independent positive semidefinite matrix B such that B − ∇2f (u)

is positive semidefinite. Then, it can be shown that

f (u) ≤ f (v) + ∇f (v)T (u − v) + 1

2
(u − v)T B(u − v).

This is often used to define a quadratic surrogate function that can avoid the inversion of the
Hessian matrix in Newton’s method.

3 Extensions of SM: CSM and SCM

For a multi-parameter optimization problem with a set of parameter vectors Θ = {θ 1, . . . ,

θC}, the objective function L(Θ) may also be expressed as L(θ 1, . . . , θC). In order to max-
imize L(θ 1, . . . , θC) w.r.t. θ i ’s, we use the so-called block relaxation diagram proposed by
(De Leeuw 1994). For simplicity of notation, let Li = L(θ 1(∗), . . . , θ i−1(∗), θ i , θ i+1(t), . . . ,

θC(t)), where all ∗’s are simultaneously either t or t+1. The block relaxation algorithm
obtains θ i (t+1) by maximizing Li . If ∗ = t , the procedure is called parallel-update (corre-
sponding to the Jacobi method in numerical mathematics), otherwise it is called sequential-
update (corresponding to the Gauss–Seidel method).

Instead of working with L(Θ) directly, we apply the SM algorithm to the maximization
of Li w.r.t. θ i , i.e., we first for Li ’s define surrogate functions Qi(θ i |θ i (t)), whose types can
be different for different Li ’s, and then maximize Qi(θ i |θ i (t)). In many cases, since Li is
in fact a log-likelihood function conditioned on θ l’s (l 
= i) in computational statistics, we
refer to Qi(θ i |θ i (t)) as a conditional surrogate function. As a result, this variant of the SM
algorithm is called the conditional surrogate maximization (CSM) algorithm (Table 1). It is
worth noting that the CSM algorithm is closely related to the CEM algorithm (Jebara and
Pentland 1998), which is for maximizing an approximate conditional likelihood function in
mixture models.

An alternative to dealing with multiple variables (parameters) is based on the idea behind
the ECM algorithm (Meng and Rubin 1993), where one first computes the E-step and then

Table 1 Block relaxation diagram of the CSM algorithm

Begin Start with θ i (0) ∈ R
m for i = 1, . . . ,C and t = 0

S-step (t+1).1 Define a surrogate function Q1(θ1|θ1(t)) for L1.

M-step (t+1).1 Find a θ1(t+1) such that Q1(θ1(t+1)|θ1(t)) ≥ Q1(θ1(t)|θ1(t)).

S-step (t+1).2 Define a surrogate function Q2(θ2|θ2(t)) for L2.

M-step (t+1).2 Find a θ2(t+1) such that Q2(θ2(t+1)|θ2(t)) ≥ Q2(θ2(t)|θ2(t)).

· · · · · ·
S-step (t+1).C Define a surrogate function QC(θC |θC(t)) for LC .

M-step (t+1).C Find a θC(t+1) such that QC(θC(t+1)|θC(t)) ≥ QC(θC(t)|θC(t)).

Motor If not converged, then t ← t+1 and go to S-step (t+1).1.
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Table 2 Block relaxation diagram of the SCM algorithm

Begin Start with θ i (0) ∈ R
m for i = 1, . . . ,C and t = 0.

S-step t Define a surrogate function Q(Θ|Θ(t)) for L(Θ).

M-step t.1 Find a θ1(t+1) that satisfies Q(Θ|Θ(t)) ≥ Q(Θ(t)|Θ(t)) subject to

r1(θ2, . . . , θC) = r1(θ2(t), . . . , θC(t)).

M-step t.2 Find a θ2(t+1) that satisfies Q(Θ|Θ(t)) ≥ Q(Θ(t)|Θ(t)) subject to

r2(θ1, θ3, . . . , θC) = r2(θ1(∗), θ3(t), . . . , θC(t)).

· · · · · ·
M-step t.C Find a θC(t+1) that satisfies Q(Θ|Θ(t)) ≥ Q(Θ(t)|Θ(t)) subject to

rC(θ1, θ2, . . . , θC−1) = rC(θ1(∗), θ2(∗), . . . , θC−1(∗)).

Motor If not converged, then t ← t+1 and go to S-step t .

decomposes the M-step into several CM-steps. Analogous to the setting of ECM, we also
propose a surrogate conditional maximization (SCM) algorithm (Table 2). The differences
between CSM and SCM can be clearly seen from Tables 1 and 2. Specifically, CSM decom-
poses each SM-step into C conditional SM-steps, while SCM only decomposes each M-step
of SM into C conditional M-steps. In Table 2, ri(Θ) is a vector function of Θ . Specifically,
ri(Θ) = (θ 1, . . . , θ i−1, θ i+1, . . . , θC) which is a vector containing all the parameters except
θ i .

4 SM algorithms for binary logistic regression model

In this section we focus on parameter estimation in the binary logistic regression model
and present several SM algorithms based on using different methods for constructing the
surrogate function. The first is based on Jensen’s inequality (Sect. 4.1), the second is based
on the first-order Taylor approximation (Sect. 4.2), the third is based on the low quadratic
bound principle (Sect. 4.3), while the last one is based on a combination of approaches
(Sect. 4.4). Moreover, we will also see that the generalized SM algorithm is equivalent to
the parallel Bregman optimization algorithm in (Collins et al. 2002).

Let T = {(x1, y1), . . . , (xn, yn)} be a finite set of training examples, where each instance
xi from a domain or instance space X corresponds to a label yi ∈ {−1,+1}. We also assume
that we are given a set of real-valued feature functions, h1, . . . , hm, on X . Now our goal
is to label the xi ’s using a linear combination of these features. In other words, we want
to find a parameter vector λ = (λ1, . . . , λm)T ∈ R

m such that fλ(xi ) = ∑m

j=1 λjhj (xi ) is a
good approximation of the underlying classification function. Instead of using fλ directly
as a classification rule, we usually postulate that the yi ’s come from a probabilistic model
associated with fλ(xi ). In logistic regression models, one suggestion is that the posterior
probability of yi is given by a logistic function of fλ(xi ), as

p̂(yi |xi ,λ) = 1

1 + exp{−yi

∑m

j=1 λjhj (xi )} . (7)

Accordingly, we can use the maximum likelihood estimation method for λ. Here we refor-
mulate maximum likelihood estimation as an equivalent minimization problem, which is
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based on the following loss function

Lb(λ) =
n∑

i=1

ln

{
1 + exp

(
−yi

m∑
j=1

λjhj (xi )

)}
.

This problem was also addressed by an algorithm called LogitBoost (Collins et al. 2002) in
the context of boosting (Friedman et al. 2000; Schapire 1990).

Let us define

gij = −yihj (xi ) (8)

and gi = (gi1, . . . , gim)T . Thus,

Lb(λ) =
n∑

i=1

ln

{
1 + exp

(
m∑

j=1

λjgij

)}
. (9)

As in (Collins et al. 2002), we assume that

m∑
j=1

|gij | ≤ 1. (10)

Moreover, without loss of generality, we assume throughout this paper that gij 
= 0 for all i

and j . If there exists some gij = 0, we can simply remove the corresponding term from the
summation in exp{∑m

j=1 λjgij } so that the same results are still applicable.

4.1 Using Jensen’s inequality

We rewrite Lb(λ) in (9) as

Lb(λ) =
n∑

i=1

ln

{
1 + exp

[
m∑

j=1

|gij |
(

gij

|gij | (λj − λj (t)) + λ(t)T gi

)
+ (1 − αi)λ(t)T gi

]}
,

where

αi =
m∑

j=1

|gij |. (11)

Since d2 ln(1+exp(u))

du2 = exp(u)

(1+exp(u))2 > 0, ln(1 + exp(·)) is convex, and hence

Lb(λ) ≤
n∑

i=1

(1 − αi) ln(1 + exp(λ(t)T gi ))

+
n∑

i=1

{
m∑

j=1

|gij | ln

[
1 + exp

(
gij

|gij | (λj − λj (t)) + λ(t)T gi

)]}

≡ Qz(λ|λ(t)). (12)

It is easy to show that Qz(λ(t)|λ(t)) = Lb(λ(t)). Hence, Qz(λ|λ(t)) can be used as a sur-
rogate function of Lb(λ). We then minimize Qz(λ|λ(t)) w.r.t. the λj ’s, by setting the partial
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derivative

∂Qz(λ|λ(t))

∂λj

=
n∑

i=1

gij

exp(λ(t)T gi + gij

|gij | (λj − λj (t)))

1 + exp(λ(t)T gi + gij

|gij | (λj − λj (t)))

to zero. However, a closed-form solution cannot be found. There are two methods to tackle
this problem. One is to employ a strategy similar to the generalized EM algorithm (Dempster
et al. 1977), leading to a generalized SM algorithm. Alternatively, we can resort to a gradient
SM algorithm analogous to the gradient EM algorithm (Lange 1995). Here, we employ this
strategy. Using

∂Qz(λ|λ(t))

∂λj

∣∣∣∣∣
λj =λj (t)

=
n∑

i=1

pi(λ(t))gij ,

∂2Qz(λ|λ(t))

∂λ2
j

∣∣∣∣∣
λj =λj (t)

=
n∑

i=1

pi(λ(t))(1 − pi(λ(t)))|gij |,

where pi(λ) = exp(λT gi )

1+exp(λT gi )
, we update the current parameter estimate λj (t) to

λj (t+1) = λj (t) −
{

n∑
i=1

pi(λ(t))(1 − pi(λ(t)))|gij |
}−1 n∑

i=1

pi(λ(t))gij . (13)

This gives rise to a gradient SM algorithm.

4.2 Using first-order Taylor approximation

First, notice that ln cosh(u) = ln exp(u)+exp(−u)

2 for u ∈ (−∞,∞) is even while ln cosh
√

u for
u ∈ [0,∞) is concave (Jaakkola and Jordan 1997). It is easy to obtain

ln(1 + exp(λT gi )) = ln 2 + λT gi

2
+ ln cosh

(
λT gi

2

)

= ln 2 + λT gi

2
+ ln cosh

( |λT gi |
2

)
. (14)

Let
√

u = |λT
gi |

2 . Then it follows from the concavity1 of ln cosh
√

u that

ln cosh

( |λT gi |
2

)
≤ ln cosh

( |λ(t)T gi |
2

)
+ βi(t)

(
(λT gi )

2

4
− (λ(t)T gi )

2

4

)

= ln cosh

( |λ(t)T gi |
2

)
+ 1

4
(λ − λ(t))T βi(t)gigT

i (λ + λ(t)),

1It is well-known that ln cosh
√

u is concave. Nevertheless, we present a new proof in Appendix 1 because
the proof procedure will be useful in the sequel.
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where βi(t) stands for the derivative of ln cosh
√

u at
√

u = |λ(t)T gi |/2, and βi(t) =
tanh(|λ(t)T gi |/2)

|λ(t)T gi | when λ(t)T gi 
= 0 and βi(t) = 1
2 otherwise. Thus, we obtain a quadratic sur-

rogate function

Qf (λ|λ(t)) = n ln 2 +
n∑

i=1

{
λT gi

2
+ ln cosh

(
λ(t)T gi

2

)}

+1

4
(λ − λ(t))T

{
n∑

i=1

βi(t)gigT
i

}
(λ + λ(t))

= Lb(λ(t)) +
n∑

i=1

(λ − λ(t))T gi

2

+1

4
(λ − λ(t))T

{
n∑

i=1

βi(t)gigT
i

}
(λ + λ(t)). (15)

Minimization of Qf (λ|λ(t)) w.r.t. λ results in a new one-step SM algorithm

λ(t+1) = −
{

n∑
i=1

βi(t)gigT
i

}−1 n∑
i=1

gi . (16)

4.3 Using the low quadratic bound principle

The original idea of the low quadratic bound principle was proposed by (Böhning and Lind-
say 1988). More specifically, let L(θ) be the objective function to be maximized, ∇L(θ)

the Fisher score vector and ∇2L(θ) the Hessian matrix at θ ∈ R
q . The low quadratic bound

principle aims at finding a negative definite q × q matrix B such that ∇2L(θ) � B for all θ .2

Thus, one can define the surrogate function Q(θ |φ) of L(θ) as

Q(θ |φ) = L(φ) + (θ − φ)T ∇L(φ) + 1

2
(θ − φ)T B(θ − φ).

Clearly, L(θ)−Q(θ |φ) attains its minimum at θ = φ. Since Q(θ |φ) is a quadratic function,
its concavity implies that it has only one maximum. If we let φ be the t th estimate of θ ,
denoted θ(t), then maximizing Q(θ |θ(t)) w.r.t. θ yields the (t+1)th estimate of θ as

θ(t+1) = θ(t) − B−1∇L(θ(t)). (17)

Note that if B is singular, we use its Moore–Penrose inverse instead. Obviously, it is a special
case of the SM algorithm, and, due to its origin from the low quadratic bound principle, will
be referred to as the quadratic SM algorithm in the sequel.

We now apply the low quadratic bound principle to the binary logistic regression model.
First, we compute the Fisher score vector and Hessian matrix as

2Here C � D means C − D is positive semidefinite.



12 Mach Learn (2007) 69: 1–33

∇Lb(λ) =
n∑

i=1

pi(λ)gi ,

(18)

∇2Lb(λ) =
n∑

i=1

pi(λ)(1 − pi(λ))gigT
i .

This leads to the following second-order Taylor series approximation of the objective func-
tion Lb(λ) at λ(t):

Qn(λ|λ(t)) = L(λ(t)) + (λ − λ(t))T ∇L(λ(t)) + 1

2
(λ − λ(t))T ∇2L(λ(t))(λ − λ(t)).

(19)
Using the pure Newton method, the corresponding iteration formula is

λ(t+1) = λ(t) −
{

n∑
i=1

pi(λ(t))(1 − pi(λ(t)))gigT
i

}−1 n∑
i=1

pi(λ(t))gi . (20)

On the other hand, since pi(λ)(1 − pi(λ)) ≤ 1
4 , we have

∇2Lb(λ) � 1

4
GGT ,

where G = [g1, . . . ,gn]. Now, given the t th iterates λj (t)’s of λj ’s, we can define a surrogate
function of Lb(λ) as

Qq(λ|λ(t)) = Lb(λ(t)) + (λ − λ(t))T ∇Lb(λ(t)) + 1

8
(λ − λ(t))T GGT (λ − λ(t)). (21)

Then, minimization of Qq(λ|λ(t)) gives rise to the (t+1)th iterate of λ, as:

λ(t+1) = λ(t) − 4(GGT )−1∇Lb(λ(t)). (22)

We can see that the assumption
∑m

j=1 |gij | ≤ 1 is not necessary for this SM algorithm.

4.4 Different combinations of the basic approaches

Depending upon the problem at hand, usually one of the three approaches mentioned in
Sect. 2 is used to construct a surrogate function. However, when none of these approaches
can give a closed-form solution, one may consider using multiple approaches in tandem.
Here we illustrate some combination approaches in the context of the binary logistic regres-
sion model. We will first consider the combination of Jensen’s inequality and the first-order
Taylor approximation, and will see that it works well independent of the order in which they
are combined. Next, we will consider the combination of Jensen’s inequality and the low
quadratic bound principle.

Combination 1 We first apply Jensen’s inequality to Qz(λ|λ(t)) in (12) and then apply
first-order Taylor approximation to the ln(·) function. Specifically, by

ln(u) ≤ ln(v) + u − v

v
for u,v > 0 (23)
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and letting u = 1 + exp(
gij

|gij | (λj − λj (t)) + λ(t)T gi ) and v = 1 + exp(λ(t)T gi ), we have,

ln

[
1 + exp

(
gij

|gij | (λj − λj (t)) + λ(t)T gi

)]

≤ ln[1 + exp(λ(t)T gi )] +
(exp(

gij

|gij | (λj − λj (t))) − 1) exp(λ(t)T gi )

1 + exp(λ(t)T gi )
.

By combining this with Qz(λ|λ(t)), we obtain a new surrogate function for Lb(λ):

Qc(λ|λ(t)) =
n∑

i=1

ln

(
1 + exp

(
m∑

j=1

λj (t)gij

))

+
n∑

i=1

pi(λ(t))

m∑
j=1

|gij |
{

exp

(
gij

|gij | (λj − λj (t))

)
− 1

}
. (24)

Since the partial derivative of Qc(λ|λ(t)) w.r.t. λj is

∂Qc(λ|λ(t))

∂λj

=
n∑

i=1

pi(λ(t))gij exp

(
gij

|gij | (λj − λj (t))

)

=
∑
i∈S+

j

pi(λ(t))|gij | exp(λj − λj (t))

−
∑
i∈S−

j

pi(λ(t))|gij | exp(λj (t) − λj ),

where S+
j = {i : gij > 0} and S−

j = {i : gij < 0}, it is easy to find an exact analytical solution
of argminλQc(λ|λ(t)) as

λj (t+1) = λj (t) + 1

2
ln

(∑
i∈S−

j
|gij |pi(λ(t))∑

i∈S+
j

|gij |pi(λ(t))

)
. (25)

Combination 2 The second combination approach first applies the first-order Taylor
approximation and then Jensen’s inequality. Now let u = 1 + exp(

∑m

j=1 λjgij ) and
v = 1 + exp(

∑m

j=1 λj (t)gij ) in (23), we have

ln

(
1 + exp

(
m∑

j=1

λjgij

))

≤ ln

(
1 + exp

(
m∑

j=1

λj (t)gij

))
+ exp(

∑m

j=1 λjgij ) − exp(
∑m

j=1 λj (t)gij )

1 + exp(
∑m

j=1 λj (t)gij )
.

It thus follows from Lb(λ) in (9) that

Lb(λ) ≤
n∑

i=1

ln

(
1 + exp

(
m∑

j=1

λj (t)gij

))
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+
n∑

i=1

exp(
∑m

j=1 λjgij ) − exp(
∑m

j=1 λj (t)gij )

1 + exp(
∑m

j=1 λj (t)gij )

=
n∑

i=1

ln

(
1 + exp

(
m∑

j=1

λj (t)gij

))

+
n∑

i=1

pi(λ(t))

[
exp

(
m∑

j=1

(λj − λj (t))gij

)
− 1

]

≡ Q∗(λ|λ(t)).

Using Jensen’s inequality, we have

exp

(
m∑

j=1

(λj − λj (t))gij

)
= exp

(
m∑

j=1

|gij | gij

|gij | (λj − λj (t)) + (1 − αi)0

)

≤ 1 − αi +
m∑

j=1

|gij | exp

(
gij

|gij | (λj − λj (t))

)
.

Inserting this inequality into Q∗(λ|λ(t)), we again obtain the surrogate function Qc(λ|λ(t))

and the iterative equation given in (25).

Clearly, this is a standard SM algorithm. Note that this algorithm is equivalent to the
parallel Bregman distance algorithm for binary logistic regression proposed by (Collins et al.
2002). However, our derivation is much simpler because we only utilize Jensen’s inequality
with the convexity of ln(1+exp(u)) and first-order Taylor approximation with the concavity
of ln(u).

Combination 3 The point of departure of the third combination approach is from the sur-
rogate function Qz(λ|λ(t)) defined in (12). As

∂Q2
z(λ|λ(t))

∂λ2
j

=
n∑

i=1

|gij |
exp(λ(t)T gi + gij

|gij | (λj − λj (t)))

1 + exp(λ(t)T gi + gij

|gij | (λj − λj (t)))

×
[

1 −
exp(λ(t)T gi + gij

|gij | (λj − λj (t)))

1 + exp(λ(t)T gi + gij

|gij | (λj − λj (t)))

]

≤ 1

4

n∑
i=1

|gij |,

we apply the low quadratic bound principle to Qz(λ|λ(t)), leading to another surrogate
function

Qm(λ|λ(t)) = Lb(λ(t)) + (λ − λ(t))T ∇Lb(λ(t)) + 1

8
(λ − λ(t))T D(λ − λ(t)), (26)
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where D = diag(
∑n

i=1 |gi1|, . . . ,∑n

i=1 |gim|) is a diagonal matrix, and we use Qz(λ|λ(t)) =
Lb(λ) and ∇Qz(λ(t)|λ(t)) = ∇Lb(λ) at λ = λ(t). Thus, we have

λj (t+1) = λj (t) − 4

(
n∑

i=1

|gij |
)−1 n∑

i=1

pi(λ(t))gij , j = 1, . . . ,m. (27)

Apparently, Qm(λ|λ(t)) is also a surrogate function for the log-likelihood function Lb(λ)

through combining Jensen’s inequality and the low quadratic bound principle.

4.5 Theoretical analysis

We can see that the surrogate function for an objective function is not unique. By using
(combinations of) different approaches from Sect. 2, different surrogate functions and con-
sequently different SM algorithms can be devised. Table 3 compares the various SM algo-
rithms proposed in the previous subsections, and their needs for matrix inversion are shown
in Table 4.

From Sect. 4.4, it can be shown that, for the same λ(t),

Lb(λ) ≤ Qz(λ|λ(t)) ≤ Qc(λ|λ(t)), (28)

Lb(λ) ≤ Qz(λ|λ(t)) ≤ Qm(λ|λ(t)). (29)

Again considering λ(t+1) in (25), we have

Qz(λ(t+1)|λ(t)) ≤ Qc(λ(t+1)|λ(t)) ≤ Qc(λ(t)|λ(t)) = Lb(λ(t)) = Qz(λ(t)|λ(t)),

Qz(λ(t+1)|λ(t)) ≤ Qm(λ(t+1)|λ(t)) ≤ Qm(λ(t)|λ(t)) = Lb(λ(t)) = Qz(λ(t)|λ(t)).

This implies that the iterative procedure based on either (25) or (27) defines a generalized
SM algorithm w.r.t. the surrogate function Qz(λ|λ(t)). Therefore, we see that a standard SM
algorithm w.r.t. one surrogate function may at the same time be a generalized SM algorithm
w.r.t. another surrogate function.

SM-1 is a gradient SM algorithm. Like the gradient EM algorithm, its convergence is not
guaranteed. Here, since the SM-k (k = 2, . . . ,5) algorithms are standard SM algorithms, we
consider their convergence properties. For SM-3 and SM-5, their corresponding surrogate
functions Qq(λ|λ(t)) and Qm(λ|λ(t)) are clearly continuous in both λ and λ(t). For SM-2,

Table 3 General comparison of the proposed SM algorithms and the pure Newton method for the binary
logistic regression

Method Surrogate function Iterative equation Approach(es) used

SM-1 Qz(λ|λ(t)) in (12) (13) Jensen’s inequality

SM-2 Qf (λ|λ(t)) in (15) (16) First-order Taylor approximation

SM-3 Qq(λ|λ(t)) in (21) (22) Low quadratic bound principle

SM-4 Qc(λ|λ(t)) in (24) (25) Jensen’s inequality

+ first-order Taylor approximation

SM-5 Qm(λ|λ(t)) in (26) (27) Jensen’s inequality

+ low quadratic bound principle

Newton’s Qn(λ|λ(t)) in (19) (20)
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Table 4 Comparison on the
needs for matrix inversion of the
proposed SM algorithms and the
pure Newton method for binary
logistic regression

Method Matrix inversion?

SM-1 No need for matrix inversion

SM-2 Invert an m × m matrix at each iteration

SM-3 Invert an m × m matrix once during the whole process

SM-4 No need for matrix inversion

SM-5 No need for matrix inversion

Newton’s Invert an m × m matrix at each iteration

it is easy to see from Lemma 1 that βi(t) is continuous in λ(t)T gi at (−∞,+∞). As a result,
we obtain that Qf (λ|λ(t)) is continuous in λ(t), and hence Qf (λ|λ(t)) is continuous in both
λ and λ(t). As for SM-4, we choose to regard it as a generalized SM algorithm w.r.t. the
surrogate function Qz(λ|λ(t)) in (12), which is continuous in both λ and λ(t). On the other
hand, from (19), we have ∇2Lb(λ) � 0. Consequently, Lb(λ) is convex. We again note that
Lb(λ) is bounded below (≥ 0). This shows that Lb(λ) only has a unique stationary point
which is the local minimum. By Theorem 2, we thus have the following corollary.

Corollary 1 The limit point of any sequence {λ(t)} of one of the SM-k (k = 2, . . . ,5) algo-
rithms is the global minimum of Lb(λ) and Lb(λ(t)) converges monotonically to Lb(λ

∗) for
the global minimum λ∗.

With a variety of different possibilities, a natural question to ask is what criteria should be
used to guide the design of a good surrogate function. Intuitively, one criterion that could be
used is the closeness of a surrogate function to the original objective function. For example,
the closer is the surrogate function to the objective function, the better it will be. Another
possible criterion is the tractability of the M-step. For example, a closed-form update equa-
tion is more desirable. In other words, we want the surrogate function to be both efficient
and effective. In practice, however, there has to be a tradeoff between these two criteria.

Now, we discuss this issue by taking our proposed SM algorithms as concrete examples.
Specifically, we have that, for the same λ(t),

Qn(λ|λ(t)) (or Lb(λ)) ≤ Qf (λ|λ(t)) ≤ Qq(λ|λ(t)) ≤ Qm(λ|λ(t)). (30)

The proof can be found in Appendix 2. Since their corresponding SM algorithms are stan-
dard, we can order the convergence rate of these algorithms as

the pure Newton method ≥ SM-2 ≥ SM-3 ≥ SM-5. (31)

This shows that the closer is a surrogate function to the objective function, the faster the
rate of convergence of the standard SM algorithm corresponding this surrogate function will
be. On the other hand, from (16) and (22), we can see that both SM-2 and SM-3 based on
Qf (λ|λ(t)) and Qq(λ|λ(t)) amount essentially to minimizing Lb(λ) by the pure Newton
method, but with the Hessian matrix ∇2Lb(λ) replaced by an approximated matrix. They
can avoid the non-convergent problem of the pure Newton method. SM-2 has the same
computational cost as Newton’s method. Since SM-3 uses a constant matrix (i.e., B), it only
needs to compute the inverse of this constant matrix once during the whole iterative process.
However, SM-5 does not need to invert any matrix. Thus, in general, there may be a tradeoff
between the two criteria.



Mach Learn (2007) 69: 1–33 17

Further, going back to (28) and (29), we have that the surrogate function Qz(λ|λ(t)) is
superior to Qc(λ|λ(t)) and Qm(λ|λ(t)). However, while SM-1 based on Qz(λ|λ(t)) does
not have a closed-form solution for the M-step, it is easy to show that an exact analytical
solution exists for SM-4 or SM-5 based on Qc(λ|λ(t)) or Qm(λ|λ(t)). It is worth noting that
although we have (28), SM-1 ≥ SM-4 does not always hold because SM-1 is a gradient al-
gorithm. Given the same λ(t), we denote its next estimates by λ(1)(t+1) and λ(4)(t+1) from
SM-1 and SM-4, respectively. For SM-1, λ(1)(t+1) may not be the minimum of Qz(λ|λ(t)).
Consequently, we do not ensure that

Qz(λ
(1)(t+1)|λ(t)) ≤ Qc(λ

(4)(t+1)|λ(t)).

In other words, we are not able to guarantee that SM-1 is faster than SM-4. However, for
SM-1 and SM-5, it can be shown from the last paragraph in Sect. 4.4 that

∇2Qz(λ|λ(t)) ≤ 1

4
D.

Thus the Rayleigh quotient of ∇2Qz(λ|λ(t)) is smaller than that of 1
4 D. Therefore,

η = ‖(∇2Qz(λ|λ(t)))−1∇2L(λ)‖ ≥ ‖4D−1∇2L(λ)‖.
This implies that the dominant eigenvalue of I − (∇2Qz(λ|λ(t)))−1∇2L(λ) is not smaller
than that of I−4D−1∇2L(λ). As described in the so-called Ostrowski’s theorem (Ostrowski
1960, Chap. 18), the dominant eigenvalue determines the convergence rate of the corre-
sponding algorithm. Thus SM-1 is faster than SM-5, i.e., we still have

SM-1 ≥ SM-5. (32)

4.6 Experimental analysis

In this subsection we empirically evaluate the SM algorithms summarized in Table 3 for
the binary logistic regression model. Our goal is to further validate the theoretical analysis
given in Sect. 4.5 from an experimental perspective. Specifically, we attempt to achieve the
following purposes:

(a) Illustrate the tradeoff between efficiency and effectiveness;
(b) Illustrate the tradeoff between training and testing.

In our experiments we use the pure Newton method for baseline comparison due to its
relationship with the SM algorithms given in (30) and (31). An empirical comparison of
some SM algorithms with other numerical methods such as conjugate gradient and quasi-
Newton have been systematically studied in (Minka 2003). In the experiments, we use two
synthetic data sets similar to those used in (Collins et al. 2002) and two real-world data sets.
The code is implemented in MATLAB and it is available from the homepage of the first
author, and the experiments are run on a Pentium 2.79 GHz PC with 2.00 GB RAM. We
use the same initial values of the λij to implement these six algorithms. Specifically, we use
two initialization methods: one is to randomly generate λij (0) from a uniform distribution
over [−1,1], i.e., λij (0) ∼ U([−1,1]), and another is to set λij (0) = 0. From (7), the latter
method implies that p̂(yi = 1|xi ,λ(0)) = p̂(yi = −1|xi ,λ(0)) = 1/2 for i = 1, . . . , n. For
all four datasets, we run all the six algorithms until |Lb(λ(t+1)) − Lb(λ(t))|/Lb(λ(0)) <

0.00001.
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Simulated data The first data set consists of 3000 data points xi ∈ R
100 sampled randomly

from the normal distribution with zero mean and identity covariance matrix. To label these
points, we first randomly generate a 100-dimensional hyperplane represented by a vector
w ∈ R

100 subject to ‖w‖ = 1 and then assign the label yi = sgn(wT xi ) to each xi . After
this labeling step, we perturb each point xi by adding a random noise term ε i ∼ N (0,0.2I),
leading to a new noisy data point zi . We use 1000 points for training and the remaining
2000 points for testing. We run our experiments using two data sets, i.e., {xi} without
noise and {zi} with noise. Specifically, we set hj (xi ) = xij and hj (zi ) = zij , respectively,
for the two data sets. In this case, we have n = 1000 and m = 100. For i = 1, . . . , n and
j = 1, . . . ,m, we calculate gij = −yihj (xi ) (or gij = −yihj (zi )) and set gij = gij∑100

j=1 |gij |
such that

∑100
j=1 |gij | ≤ 1.

Text data We also evaluate the SM algorithms on two text categorization tasks using the
WebKB (Craven et al. 1998) and NewsGroup (Joachims 1997) data sets. The WebKB data
set contains web pages gathered from computer science departments in several universities.
The pages can be divided into seven categories. Here we run the binary logistic regression
model on the classes faculty and course, with a total of 2054 pages. The NewsGroup data set
consists of 20 classes. We use the classes alt.atheism and comp.graphics, with a total of 1985
words. Based on the information gain criterion, 300 features (i.e., m = 300) are selected for
WebKB and 1000 features (i.e., m = 1000) for NewsGroup. We then define a feature as

hj (xk) = Nj(xk)

N(xk)
,

where Nj(xk) is the number of occurrences of feature j in document xk and N(xk) is the
total number of occurrences of all features in document xk . In the experiments, we specify
1398 training samples and 656 test samples for WebKB dataset, and 1390 training samples
and 595 test samples for NewsGroup dataset.

Figures 1 and 2 show the training loss, with values normalized to 1, for the two initial-
ization methods on these four data sets. Note that the x-axis is in log scale for all plots.
Moreover, to facilitate comparison and visualization, we illustrate the training losses of the
first 100 iterations, although some of the algorithms have converged and others have not con-
verged before 100 iterations. As we can see, all six algorithms are not sensitive to the initial
values of the λij and converge though with different rates. Obviously, the convergence of
SM-2, SM-3, SM-4 and SM-5 follow from the basic properties of SM algorithms. For SM-1
and the pure Newton method, they also converge in our experiments. However, as is well
known, the convergence of SM-1 and the pure Newton method is generally not guaranteed.
The orderings of different methods in terms of their convergence rate are same as those in
(31) and (32). In addition, SM-1 ≥ SM-4 holds for the two simulated data sets, while it does
not hold for the two text data sets. This is in full agreement with our theoretical analysis
in Sect. 4.5.

Since the performance of the algorithms is almost the same for different initial values
of the λij , the experimental results, reported in Tables 5 and 6, are based on initial values
of the λij chosen randomly from U([−1,1]). For SM-2 and the pure Newton method, we
need to invert an m × m matrix at each iteration (see Table 4). Although SM-2 and the
pure Newton method take very few iterations to converge, they become very inefficient
for larger values of m due to the need for large storage. For SM-3, we need to invert an
m × m matrix only once for all the iterations. Hence its computational cost is lower. For the
other methods, their computational costs are even lower. These can be seen from Table 5, in
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Fig. 1 Training loss vs. number of iterations

which the bottom of each table entry gives the corresponding number of iterations required
before convergence. Thus, there exists a trade-off between the convergence rate and the
computational cost. SM-2 and the pure Newton method are inefficient for high-dimensional
data, although their convergence rates are the fastest.

We also report the classification accuracies on the test data in Table 6. On the simulated
data without noise, the pure Newton method, SM-2 and SM-3 outperform SM-1, SM-4 and
SM-5. This shows that the classification accuracy is consistent with the convergence rate
for noiseless datasets. However, on the noisy simulated data and the two text data sets, the
classification results are different from those for the simulated data sets. Specifically, the
classification accuracies of SM-2, SM-3 and the pure Newton method slightly decrease.
In contrast, SM-1, SM-4 and SM-5 are rather robust to noise, and they now give higher
accuracy than SM-2, SM-3 and the pure Newton method. Moreover, SM-5 gives the best
classification performance although it is the worst in terms of convergence rate. Thus, an
algorithm with higher convergence rate does not always have higher classification accuracy.
Since most real-world datasets are noisy in nature, we think that SM-4 and SM-5 are the
best choices when considering both computational cost and classification accuracy.



20 Mach Learn (2007) 69: 1–33

Fig. 2 Training loss vs. number of iterations

5 CSM and SCM algorithms for binary logistic regression model

Now we consider applying the CSM and SCM algorithms to the logistic regression model.
The loss function L(λ) can be regarded as a function Lb(λ1, . . . , λm) of multiple variables
λi ’s. First, if we employ the parallel-update scheme, it is easy to see that the standard, gen-
eralized and gradient SM algorithms given in the previous sections can also be regarded as
CSM or SCM algorithms. On the other hand, if we employ the sequential-update scheme,
it is easy to obtain a CSM or SCM algorithm from one of these SM algorithms by replac-
ing pi(λ(t)) with

pi(w) = exp(wT gi )

1 + exp(wT gi )
,

where w = (λ1(t), . . . , λi(t), λi+1(t+1), . . . , λm(t+1))T .
Now, we consider in more detail the application of CSM algorithms to an extension of

the logistic regression model. We change p̂(yi |xi ,λ) in (7) to

p̂(yi |xi ,λ, b) = 1

1 + exp(λT gi + b)
, (33)
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Table 5 Total CPU time (in seconds) / number of iterations required until convergence

Dataset SM-1 SM-2 SM-3 SM-4 SM-5 Newton’s

Without noise 14.5781 21.8750 0.0156a +2.5469 0.0469b +36.7344 8.3594 3.2656

(# of iterations) 3511 256 1287 3842 4105 42

With noise 3.8906 3.4531 0.0156a +0.1875 0.0313b +13.2344 2.9375 0.5938

(# of iterations) 943 40 86 1359 1507 8

WebKB 2.1875 98.1406 0.0938a +2.7500 0.0469b +1.9531 5.2656 6.7813

(# of iterations) 147 191 357 119 957 15

NewsGroup 3.0313 523.4531 1.4219a +10.2969 0.1563b +2.3594 9.1719 38.5938

(# of iterations) 66 164 254 42 585 14

aCPU time required for inverting B
bCPU time required for finding S+

j
and S−

j

Table 6 Classification accuracy (%) after convergence

Dataset SM-1 SM-2 SM-3 SM-4 SM-5 Newton’s

Without noise 94.55 94.80 95.10 94.60 94.05 94.95

With noise 82.70 82.50 82.50 82.70 82.95 82.60

WebKB 96.95 96.49 95.88 97.10 97.71 96.80

NewsGroup 94.12 93.45 85.21 94.29 96.13 91.76

where b is a bias term. Let us denote the corresponding loss function by Lb(λ, b). Let g+
i =

(gi1, . . . , gim,1)T and λ+ = (λ1, . . . , λm, b)T be the extensions of gi and λ, respectively.
Note that condition (10) is no longer satisfied. However, the SM-2 and SM-3 algorithms
given in the previous sections can still work because (10) is not a necessary condition for
them. To use the SM-1 and SM-4 algorithms, we can simply modify g+

i ← 1
2 g+

i .
We now devise a CSM algorithm that alternately updates b and λ. First, given b(t),

we use Q1(λ|λ(t), b(t)) in the same way as Qc(λ|λ(t)) in (24) for a surrogate function
and then obtain λ(t+1) with an iterative equation as in (25). However, here we replace

pi(λ(t)) = exp(λT (t)gi )

1+exp(λT (t)gi )
with pi(λ(t), b(t)) = exp(λT (t)gi+b(t))

1+exp(λT (t)gi+b(t))
. Then, given λ(t+1), we de-

fine a surrogate function Q2(b|b(t),λ(t+1)) of Lb(λ(t+1), b) as

Lb(λ(t+1), b(t)) +
n∑

i=1

pi(λ(t+1), b(t))(eb−b(t) − 1),

where we have used the convexity of − ln(·), and then obtain b(t+1) via

b(t+1) = b(t) + ln
n∑

i=1

pi(λ(t+1), b(t)).

It is easy to see that

Lb(λ(t+1), b(t+1)) ≤ Q2(b(t+1)|b(t),λ(t+1)) ≤ Q2(b(t)|b(t),λ(t+1))

= Lb(λ(t+1), b(t)) ≤ Q1(λ(t+1)|λ(t), b(t)) ≤ Q1(λ(t)|λ(t), b(t))
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= Lb(λ(t), b(t)),

and Q1(λ|λ(t), b(t)) is continuous in both λ and λ(t) while Q2(b|b(t),λ(t+1)) is continu-
ous in both b and b(t). Thus this CSM algorithm is also guaranteed to converge in terms of
Zangwill’s theorem (see (De Leeuw 1994) for more details).

6 SM algorithm for multi-class logistic regression model

In a multi-class classification problem, the response variable yi takes value from a finite
set of labels, say Y = {1,2, . . . , c}. Each feature is a mapping hj : X × Y → R. In the
logistic regression model (LogitBoost) (Collins et al. 2002; Friedman et al. 2000), we use
the following probabilistic model:

p̂(yi |xi ,λ) = exp(
∑m

j=1 λjhj (xi , yi))∑
l∈Y exp(

∑m

j=1 λjhj (xi , l))

= 1∑
l∈Y exp(

∑m

j=1 λj (hj (xi , l) − hj (xi , yi)))
. (34)

Given a training set T = {(x1, y1), . . . , (xn, yn)}, the logistic regression problem can be
transformed into maximizing the conditional log-likelihood

Lm(λ) =
n∑

i=1

m∑
j=1

λjhj (xi , yi) −
n∑

i=1

ln
∑
l∈Y

exp

(
m∑

j=1

λjhj (xi , l)

)
,

or, equivalently, into minimizing the loss

L̃m(λ) =
n∑

i=1

ln

[∑
l∈Y

exp

(
m∑

j=1

λj (hj (xi , l) − hj (xi , yi))

)]
.

We first work on Lm(λ) to devise a quadratic SM algorithm. Since

∂Lm(λ)

∂λs

=
n∑

i=1

[
hs(xi , yi) −

∑
l∈Y

p̂(l|xi ,λ)hs(xi , l)

]
,

∂2Lm(λ)

∂λs∂λr

= −
n∑

i=1

∑
l∈Y

p̂(l|xi ,λ)hs(xi , l)

[
hr(xi , yi) −

∑
k∈Y

p̂(k|xi ,λ)hr(xi , k)

]
,

then

∇Lm(λ) =
n∑

i=1

Hi (ei − qi ),

∇2Lm(λ) = −
n∑

i=1

Hi (�i − qiqT
i )HT

i ,
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where ei is a c × 1 vector with the kth element being 1 if yi = k and 0 otherwise,

Hi =

⎡
⎢⎢⎢⎢⎢⎣

h1(xi ,1) h1(xi ,2) . . . h1(xi , c)

h2(xi ,1) h2(xi ,2) . . . h2(xi , c)

...
...

. . .
...

hm(xi ,1) hm(xi ,2) . . . hm(xi , c)

⎤
⎥⎥⎥⎥⎥⎦ , qi (λ) =

⎡
⎢⎢⎢⎢⎢⎣

p̂(1|xi ,λ)

p̂(2|xi ,λ)

...

p̂(c|xi ,λ)

⎤
⎥⎥⎥⎥⎥⎦ ,

and �i (λ) = diag(p̂(1|xi ,λ), p̂(2|xi ,λ), . . . , p̂(c|xi ,λ)).
Using the following inequality (Böhning and Lindsay 1988)

�i − qiqT
i � 1

2

[
I − 1

c
11T

]
,

where 1 is the c × 1 matrix of ones, we obtain

∇2Lm(λ) � −1

2

n∑
i=1

Hi

[
I − 1

c
11T

]
HT

i � B.

Thus, we have an iterative procedure for solving λ, as

λ(t+1) = λ(t) + B−1
n∑

i=1

Hi (ei − qi (λ(t))). (35)

Next, we seek to derive the parallel Bregman distance algorithm for multi-class logistic
regression proposed by (Collins et al. 2002) from the perspective of an SM algorithm. We
work on L̃m(λ) and combine the first-order Taylor approximation with Jensen’s inequality.
First, using the concavity of ln(·), we have

L̃m(λ) ≤
n∑

i=1

ln

[∑
l∈Y

e
∑m

j=1 λj (t)gilj

]
+

n∑
i=1

∑
l∈Y e

∑m
j=1 λj gilj − ∑

l∈Y e
∑m

j=1 λj (t)gilj∑
l∈Y e

∑m
j=1 λj (t)gilj

=
n∑

i=1

ln

[∑
l∈Y

e
∑m

j=1 λj (t)gilj

]
+

n∑
i=1

∑
l∈Y

p(l|xi ,λ(t))e
∑m

j=1(λj −λj (t))gilj − n,

where gilj = hj (xi , l) − hj (xi , yi) and p(l|xi ,λ(t)) = exp(
∑m

j=1 λj (t)gilj )∑
l∈Y exp(

∑m
j=1 λj (t)gilj )

. For any i and

l, we assume that
∑m

j=1 |gilj | ≤ 1. Furthermore, without loss of generality, we assume that
gilj 
= 0 for arbitrary i, l and j . Since exp(·) is convex, we have

exp

(
m∑

j=1

(λj − λj (t))gilj

)
= exp

(
m∑

j=1

|gilj |gilj

|gilj | (λj − λj (t)) +
(

1 −
m∑

j=1

|gilj |
)

0

)

≤ 1 −
m∑

j=1

|gilj | +
m∑

j=1

|gilj | exp

(
gilj

|gilj | (λj − λj (t))

)
.

Thus, we obtain a surrogate function for L̃m(λ):

Q̃m(λ|λ(t)) =
n∑

i=1

ln

[∑
l∈Y

exp

(
m∑

j=1

λj (t)gilj

)]
−

n∑
i=1

∑
l∈Y

p(l|xi ,λ(t))

m∑
j=1

|gilj |
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+
n∑

i=1

∑
l∈Y

p(l|xi ,λ(t))

m∑
j=1

|gilj | exp

(
gilj

|gilj | (λj − λj (t))

)
. (36)

We are interested in the minimization of Q̃m(λ|λ(t)) w.r.t. λ. Taking the derivatives of
Q̃m(λ|λ(t)) w.r.t. λ:

∂Q̃m(λ|λ(t))

∂λs

=
n∑

i=1

∑
l∈Y

p(l|xi ,λ(t)) gils exp

(
gils

|gils | (λs − λs(t))

)

=
∑

(i,l)∈S+
s

p(l|xi ,λ(t))|gils | exp(λs − λs(t))

−
∑

(i,l)∈S−
s

p(l|xi ,λ(t))|gils | exp(λs(t) − λs),

where S+
s = {(i, l) : gils > 0} and S−

s = {(i, l) : gils < 0}. So the solution of ∂Q̃m(λ|λ(t))

∂λs
= 0

leads us to the (t+1)th estimate of λs , as

λs(t+1) = λs(t) + 1

2
ln

(∑
(i,l)∈S−

s
|gils |p(l|xi ,λ(t))∑

(i,l)∈S+
s

|gils |p(l|xi ,λ(t))

)
. (37)

Obviously,

L̃m(λ(t+1)) ≤ Q̃m(λ(t+1)|λ(t)) ≤ Q̃m(λ(t)|λ(t)) = L̃m(λ(t)).

This is thus an SM algorithm, which is equivalent to the parallel Bregman distance algorithm
of (Collins et al. 2002) for the multi-class logistic regression. It is clear that Q̃m(λ|λ(t)) is
continuous in both λ and λ(t). In addition, Lemma 2 shows that �i − qiqT

i � 0. Thus
∇2L̃m(λ) = ∑n

i=1 Hi (�i −qiqT
i )HT

i is positive semidefinite. Similar to Corollary 1, we have
the following corollary.

Corollary 2 The limit point of any sequence {λ(t)} of the SM algorithm defined in (37)
is the global minimum of L̃m(λ) and L̃m(λ(t)) converges monotonically to L̃m(λ∗) for the
global minimum λ∗.

7 SM algorithm for AdaBoost

In this section we present SM algorithms for binary and multi-class AdaBoost. There exists a
connection between AdaBoost and maximum likelihood for exponential models (Friedman
et al. 2000; Lebanon and Lafferty 2001). Unlike the binary logistic regression model which
is based on the minimization of (9), binary AdaBoost is based on the minimization of the
exponential loss function

La(λ) =
n∑

i=1

exp

[
−yi

m∑
j=1

λjhj (xi )

]
=

n∑
i=1

exp

(
m∑

j=1

λjgij

)
. (38)
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Let us denote the t th iteration of λj by λj (t). From (38), we have

La(λ) =
n∑

i=1

exp

(
m∑

j=1

|gij | gij

|gij | (λj − λj (t)) + λ(t)T gi

)

=
n∑

i=1

exp

(
m∑

j=1

|gij | gij

|gij | (λj − λj (t)) + (1 − αi)0

)
exp(λ(t)T gi ).

Since exp(·) is convex, it can be shown that

La(λ) ≤
n∑

i=1

exp(λ(t)T gi )

{
1 − αi +

m∑
j=1

|gij | exp

(
gij

|gij | (λj − λj (t))

)}
≡ Qa(λ|λ(t)).

Clearly, Qa(λ(t)|λ(t)) = La(λ(t)), and thus the right-hand side can be used as a surrogate
function of La(λ). Note also that Qa(λ|λ(t)) has decoupled the relationship among the λj ’s.
To minimize Qa(λ|λ(t)) w.r.t. λj ’s, we set

∂Qa(λ|λ(t))

∂λj

=
n∑

i=1

gij exp(λ(t)T gi ) exp

(
gij

|gij | (λj − λj (t))

)

to zero, and obtain∑
i∈S+

j

|gij | exp(λ(t)T gi ) exp(λj − λj (t)) =
∑
i∈S−

j

|gij | exp(λ(t)T gi ) exp(λj (t) − λj ),

where S+
j = {i : gij > 0} and S−

j = {i : gij < 0}. We take log on both sides and, upon simpli-
fication, obtain the following update equation for λj :

λj (t+1) = λj (t) + 1

2
ln

(∑
i∈S−

j
|gij | exp(λ(t)T gi )∑

i∈S+
j

|gij | exp(λ(t)T gi )

)
.

As La(λ(t+1)) ≤ Qa(λ(t+1)|λ(t)) ≤ Qa(λ(t)|λ(t)) = La(λ(t)), local convergence is
guaranteed. Notice that the derivation of our SM algorithm is equivalent to the one by
Lebanon and Lafferty (2001).

There are two popular versions of multi-class AdaBoost. The first one is AdaBoost.M2
(Freund and Schapire 1997), which is based on the loss function

Lm2(λ) =
n∑

i=1

∑
l∈Y

exp

[
m∑

j=1

λj (hj (xi , l) − hj (xi , yi))

]
, (39)

and the other is AdaBoost.MH (Schapire and Singer 1999), which is based on the loss func-
tion

Lmh(λ) =
n∑

i=1

∑
l∈Y

exp

[
−ỹi,l

m∑
j=1

λjhj (xi , l)

]
, (40)

where

ỹi,l =
{+1 if l = yi,

−1 if l 
= yi.
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Let gilj = hj (xi , l) − hj (xi , yi) or gilj = −ỹi,lhj (xi , l), and use Jensen’s inequality with∑m

j=1 |gilj | ≤ 1 for any i and l over Lm2(λ) (or Lmh(λ)). Then, we can immediately obtain
the surrogate function

Q(λ|λ(t)) =
n∑

i=1

∑
l∈Y

exp

[
m∑

j=1

λj (t)gij l

]

×
{

1 −
m∑

j=1

|gijl| +
m∑

j=1

|gijl| exp

[
gijl

|gijl| (λj − λj (t))

]}

and the corresponding iterative equation

λs(t+1) = λs(t) + 1

2
ln

(∑
(i,l)∈S−

s
|gils | exp(

∑m

j=1 λj (t)gij l)∑
(i,l)∈S+

s
|gils | exp(

∑m

j=1 λj (t)gij l)

)
.

We can see that these iterative procedures for binary and multi-class cases are equiva-
lent to those of the parallel-update optimization algorithm of (Collins et al. 2002). However,
while ours is built upon the SM algorithm and relies only on the convexity of the exponen-
tial function, the one in (Collins et al. 2002) requires the construction of a Bregman distance
which is much more mathematically involved. Moreover, convergence of our algorithm fol-
lows directly from the SM algorithm because it is obvious that La(λ) or Lm2(λ) (Lmh(λ))
is convex in λ, and Qa(λ|λ(t)) or Q(λ|λ(t)) is continuous in both λ and λ(t). It is worth
noting that the Bregman distance optimization algorithm of (Collins et al. 2002) can also
work with the first-order Taylor expansion of a convex function. However, the argument of
this convex function is itself also a function.

8 SM algorithm for log-linear model

The generalized iterative scaling (GIS) algorithm (Darroch and Ratcliff 1972) is an impor-
tant method for the log-linear model. In this section we develop an SM algorithm for the log-
linear model which can be shown to be equivalent to GIS. Following the notation in (Dar-
roch and Ratcliff 1972), we let I be a finite index set, p = {pi; i ∈ I,pi ≥ 0,

∑
i∈I pi ≤ 1} and

π = {πi; i ∈ I,πi > 0,
∑

i∈I πi ≤ 1}. Now given π , we seek to find a probability function of
the form

pi = πi

c∏
r=1

λari
r , (41)

which satisfies the constraints∑
i∈I

aripi = hr, r = 1,2, . . . , c,

where ari and hr are given and satisfy

ari ≥ 0,

c∑
r=1

ari = 1, hr > 0,

c∑
r=1

hr = 1.
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Darroch and Ratcliff (1972) formulated this problem as a constrained minimization problem
as follows

min
p

{
KL(p,π) =

∑
i∈I

pi ln
pi

πi

}
, s.t.

∑
i∈I

aripi = hr, r = 1, . . . , c.

Further, this problem is equivalent to the following unconstrained minimization problem:

L(p, η0,η) =
∑
i∈I

pi ln
pi

πi

+
c∑

r=1

ηr(aripi − hr) + η0

(∑
i∈I

pi − 1

)
, (42)

where η0 and η = {η1, . . . , ηc} are the Lagrange multipliers. As

∂L

∂pi

= ln
pi

πi

+
c∑

r=1

ηrari + η0 = 0,

∂L

∂η0
=

∑
i∈I

pi − 1 = 0,

we obtain

pi = πi exp(−∑c

r=1 ηrari)∑
j πj exp(−∑c

r=1 ηrarj )
. (43)

Plugging (43) back into (42), we obtain the dual maximization problem (Boyd and Vanden-
berghe 2004) as

F(η) = −
∑

r

ηrhr − ln
∑
i∈I

(
πi exp

(
−

∑
r

ηrari

))
. (44)

Now we apply the SM algorithm to this dual problem. Noticing that both − ln(·) and exp(·)
are convex, we have

F(η) ≥ −
∑

r

ηrhr − ln
∑
i∈I

πi exp

(
−

∑
r

ηr (t)ari

)

−
∑

i∈I πi exp(−∑
r ηrari)∑

i∈I πi exp(−∑
r ηr (t)ari)

+ 1

= −
∑

r

ηrhr − ln
∑
i∈I

πi exp

(
−

∑
r

ηr (t)ari

)

−
∑
i∈I

pi(t) exp(
∑

r

(ηr (t) − ηr)ari)

≥ −
∑

r

ηrhr − ln
∑
i∈I

πi exp

(
−

∑
r

ηr (t)ari

)

−
∑
i∈I

pi(t)
∑

r

ari exp(ηr(t) − ηr),
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where

pi(t) = πi exp(−∑c

r=1 ηr(t)ari)∑
j πj exp(−∑c

r=1 ηr(t)arj )
. (45)

This leads us to the (t+1)th estimate of ηr , i.e.,

ηr(t+1) = ηr(t) − ln
hr∑

i∈I pi(t)ari

. (46)

For r = 1, . . . , c, let ηr(0) be equal and randomly generated. We then alternately implement
(45) and (46). Recall that the iterative process of GIS for this problem is defined as (Darroch
and Ratcliff 1972, Theorem 1)

pi(0) = πi, pi(t+1) = pi(t)

c∏
r=1

(
hr

gr(t)

)ari

,

where gr(t) = ∑
i∈I aripi(t). In fact, with our initial settings on η, it follows easily

from (45) that

pi(0) = πi∑
j∈I πj

.

Moreover, plugging (46) into (45), we have

pi(t+1) = pi(t)
∏c

r=1(
hr

gr (t)
)ari∑

j∈I pj (t)
∏c

r=1(
hr

gr (t)
)arj

,

where gr(t) = ∑
i∈I aripi(t). Clearly, our SM algorithm is similar to GIS. However, our SM

algorithm satisfies
∑

i∈I pi(t) = 1 while GIS only satisfies
∑

i∈I pi(t) ≤ 1. Thus, we may
regard our SM algorithm as a variant of GIS that makes the constraint

∑
i∈I pi = 1 hold.

9 Concluding remarks

In this paper we have demonstrated the successful application of SM algorithms to gen-
eralized linear models, and to the binary logistic regression model in particular. Like EM
algorithms for missing data problems, SM algorithms are gaining popularity in computa-
tional statistics for problems without missing data. Although EM algorithms have already
been commonly used in machine learning, this is currently not the case for SM algorithms.
We hope that this paper has successfully demonstrated the power and potential of SM algo-
rithms and will thus lead to its wider adoption in machine learning.

Besides using Jensen’s inequality, first-order Taylor approximation or the low quadratic
bound principle, we have also demonstrated the possibility of using different combina-
tions of these methods for constructing a surrogate function. In order to deal with multi-
variable optimization problems, we have also presented CSM and SCM. Furthermore, for
this problem we can devise an SCMS algorithm, an alternative based on the idea behind
the ECME algorithm (Liu and Rubin 1994), which is an extension of the ECM algorithm
(Meng and Rubin 1993). It would be possible to speed up SM algorithms via over-relaxation
approaches (Salakhutdinov and Roweis 2003).

Recall that on the one hand, Della Pietra et al. (2001) associated iterative scaling algo-
rithms with an auxiliary function, so iterative scaling algorithms are essentially equivalent
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to SM algorithms. On the other hand, the Bregman distance-based optimization algorithms
(Della Pietra et al. 1997; Kivinen and Warmuth 1999; Lafferty 1999; Collins et al. 2002;
Della Pietra et al. 2001) work with the first-order Taylor expansion of a convex function,
the argument of which is itself also a function. Therefore, these algorithms also share some
common properties with SM algorithms.

Since convexity plays a central role in the methods proposed in this paper, it appears that
convexity is a necessary condition for SM algorithms to be applicable. It is worth noting that
a recent work (Edwards and Lauritzen 2001) in computational statistics devised a so-called
TM algorithm, which alternates between a T-step for calculating a titled version of the un-
conditional likelihood function and an M-step for maximizing the titled version. The basic
idea behind the TM algorithm is to approximate the conditional log-likelihood function by
linearizing the corresponding marginal log-likelihood with the first-order Taylor expansion.
However, since the TM algorithm does not make use of the convexity property, its con-
vergence is thus not guaranteed. Nevertheless, this algorithm inspires a convex termination
approach to the applications of SM algorithms in case of non-convexity. For a method de-
signed to work well for a convex function, convex termination refers to the application of
this method also to a non-convex function. From this perspective, the TM algorithm has the
property of convex termination. This resembles the Newton-like methods that possess the
quadratic termination property (Fletcher 1987). Thus the work of (Edwards and Lauritzen
2001) sheds some light on the possibility of using SM algorithms for non-convex functions
as well. More studies along this line will be pursued in our future work.
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Appendix 1: Concavity of the function f (u) = ln cosh(
√

u)

Lemma 1 The function

h(x) ≡
{

tanh(x)

x
, x 
= 0,

1, x = 0.

is continuous on (−∞,+∞).

Proof If x 
= 0, we have

tanh(x)

x
= exp(x) − exp(−x)

x(exp(x) + exp(−x))
.

Now consider that

lim
x→0

exp(x) − exp(−x)

x(exp(x) + exp(−x))
= lim

x→0

exp(x) + exp(−x)

exp(x) + exp(−x) + x(exp(x) − exp(−x))
= 1,

thus h(x) is continuous. �

For u > 0,

d ln cosh(
√

u)

du
= exp(

√
u) − exp(−√

u)

2
√

u(exp(
√

u) + exp(−√
u))

= tanh(
√

u)

2
√

u
.
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From Lemma 1, we can thus define a continuous function ϕ(u) on [0,∞) as

ϕ(u) ≡
{

tanh(
√

u)

2
√

u
, u > 0,

1
2 , u = 0.

Now we compute the derivative of ϕ(u) on (0,∞) as

1

4u

4
√

u + exp(−2
√

u) − exp(2
√

u)

(exp(
√

u) + exp(−√
u))2

.

Since

d(2v + exp(−v) − exp(v))

dv
= 2 − exp(−v) − exp(v)

= −(exp(−v/2) − exp(v/2))2 < 0,

2v + exp(−v) − exp(v) is a decreasing function. Hence, we have 4
√

u + exp(−2
√

u) −
exp(2

√
u) ≤ 0 for u > 0. Thus, ϕ(u) is decreasing on (0,∞). Again, using the property

that ϕ(u) is continuous on [0,∞), we have that ϕ(u) is decreasing on [0,∞). Furthermore,
ϕ(u) ≤ 1

2 (∀u ∈ [0,∞)). Since, up to an additive constant, we can express

f (u) =
∫ u

0
ϕ(v)dv, u ∈ [0,∞),

according to Theorem 24.2 in (Rockafellar 1970), we obtain that f (u) is a well-defined
closed proper concave function on [0,∞). Moreover, f ′+(0) = 1

2 .

Appendix 2: Proof of the relationship (30)

Lemma 2 Suppose that ηj ≥ 0 for j = 1, . . . , r and
∑r

j=1 ηj ≤ 1. Let η = (η1, . . . , ηr )
T .

Then

diag(η) − ηηT � 0.

Proof For an arbitrary x = (x1, . . . , xr )
T 
= 0 ∈ R

r , we have

xT (diag(η1, . . . , ηr ) − ηηT )x =
r∑

j=1

ηjx
2
j −

(
r∑

j=1

ηjxj

)2

≥ 0.

Here we use that the function u2 is convex on R. �

In this appendix, we want to prove that

Qn(λ|λ(t)) ≤ Qf (λ|λ(t)) ≤ Qq(λ|λ(t)) ≤ Qm(λ|λ(t)).

Let pi = pi(λ(t)), ui = λT gi and vi = λ(t)T gi . Then

Qn(λ|λ(t)) = L(λ(t)) +
n∑

i=1

(ui − vi)pi + 1

2

n∑
i=1

pi(1 − pi)(ui − vi)
2,
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Qf (λ|λ(t)) = L(λ(t)) +
n∑

i=1

ui − vi

2
+

n∑
i=1

βi(t)

4
(ui − vi)(ui + vi),

Qq(λ|λ(t)) = L(λ(t)) +
n∑

i=1

(ui − vi)pi + 1

8

n∑
i=1

(ui − vi)
2.

If vi = 0, then βi = 1
2 and pi = 1

2 and so the relationship (30) holds. Now, consider the case
where vi 
= 0. Since

βi(t) = tanh(|λ(t)T gi |/2)

|λ(t)T gi |

= exp(|λ(t)T gi |) − 1

|λ(t)T gi |(exp(|λ(t)T gi |) + 1)

= exp(|vi |) − 1

|vi |(exp(|vi |) + 1)

= exp(vi) − 1

vi(exp(vi) + 1)

(
exp(x) − 1

x(exp(x) + 1)
is even on (−∞,0) ∪ (0,+∞)

)
,

we have

ui − vi

2
+ βi

4
(ui − vi)(ui + vi) − pi(ui − vi)

= ui − vi

2
+ exp(vi) − 1

4vi(exp(vi) + 1)
(ui − vi)(ui + vi) − exp(vi)

1 + exp(vi)
(ui − vi)

= 2vi exp(vi) + 2vi + (exp(vi) − 1)(ui + vi) − 4vi exp(vi)

4vi(exp(vi) + 1)
(ui − vi)

= exp(vi) − 1

4vi(exp(vi) + 1)
(ui − vi)

2.

From Appendix 1, we know that

exp(vi) − 1

4vi(exp(vi) + 1)
≤ 1

8
.

This then follows that

Qf (λ|λ(t)) − Qq(λ|λ(t)) =
n∑

i=1

(
exp(vi) − 1

4vi(exp(vi) + 1)
− 1

8

)
(ui − vi)

2 ≤ 0.

On the other hand, consider

φ(vi) = exp(vi) − 1

4vi(exp(vi) + 1)
− 1

2
pi(1 − pi)

= exp(vi) − 1

4vi(exp(vi) + 1)
− 1

2

exp(vi)

1 + exp(vi)

1

1 + exp(vi)

= exp(2vi) − 1 − 2vi exp(vi)

4vi(exp(vi) + 1)
.
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For vi > 0, since

d(exp(2vi) − 1 − 2vi exp(vi))

dvi

= 2 exp(vi)(exp(vi) − 1 − vi) ≥ 0,

then exp(2vi) − 1 − 2vi exp(vi) ≥ 0. So φ(vi) ≥ 0. Clearly, φ(vi) is even on (−∞,0) ∪
(0,+∞). This shows that φ(vi) ≥ 0 on (−∞,0) ∪ (0,+∞). Thus, immediately we obtain

Qf (λ|λ(t)) − Qn(λ|λ(t)) =
n∑

i=1

(
exp(vi) − 1

4vi(exp(vi) + 1)
− 1

2
pi(1 − pi)

)
(ui − vi)

2 ≥ 0.

We now prove that Qq(λ|λ(t)) ≤ Qm(λ|λ(t)). By Lemma 2, we first have diag(|gi1|, . . . ,
|gim|) − gigT

i is positive semidefinite because
∑m

j=1 |gij | ≤ 1. It then follows that

Qm(λ|λ(t)) − Qq(λ|λ(t))

= 1

8
(λ − λ(t))T

n∑
i=1

(diag(|gi1|, . . . , |gim|) − gigT
i )(λ − λ(t)) ≥ 0.
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