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Abstract—Recently, we proposed an improvement to the conven-
tional eigenvoice (EV) speaker adaptation using kernel methods. In
our novel kernel eigenvoice (KEV) speaker adaptation, speaker su-
pervectors are mapped to a kernel-induced high dimensional fea-
ture space, where eigenvoices are computed using kernel principal
component analysis. A new speaker model is then constructed as
a linear combination of the leading eigenvoices in the kernel-in-
duced feature space. KEV adaptation was shown to outperform
EV, MAP, and MLLR adaptation in a TIDIGITS task with less
than 10 s of adaptation speech. Nonetheless, due to many kernel
evaluations, both adaptation and subsequent recognition in KEV
adaptation are considerably slower than conventional EV adap-
tation. In this paper, we solve the efficiency problem and elimi-
nate all kernel evaluations involving adaptation or testing observa-
tions by finding an approximate pre-image of the implicit adapted
model found by KEV adaptation in the feature space; we call our
new method embedded kernel eigenvoice (eKEV) adaptation. eKEV
adaptation is faster than KEV adaptation, and subsequent recog-
nition runs as fast as normal HMM decoding. eKEV adaptation
makes use of multidimensional scaling technique so that the re-
sulting adapted model lies in the span of a subset of carefully chosen
training speakers. It is related to the reference speaker weighting
(RSW) adaptation method that is based on speaker clustering. Our
experimental results on Wall Street Journal show that eKEV adap-
tation continues to outperform EV, MAP, MLLR, and the original
RSW method. However, by adopting the way we choose the subset
of reference speakers for eKEV adaptation, we may also improve
RSW adaptation so that it performs as well as our eKEV adapta-
tion.

Index Terms—Composite kernels, eigenvoice speaker adap-
tation, kernel eigenvoice speaker adaptation, kernel principal
component analysis (PCA), pre-image problem, reference speaker
weighting.

I. INTRODUCTION

AWELL-TRAINED speaker-dependent (SD) model
generally achieves better performance than a speaker-in-

dependent (SI) model on recognizing speech from the specific
speaker. However, it is usually hard to acquire a large amount of
data from a user to train a good SD model; even if one manages
to do so, the speaker-specific data will not have a phonetic
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coverage as broad as the SI model. A more practical approach
to attain the SD performance without sacrificing the phonetic
coverage is to adapt the SI model with a relatively small amount
of SD speech using speaker adaptation methods. Adaptation
methods like the speaker-clustering-based methods [1], [2],
the Bayesian-based maximum a posteriori (MAP) adaptation
[3], and the transformation-based maximum likelihood linear
regression (MLLR) adaptation [4] have been popular for many
years. Nevertheless, when the amount of available adaptation
speech is really small—for example, only a few seconds—the
eigenvoice-based (or eigenspace-based) adaptation method
recently has drawn a lot of attention. The (original) eigenvoice
(EV) adaptation method [5] was motivated by the eigenface
approach in face recognition [6]. The idea is to derive from
a diverse set of speaker-specific parametric vectors a small
set of basis vectors called eigenvoices that are believed to
represent principal voice characteristics (e.g., gender, age,
accent, etc.), and any training or new speaker is then a point
in the eigenspace. In practice, a few to a few tens of eigen-
voices are found adequate for fast speaker adaptation. Since
the number of estimation parameters is greatly reduced, fast
speaker adaptation using EV adaptation is possible with a few
seconds of speech. The simple algorithm was later extended
to work for large-vocabulary continuous speech recognition
[7], [8], eigenspace-based MLLR [9], [10], and to approximate
the model prior in MAP adaptation [11]–[13]. In addition, the
eigenspace may be learned automatically by MLES [14], or
during model training as in CAT [15].

Meanwhile, in the machine learning research community,
recently there has been a lot of interest in the study of kernel
methods [16]–[18]. The basic idea is to map data in the input
space to a high dimensional feature space via some nonlinear
map, and then apply a linear method there. The computa-
tional procedure depends only on the inner products in the
feature space, which can be obtained efficiently with a suitable
kernel function. Thus, the use of kernels provides elegant
nonlinear generalizations of many existing linear algorithms.
A well-known example in supervised learning is the support
vector machines (SVMs). In unsupervised learning, the kernel
idea has also led to methods such as kernel principal component
analysis (PCA) [19], kernel-based clustering algorithms [20],
and kernel independent component analysis (ICA) [21].

In [22], we proposed a kernel version of EV adaptation called
kernel eigenvoice (KEV) speaker adaptation that exploits pos-
sible nonlinearity in the input speaker supervector space using
kernel methods in order to improve its adaptation performance.

1558-7916/$20.00 © 2006 IEEE
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Speaker supervectors are mapped to a kernel-induced high di-
mensional feature space1 via some nonlinear map , and PCA
is then applied there. During the actual computation, the exact
nonlinear map does not need to be known, and the eigenvoices
in KEV adaptation are obtained in the kernel-induced feature
space using kernel PCA. In principle, since KEV adaptation is a
nonlinear generalization of EV adaptation, the former should be
more powerful than the latter, and KEV adaptation is expected
to give better performance. In fact, KEV adaptation will be re-
duced to the traditional EV adaptation method if a linear kernel
is employed. In a TIDIGITS adaptation task, it was shown that
KEV adaptation outperformed the SI model by about 30% using
only 2.1, 4.1, or 9.6 s of adaptation speech, and was better than
MAP and MLLR adaptation [22].

However, there is a price to pay for using kernel PCA in
KEV adaptation: adaptation and subsequent recognition can be
substantially slower than EV adaptation due to many online
kernel evaluations during the computation of observation like-
lihoods. The problem is due to the fact that the eigenvoices
found by KEV adaptation reside in the kernel-induced feature
space, and since a speaker acoustic model is represented as a
linear combination of these kernel eigenvoices, after adapta-
tion, a new speaker adapted (SA) model exists only implicitly
in the feature space. As there is no explicit model for the new
speaker in the input speaker supervector space, any computa-
tion involving it has to be done online on the implicit SA model
in the feature space via expensive kernel evaluations. Finding
an exact or a good approximate explicit model of an object in
the input space from its image in the feature space is known
as the pre-image problem in kernel methods. There are a few
solutions: a fixed-point iterative method in [23], an analytical
solution using distance constraints in [24], and by learning the
inverse map in [25]. In this paper, we integrate the finding of an
implicit SA model in the feature space using kernel PCA and the
computation of its approximate pre-image to arrive at an explicit
SA model in the input speaker supervector space. The novelty of
our method is that there are no kernel evaluations during adap-
tation involving adaptation speech from the new speaker, and
there are no kernel evaluations at all during recognition. Conse-
quently, adaptation is faster and subsequent recognition is as fast
as conventional EV adaptation. Our new method will be called
embedded kernel eigenvoice (eKEV) speaker adaptation.

The pre-imaging procedure makes use of multidimensional
scaling technique, and the adapted speaker model is confined
to the span of a set of carefully chosen reference speakers in the
input space. In this perspective, our eKEV adaptation method
is similar to reference speaker weighting (RSW) adaptation [1],
[2]. RSW adaptation is one kind of speaker-clustering-based
adaptation methods in which the adapted speaker model is
assumed to be a linear combination of a set of reference speakers.
In [1], the set of combination weights are equal, whereas in
[2], the weights are found by maximizing the likelihood of

1In kernel methods terminology, the original space where raw data reside is
called the input space and the space to which raw data are mapped is called
the feature space. In order not to confuse this with the acoustic feature space in
speech, the latter will always be called the “acoustic feature space,” while the
feature space in kernel methods will be simply called the “feature space” but
may be sometimes called the “kernel-induced feature space” when additional
clarity is necessary.

the adaptation data of the new speaker. eKEV adaptation is
different from the RSW method in [2] in the way the reference
speakers are defined, and eKEV adaptation further requires the
solution to be constrained to the part of reference speakers’
span that is related to the eigenspace found by KEV adaptation
in the kernel-induced feature space. We will compare the two
adaptationmethodsempirically tocheckif suchprior information
is useful.

This paper is organized as follows. We first review the con-
ventional eigenvoice speaker adaptation method in Section II,
and kernel eigenvoice speaker adaptation in Section III. The new
method, embedded kernel eigenvoice speaker adaptation, is de-
tailed in Section IV. In Section V, eKEV adaptation is evaluated
and compared with other common adaptation methods using
TIDIGITS (a small-vocabulary task) and WSJ0 (a large-vocab-
ulary task) corpora. Conclusions are finally drawn in Section VI.

II. EIGENVOICE SPEAKER ADAPTATION (EV)

In standard eigenvoice speaker adaptation [5], a set of
speaker-dependent acoustic models are estimated from speech
data collected from many training speakers with diverse
speaking or voicing characteristics. All SD models are hidden
Markov models (HMMs) of the same topology and the state
probability density functions (pdf) are Gaussian mixture
models. For simplicity, we will assume that each HMM state
consists of a single Gaussian; the extension to mixture of Gaus-
sians is straightforward. Then a speaker model is represented
by what is called a speaker supervector that is composed
by concatenating all the mean vectors of all his/her HMM
state Gaussians. That is, for the th speaker, if there are
Gaussians in his/her HMMs, each having a mean vector ,

, then his/her speaker supervector is denoted
by . If the dimension of each mean
vector is , then each speaker supervector has a dimension of

. Suppose that there are training speaker models
represented by their supervectors, . In EV adap-
tation, linear PCA is performed on the speaker supervectors
and the resulting eigenvectors are called eigenvoices. Any
speaker, either a training speaker or a new speaker, can now
be represented as a linear combination of these eigenvoices.
In order to reduce the number of estimation parameters for
fast adaptation and to avoid unwanted variances, only the
leading eigenvoices having the largest
eigenvalues are kept to represent a new speaker supervector

. That is, the centered supervector of the new speaker
(where is added to any quantity in this paper to denote its
centered version) is

(1)

where and is the mean
of all training speaker supervectors, and is
the eigenvoice weight vector. Usually, only a few eigenvoices
(e.g., ) are employed so that a small amount of adap-
tation speech (e.g., a few seconds) is sufficient for adaptation.
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Given the adaptation data , the eigen-
voice weights are usually estimated by maximizing the likeli-
hood of . Mathematically, one finds the optimal by maxi-
mizing the following function:

(2)

where is the posterior probability of the observation se-
quence being at state at time , and is the Gaussian pdf of
the th state of the speaker adapted model. By expanding the
Gaussian pdf and ignoring all terms that are independent of ,
one may find the optimal that maximizes the following re-
duced function instead:

(3)

where is the mean vector of the th Gaussian of
the adapted speaker supervector;

and is the covariance matrix
of the th Gaussian. By differentiating (3) with respect to ,
the optimal can be found by solving a system of linear
equations (with unknown weights, ). In
theory, one may iterate the above steps in the expectation–max-
imization (EM) fashion until the optimal value of converges.
Details can be found in [5].

III. KERNEL EIGENVOICE SPEAKER ADAPTATION

In [22], [26], and [27], we generalized the computation of
eigenvoices by performing kernel principal component analysis
instead of linear PCA. Linear PCA, on the other hand, can be
considered as a special case of kernel PCA with the use of linear
kernel. In this section, we will review the theory of KEV adapta-
tion and its use of composite kernel. The description will also set
the notations for the ensuing discussion of our new embedded
KEV adaptation.

A. Kernel Principal Component Analysis

Let be the kernel with an associated mapping that
maps a pattern (a speaker supervector in the eigenvoice
approach) in the input space to (which may be
infinite though) in the kernel-induced high dimensional feature
space . Given a set of patterns contained
in , their -mapped feature vectors are
contained in . The mapped patterns are first centered in the
feature space by finding the mean of the feature vectors

. Let the “centered” mapping be so that
. In addition, let be the kernel

matrix with

(4)

and be the centered version of with .

To perform kernel PCA, instead of directly working on the
covariance matrix in the feature space, one may carry out eigen-
decomposition on the centered kernel matrix as

(5)

where with , and
. The th orthonormal eigenvector of the co-

variance matrix in the feature space is then given by [19]

(6)

Notice that all eigenvectors with nonzero eigenvalues are in the
span of the -mapped data in the feature space.

B. Composite Kernel

As seen from (3), an estimation of the eigenvoice weights re-
quires the Mahalanobis distances between any adaptation data

and Gaussian means of the new speaker in the acoustic ob-
servation space . In the standard eigenvoice method, this is
done by breaking down the speaker-adapted supervector
to obtain its constituent Gaussian means (re-

call that ). However, in general, the
use of kernel PCA does not allow us to access each constituent
Gaussian directly because the state information is lost during the

-mapping of supervectors from the input supervector space
to the high dimensional kernel-induced feature space . Our so-
lution in KEV adaptation [22] is to preserve the necessary state
information by using a possibly different mapping for each of
the constituent Gaussian means, and then apply a composite
kernel function. For example, the following direct-sum com-
posite kernel had been tried with good results:

...
...

(7)

where , is the kernel for the th con-
stituent Gaussian mean.

C. New Speaker in the Feature Space

Let the centered supervector of a new speaker found by KEV
adaptation in the feature space be . Conceptually, it
corresponds to a speaker in the input supervector space, even
though may not exist.2 However, the KEV adaptation method

2The notation for a new speaker in the feature space requires some expla-
nation. If s exists, then its centered image is ~' (s). However, since the
pre-image of a speaker found in the feature space may not exist [18], the no-
tation ~' (s) is not exactly correct. However, the notation is adopted for its
intuitiveness and the readers are advised to infer the existence of s based on the
context.
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does not require the existence of the pre-image in the input su-
pervector space. Analogous to the formulation of a new speaker
in the standard eigenvoice approach (1), is assumed to
be a linear combination of the leading eigenvoices found by
kernel PCA in . That is, using (1) and (6), we have

(8)

And the th constituent of is then given by

(9)

Hence, the similarity between the th constituent of the adapted
model and adaptation samples in the feature space can be ob-
tained as

(10)

where is the th part of

(11)

and

(12)

D. ML Estimation of Kernel Eigenvoice Weights

To estimate the kernel eigenvoice weights , one will express
the function, hence, the Mahalanobis distance in
terms of the kernel function. This can usually be done with many
common kernels (Appendix I). Good results had been obtained
using the following isotropic Gaussian kernel:

(13)
Then, the Mahalanobis distance between the th constituent of
the adapted speaker model and the adaptation data in the input
speaker supervector space can be found via the th constituent
kernel as follows:

Hence, the KEV weights may be estimated by modifying the
function of (3) as

(14)

Its derivative with respect to each KEV weight is given by

(15)
Due to the nonlinear nature of kernel PCA, and thus (15),

there is no closed form solution for the optimal . The op-
timal kernel eigenvoice weights are solved using generalized
expectation–maximization (GEM) algorithm [28] in which nu-
merical methods like gradient ascent method is used to improve
the value of during each maximization step.

IV. EMBEDDED KERNEL EIGENVOICE SPEAKER

ADAPTATION (EKEV)

In our new embedded kernel eigenvoice (eKEV) speaker
adaptation method [29], [30], all online kernel evaluations are
eliminated by finding an approximate pre-image of the adapted
model found by KEV adaptation which resides in the kernel-in-
duced feature space . Conceptually, if is the adapted model
found by KEV adaptation in , we would like to map it back
to its pre-image in the input space . However, the
exact pre-image, in general, does not exist, and one can only
settle for an approximate solution. The problem is known as
the “pre-image problem” in the kernel method community.

Here we would like to apply an analytical solution we
previously proposed in [24] to find the pre-image of the KEV
adapted model. The method uses the distances between the ex-
pected (approximate) pre-image and a set of “reference points”
(which in our case will be called “reference speakers”) as con-
straints and solves for the optimal pre-image in the least-square
sense.3 In general, these reference speakers are independent of
the speaker-adapted (SA) model to be found, but, as will be
discussed in Experiment 2 of Section V-A3, better performance
is obtained if they are sufficiently close to the expected SA
model. Although the definition as well as the size of the set
of reference speakers can be important to the performance of
eKEV adaptation in practice, they are immaterial to the theory
of the adaptation method; we will leave their discussion to
Section V.

For consistency with the description of KEV adaptation in
Section III, the composite kernels again will be used for the fol-
lowing discussion. However, we would like to emphasize that
the use of composite kernels is not necessary, and one may per-
form eKEV adaptation with common “noncomposite” kernels.
Nevertheless, since Gaussian kernel is commonly used in the
kernel community which can be also viewed as a tensor product
composite kernel, our discussion using composite kernels is ap-
plicable to the common Gaussian kernel as well.

3It is analogous to finding the location of an object using a set of global posi-
tioning system satellites.
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Fig. 1. eKEV adaptation method.

A. eKEV Algorithm Formulation

The eKEV adaptation method is illustrated pictori-
ally in Fig. 1. In the figure, all the five training speakers

are used to derive the eigenvoices in the
feature space by kernel PCA. The new speaker-adapted
model4 in the feature space is restricted to the
feature subspace spanned by the selected kernel eigenvoices.
For many commonly used kernels, there is a simple relation-
ship between the input-space distance and the feature-space
distance. Thus, from the distances between and the
feature-space reference speakers , one
can also obtain the corresponding distances between ,
the (approximate) pre-image of , and the input-space
reference speakers . By confining to lie
in the subspace spanned by these three reference speakers, it
is shown in [24] that can be analytically obtained by
satisfying all three distance constraints between and ,

, in the least squares sense. Mathematically, this mainly
relies on computing the singular value decomposition (SVD)
of the matrix , which obtains a basis in the subspace
spanned by these three reference speakers.

In the algorithm, two sets of distances are actually computed
in the input speaker supervector space : the Euclidean dis-
tances between the

reference speakers and their centroid, and the Euclidean dis-
tances between the reference
speakers and the pre-image . Both sets of distances are
labeled in Fig. 1 and will be explained in details in Step 2 and
Step 4 below.

Details of the method are described step-by-step as follows.
Step 1: Variance Normalization: Because the pre-image

finding algorithm uses Euclidean distance constraints, whereas

4The notation of the various models related to the new speaker-adapted
(SA) model may need further explanation. s is used to represent the final
SA model in the input space. Its exact image in the feature space should be
' s . On the other hand, conceptually eKEV adaptation first employs
KEV adaptation to compute an implicit SA model ' (s ) in the feature
space and s is found as an approximate pre-image of ' (s ). Notice
that, in general, ' s and ' (s ) are different, and they are assumed
to be close to each other in this paper.

the Gaussian kernel we employ in KEV or eKEV adaptation
involves Mahalanobis distance (between speaker supervectors
or acoustic observations), we will first normalize each of the
constituents of any speaker supervector by its own covariance.
The normalized model of is represented by
where

...
...

. . .
...

Hereafter, the pre-image of the new speaker-adapted model will
be represented by in the original input supervector space,
and in the normalized input space.

Step 2: Finding the Distance Between Reference Speakers
and Their Centroid in the Input Space: Without loss of gen-
erality, let be the reference speakers, and they
are collected into a matrix . (Recall
that is the dimension of each speaker supervector.) They are
first centered at their centroid by using the

centering matrix so that the centered
is given by . Assuming that these reference speakers
span a -dimensional space (i.e., the rank of is ), we can ob-
tain the SVD of as

(16)

where is an matrix with orthonormal
columns ; is a diagonal matrix
containing the eigenvalues; is a matrix
with columns being the projections of onto the ’s.

The squared Euclidean distance of each , ,
from the centroid can now be easily computed as . They
are collected into an -dimensional vector

(17)

Step 3: Similarity Between the New Speaker and the Refer-
ence Speakers in the Feature Space: Analogous to (10), the
similarity between the th constituent of the SA model
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and that of the th reference speaker in the kernel-induced
feature space can be found by replacing of the equation by

as follows:

(18)

where

(19)

and

(20)

Step 4: Finding the Distance Constraints Between the New
Speaker and the Reference Speakers in the Input Space: It is
further assumed that the required pre-image lies in the
span of the reference speakers, and its squared Euclidean dis-
tances from them are collected into the following -dimensional
vector:

(21)

The squared Euclidean distance between and the
th reference speaker can be computed from the distances be-

tween each of their corresponding constituents since

If the direct-sum composite kernel of (7) is used, and each con-
stituent kernel is similar to the Gaussian kernel of (13), then we
have

Therefore, the distance between and the th reference
speaker in the input space can be deduced from their simi-
larity in the feature space using the corresponding kernel value
as follows:

(22)

Notice that each distance component can be computed

from the kernel evaluation of as given by
(18)–(20). The kernel evaluation does not involve any adapta-
tion or testing observations, though it depends on the adaptation
observations indirectly through the eigenvoice weights . In-
stead, it only requires the evaluation of constituent kernel values

, , between any two training speakers
which can be pre-computed offline.

Step 5: Finding the Pre-Image: From [24], an approximate
(normalized) pre-image that optimally satisfies the distance con-

straints in of (21) in the least-squares sense is given by the
following equation:

(23)

where , , and are the results of SVD of given by (16).
To show the dependence of on the eigenvoice weights,
let us rewrite as

(24)

where

(25)

and

(26)

Notice that only depends on as shown in (18)
and (22), and both and are independent of

.
Finally, the speaker’s unnormalized adapted model

can be obtained from (24) as

(27)

Step 6: Gradient Computation: From (27), the th con-
stituent of a new speaker’s model , which is also the
mean vector of the th Gaussian of his/her HMMs, is given by

(28)

where consists of the th to th
rows of that are used in the computation of , and

. Substituting (28) into the function of
(3), and differentiating the result w.r.t. the th weight , we
obtain the following weight gradient:

(29)
From (27), we may obtain the derivative of as

(30)

Combining (22) and (18), and differentiating the result w.r.t.
, , the th element of is found

to be

(31)

Finally, substituting the results of (30) and (31) onto (29), the
derivative of w.r.t. each eigenvoice weight can be
readily obtained.
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Step 7: Estimation of Eigenvoice Weights: The gradient of
(29) is nonlinear in and there is no closed form solution for
the optimal . Again, as in KEV adaptation, we apply GEM al-
gorithm to find the optimal weights. GEM is similar to the con-
ventional EM algorithm except for the maximization step: EM
looks for a that maximizes the expected likelihood found in
the E-step but GEM only requires a that improves the likeli-
hood. Many numerical methods may be used to update based
on the derivatives of . In this paper, gradient-based algorithms
are used to compute from based only on the
first-order derivative: for the small vocabulary TIDIGITS evalu-
ation, the simple gradient ascent algorithm is employed; for the
large vocabulary WSJ0 evaluation, the more advanced BFGS
method is used for faster convergence.

B. Robust eKEV Adaptation

Since the amount of data in fast speaker adaptation is so small,
the adaptation performance may vary widely as overfitting may
readily occur. To get a more robust performance, the pre-image
of the speaker-adapted model found by eKEV adaptation
is interpolated with the speaker-independent (SI) supervector

to obtain the final robust SA model . That is,

(32)

The required derivatives for gradient ascent are then updated
as follows:

(33)

for , where

(34)

and

(35)

The derivative in the last equation is again given
by (30) and (31).

Similar robust adaptation method had been proposed in our
previous work on KEV adaptation [22].

C. Remarks on Speed

The use of kernel methods, in general, may significantly
increase the total computation. Both KEV and eKEV adap-
tation have to compute the kernel matrix [(4)] in order to
perform kernel PCA to derive the kernel eigenvoices [(8)].
This requires kernel evaluations between any
two training speaker supervectors, which, fortunately, can

be pre-computed offline. In addition, KEV adaptation has to
compute kernel evaluations between any training
speaker supervector and adaptation speech frames during
adaptation, and between the adapted model

and testing speech frames during recognition
[(10)–(12)]. Obviously, these kernel values must be computed
online during adaptation and recognition. On the other hand,
no observations are involved in any kernel evaluations in eKEV
adaptation: adaptation only requires kernel evaluations between
any reference speaker supervectors and the training speaker
supervectors [(18)–(20)], which are only a subset of the kernel
evaluations that have been already computed for kernel PCA.
Thus, eKEV adaptation is expected to be faster than KEV
adaptation in both adaptation and recognition. In fact, since an
explicit speaker-adapted model is produced by eKEV
adaptation, subsequent recognition should be as fast as normal
HMM decoding.

V. EXPERIMENTAL EVALUATION

The proposed embedded kernel eigenvoice adaptation
method was evaluated on a small-vocabulary continuous
speech recognition task using the TIDIGITS speech corpus
[31], and on a large-vocabulary continuous speech recognition
(LVCSR) task using the Wall Street Journal (WSJ0) speech
corpus. We first used the simpler task of TIDIGITS to famil-
iarize ourselves with the behavior of the new eKEV adaptation
method. This includes the investigation of different methods to
find the set of reference speakers, the effect of its size on the
adaptation performance, and the speed of eKEV adaptation.
Then its adaptation performance was compared with other
common adaptation methods on both corpora. Specifically, the
following models or adaptation methods were compared.

SI: the baseline speaker-independent model.
(robust) eKEV: the speaker-adapted (SA) model
found by our new robust eKEV adaptation method as
described by (32) of Section IV-B.
(robust) KEV: the SA model found by our
previously robust KEV adaptation method as described
in [22]. It is the result of interpolation between the
SA model found by KEV adaptation and the

-mapped SI supervector in the feature space
given by the following formula:

(36)

This is analogous to the robust eKEV adaptation.
(robust) EV: the SA model computed as the
interpolation between the SI supervector and the
supervector found by EV adaptation. That is,

(37)

where is estimated jointly with the other eigen-
voice weights by maximizing the adaptation data. In
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this paper, EV was actually implemented as a special
case of KEV adaptation using a linear kernel.5

MAP: the SA model found by MAP adaptation [3].
MLLR: the SA model found by MLLR adaptation [4].

A. Evaluation on Small-Vocabulary Continuous
Speech Recognition

In this part, we would use simple digit models to investi-
gate the behavior of eKEV adaptation on the smaller TIDIGITS
corpus. The simple task allows us to run many experiments for
the investigation.

1) TIDIGITS Corpus: The TIDIGITS corpus contains clean
connected-digit utterances sampled at 20 kHz. It is divided into
a standard training set and a test set. There are 163 speakers (of
both genders) in each set, each pronouncing 77 utterances of
one to seven digits (out of the 11 digits: “0”, “1”, , “9”, and
“oh”). There is no overlap between the training speakers and
test speakers. The speaker characteristics are quite diverse with
speakers coming from 22 dialect regions of the U.S., and their
ages ranging from 6–70 years old.

2) Acoustic Models: All training data were processed to ex-
tract 12 mel-frequency cepstral coefficients and the normalized
frame energy from each speech frame of 25 ms at every 10 ms.
Each of the 11-digit models was a strictly left-to-right HMM
comprising 16 states with one diagonal-covariance Gaussian
per state. In addition, there were a three-state “sil” model to
capture silence and a one-state “sp” model to capture short
pauses between digits. All HMMs were trained by the EM
algorithm. Thus, the dimension of the observation space is
13 and that of the speaker supervector space is 11 models

16 states/model 13/state .
First, a set of speaker-independent (SI) digit models were

trained. Then a set of speaker-dependent (SD) digit models were
trained for each individual training speaker by borrowing the
covariances and transition matrices from the corresponding SI
models, and only the Gaussian means were estimated. Further-
more, the “sil” and “sp” models were simply copied to each SD
model. In our pilot experiments, it was found that SD models
trained in this way performed better than SD models that did
not share any model parameters with the SI models.

On the test data, the word accuracies of the baseline SI model
is 96.25%.6 In addition, we also checked the quality of the SD
models using a seven-fold cross-validation: for each training
speaker, his data was divided into seven roughly equal subsets,

5Using the composite linear kernel: k (x;y) = x C y, and (40) in Ap-
pendix, the Mahalanobis distance in the Q(w) function can be expressed as:
ko � s k = o C o +k (s (w); s (w))� 2k (s (w);o ). The term
k (s (w);o ) can be computed by (10), while the term k (s (w); s (w)) =
' (s ) ' (s ) can be computed from (9). As a result, the Q(w) func-
tion is quadratic and its derivative is linear, and the optimal weights can be found
by solving a system of linear equation as expected.

6The word accuracy of our SI model is not as good as the best reported re-
sult on TIDIGITS which is about 99.7%. The main reason is that we used only
13-dimensional static cepstra and energy features, and each state was modeled
by a single Gaussian. Furthermore, one of the methods we were comparing with,
namely, KEV adaptation requires online computation of many kernel function
values and is computationally very expensive. Since the task is mainly employed
to investigate the behavior of the new eKEV adaptation method, we think the
use of the simple model is justified.

and 6 subsets were used for training his acoustic model which
was then tested on the remaining subset. The average word ac-
curacy over all 163 training speakers is found to be 98.76%. It
shows that our way of training SD models produces sufficiently
good acoustic models for subsequent eigenvoice determination.

3) Experiments: In all experiments, only the training set was
used to train the SI HMMs and SD HMMs from which the SI
and SD speaker supervectors were derived. Adaptation was per-
formed on the test speakers. Five, ten, and 20 digits were used
for adaptation, which correspond to an average of 2.1, 4.1, and
9.6 s of adaptation speech (or 3.0, 5.5, and 13.0 s of speech if
the leading and ending silences are counted as well). To improve
the statistical reliability of the results, all results are the averages
of a five-fold cross-validation over all 163 test speakers. More-
over, all adaptation experiments were performed in the super-
vised mode,7 and only one GEM iteration was run as in some
preliminary experiments it was found that more GEM iterations
did not further improve the adaptation performance.

Parameter initialization and settings: In the following
TIDIGITS experiments, the simple iterative gradient ascent
algorithm was used to compute the (locally) optimal eigenvoice
weights in each maximization step of the GEM algorithm.
Proper initialization of various system parameters can be im-
portant for its success.

• Kernel eigenvoice weights initialization: Since we are
adapting the SI model to the new speaker, it is rea-
sonable to start searching from the kernel eigenvoice
weights of the speaker supervector of the SI model .
For eKEV adaptation, these kernel eigenvoice weights
were found by projecting the normalized SI supervector

onto each kernel eigenvoice ,
, in the kernel-induced feature space as

follows:

• The width of all direct-sum composite Gaussian kernels
were set identical to the value of 0.0005. That is,

for . The value was empirically
found to give good performance for KEV adaptation on a
subset of training speakers [22].

• The initial learning rate was set empirically to 0.0001.

7According to our previous work on KEV adaptation [22], supervised KEV
adaptation and unsupervised KEV adaptation on this TIDIGITS task had very
similar performance. We expect eKEV adaptation to have the same behavior
too.
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TABLE I
EFFECT OF DIFFERENT TYPES OF REFERENCE SPEAKERS ON eKEV

ADAPTATION ON TIDIGITS (THE NUMBER OF REFERENCE SPEAKERS IS 10)

• The number of kernel eigenvoices was fixed to 7 as it em-
pirically gave the best performance in some preliminary
experiments.

• The gradient ascent algorithm stopped when either the rel-
ative improvement on the likelihood of the adaptation data
was less than 0.000 15, or 1000 iterations was reached.

Experiment 1: Different methods to find the reference
speakers: The computation of the pre-image relies on its
distances to a set of reference speakers. In the reference paper
of the pre-image finding method [24], the neighbors of a
de-noised image in the kernel-induced feature space are used
as the reference set. However, in our problem, the whereabouts
of the speaker-adapted (SA) model is not known beforehand,
neither in the feature space nor in the input supervector space,
and so are the locations of its neighbors. In this paper, we
investigated two ways to determine the initial set of reference
speakers of the SA model to be found.

• SI model’s neighbors: If no additional information is
available, it is reasonable to start with the neighbors
of the SI model since the adaptation method begins its
search from the SI model. The neighbors can be com-
puted using either Euclidean distance or Mahalanobis
distance. One advantage of using SI neighbors is that
they can be computed offline.

• Maximum likelihood (ML) neighbors: Conceptually,
since we are using the maximum likelihood criterion for
determining the SA model, it should be close to those
training speakers that also have high likelihood of the
adaptation data.

The effect of different types of neighbors on the adaptation
performance of the eKEV method is shown in Table I. The
number of neighbors was fixed to 10 for the investigation. From
the results, it indeed seems that the final SA model is closer
to its ML neighbors than the SI neighbors. Since there can be
many local maxima in the solution of the gradient method, we
hypothesize that a good initialization of its neighborhood to the
ML neighbors may have avoided the poorer local maxima.

In the last experiment, the neighbors were initialized and pre-
determined before the start of eKEV adaptation and remained
unchanged during the course. In general, these neighbors may
be updated after each GEM iteration to the real neighbors of the
SA model as determined by their Mahalanobis distances. We
had run additional experiments with such neighbor updates in
the case of ML neighbors. It was found that most of the neigh-
bors remained the same, and the final model had very similar
performance as that of the SA model obtained without neighbor
updates.

Fig. 2. Effect of the number of maximum-likelihood reference speakers on
eKEV adaptation on TIDIGITS.

Experiment 2: Effect of the number of ML reference
speakers: Another issue about the reference speakers is how
many of them are adequate. On the one hand, adaptation is faster
with fewer reference speakers as fewer distance constraints
have to be computed. On the other hand, the current method
of using distances from reference speakers of a neighborhood
to find the pre-image tries to exploit localized information to
constrain the solution space. If there are too few reference
speakers,8 the distance constraints may be too weak to lead to
a good pre-image solution. However, if too many reference
speakers are included, those that are far away will dominate
the distance constraints (as the pre-image is obtained from a
least-squares approximation), and the idea of using localized
information for the determination of the pre-image is not
utilized.

Fig. 2 shows the performance of various adapted models
found by eKEV adaptation using different numbers of ML
neighbors. It is concluded that for this particular problem,
five ML neighbors give the best performance. In practice, the
optimal number of reference speakers may be determined by
cross-validation.

Experiment 3: Speed comparison: The main objective of
eKEV adaptation is to improve the speed of adaptation and
recognition of KEV adaptation as discussed in Section IV-C.
Fig. 3 shows that the adaptation speed of eKEV adaptation is
indeed an order of magnitude faster than that of KEV adapta-
tion. (The exact speedup factors by eKEV adaptation over KEV
adaptation are 6.24, 8.75, and 14.5 for 2.1, 4.1, and 9.6 s of
adaptation speech respectively.) We also checked the recogni-
tion speed of their adapted models. It was found that, on average,
KEV adapted models took 227 s to recognize one second of test
speech, while eKEV adapted models—regular HMMs—only
took 1.67 s; that is, a speed up of 136 times. (All experiments
were run on a Pentium III 1-GHz machine with 512 MB RAM.)

Experiment 4: Comparison with other adaptation
methods: In this experiment, eKEV adaptation was com-
pared with the standard EV adaptation and our previous KEV

8Since the pre-image is always constrained to lie on the span of neighbors,
the theoretical minimum number of neighbors is 2.
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Fig. 3. Computational time taken by each gradient ascent iteration during
eKEV adaptation on TIDIGITS.

adaptation, as well as the conventional MAP and MLLR adapta-
tion. For each adaptation method, we tried to find the best setup
for the method so as to obtain its best results for comparison
purpose. That means, for eKEV adaptation, five ML neighbors
and seven kernel eigenvoices were employed; for EV and KEV
adaptation, the best results were obtained with the optimal
number of eigenvoices which were one and eight respectively;
for MAP adaptation, the best results were achieved with the
best scaling factors in the range of 1–30; for MLLR adaptation,
only global MLLR was tried, and the better results from using
either diagonal or full transformation matrices were used for
comparison. Notice that for MLLR adaptation, no efforts were
made to interpolate the raw MLLR results with the SI model.

The results are plotted in Fig. 4. We have the following
observations.

• eKEV adaptation outperforms all other methods in all
three cases with different amount of adaptation data. It
reduces the word error rate (WER) of the SI model by
37.0%, 40.5%, and 41.3% respectively with 2.1, 4.1, and
9.6 s of adaptation speech.

• Among the three conventional adaptation methods, MAP
adaptation gives the best performance when there are only
2.1 or 4.1 s of adaptation speech. When there are about 10
s of data, MLLR adaptation performs the best.

• It is surprising and disappointing that the standard EV
adaptation only has comparable performance as the SI
model’s in this task.9

• All the three EV-based methods saturate quickly: their
adaptation performance only improves very slightly after
5 s of adaptation speech.

• Both versions of kernelized EV adaptation, namely KEV
and eKEV adaptation, outperform standard EV adapta-
tion. The results suggest that nonlinear kernel PCA using
composite kernels can be more effective in finding the
eigenvoices.

• Although the robust versions of EV, KEV, and eKEV
adaptation are tried, it is found that the weighting of

9The apparently poor performance of EV adaptation has been discussed thor-
oughly in [22].

Fig. 4. Performance comparison among MLLR, MAP, EV, KEV, and eKEV
adaptation methods on TIDIGITS. Recall that the accuracy of the corresponding
baseline SI model is 96.25%. Since the performance of the SI model and EV
adaptation are almost the same, they cannot be differentiated in the plots. Thus,
we do not plot the SI performance in the figure.

the SI model always went to zero during robust eKEV
adaptation; this does not happen in robust EV or KEV
adaptation. One possible explanation is that the reference
speakers in eKEV adaptation provide much stronger
prior information for adaptation than the SI model; this is
consistent with the motivation of RSW adaptation. (For
the difference in performance between robust EV/KEV
adaptation and their nonrobust counterparts, please refer
to [22].)

• eKEV adaptation is consistently better than KEV adapta-
tion by an average of (absolute) 0.33%. The two methods
differ in how they evaluate the function that max-
imizes the likelihood of the adaptation speech. KEV
adaptation maps the acoustic observations to the feature
space to compute their likelihoods on an implicit adapted
speaker model in the feature space, while eKEV adapta-
tion maps the adapted model from the feature space back
to the input space before computing acoustic observation
likelihoods. Theoretically speaking, it is hard to tell
which of the two adaptation methods should be better in
terms of recognition performance. However, there may
be three reasons for eKEV’s better performance:
— Since there is no analytical solution for both KEV

and eKEV adaptation, numerical methods are used to
search for the optimal kernel eigenvoice weights, and
there can be many local optima. The use of reference
speakers seems to provide a guidance for a better local
maximum solution than KEV adaptation.

— The use of Gaussian kernels requires that the kernel
value in (10) of KEV adaptation and that in (18) of
eKEV adaptation must be positive. Hence, the opti-
mization of the eigenvoice weight vector is subject
to the constraint that these kernel values are strictly
greater than zero. In our current KEV and eKEV im-
plementation, we simply check that the constraint is
not violated otherwise adaptation stops before meeting
the convergence requirement. In our experience, the
constraint was violated much more frequently in KEV
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adaptation than in eKEV adaptation.10 We believe that
the use of reference speakers in eKEV adaptation help
confine the search space to stay in a feasible region. As
a result, eKEV adaptation seems to converge to a better
solution.

— In practice, since eKEV adaptation runs much faster
than KEV adaptation (Experiment 3 above), we may
run more gradient ascent iterations in eKEV adapta-
tion than in KEV adaptation. For instance, we may
set the maximum number of iterations to about 1000
in eKEV adaptation, but only about 100 iterations in
KEV adaptation. Thus, KEV adaptation is more likely
to stop without reaching the convergence requirement.

B. Evaluation on Large-Vocabulary Continuous Speech
Recognition (LVCSR)

In this section, we would like to check if eKEV adaptation is
also effective on a relatively large-vocabulary recognition task
using triphone HMMs with Gaussian-mixture states. The use
of a large number of context-dependent models and multiple-
Gaussian mixtures poses new challenges and some changes in
the eKEV adaptation implementation are deemed necessary.

1) WSJ0 Corpus: The Wall Street Journal corpus WSJ0 [32]
with 5 K vocabulary was chosen. The standard SI-84 training
set was used for training the speaker-independent (SI) model. It
consists of 83 speakers and 7138 utterances for a total of about
14 h of training speech (after discarding the problematic data
from one speaker as in the Aurora4 corpus [33]). The standard
Nov’92 5 K nonverbalized test set was used for evaluation. It
consists of 8 speakers, each with about 40 utterances.

2) Acoustic Modeling: The traditional 39-dimensional
MFCC vectors were extracted at every 10 ms over a window
of 25ms from the training and testing data. The speaker-inde-
pendent (SI) model consists of 15 449 cross-word triphones
based on 39 base phonemes. Each triphone was modeled as a
continuous density HMM which is strictly left-to-right and has
three states with a Gaussian mixture density of 16 components
per state. State tying was performed to give 3131 tied states in
the final SI model. In addition, the same type of “sil” and “sp”
models were trained as in the last TIDIGITS experiments.

Because of the large number of triphone models and Gaus-
sians, there are not sufficient data to train a speaker-dependent
(SD)modelforeachofthe83trainingspeakers.Instead,following
the common practice of EV adaptation for LVCSR [8], we cre-
ated the SD models by MLLR adaptation using a regression tree
of 32 classes. Notice that the dimension of the training speaker
supervectors in this WSJ0 evaluation is much higher than that
in the TIDIGITS evaluation: tied states 16 Gaus-
sians/state 39/Gaussian . One way to save models
storage is to store only the MLLR transforms for each SD model,
and the actual means are computed on-the-fly when needed.

3) Experiment: Comparison With Other Adaptation
Methods: eKEV adaptation was compared with EV, MAP, and

10Actually, in the new implementation of eKEV adaptation used in the WSJ
evaluation in Section V-B, by using BFGS plus line search, it is found that the
constraint was never violated. However, for the TIDIGITS evaluation, we keep
the old implementation which was closer to the implementation of KEV adap-
tation in [22] so that the two methods can be fairly compared.

MLLR adaptation on the WSJ0 corpus. KEV adaptation was
not tried as the online kernel value computations now would
involve speaker supervectors of over a million dimensions, and
would run very slowly. Again efforts were made to find the
best setup for each method as in the TIDIGITS evaluation. For
the conventional EV adaptation, ten eigenvoices were found
giving good results; for MAP adaptation, the best results with a
scaling factor in the range of 3–12 were reported.

For each of the eight testing speakers, 1–3 utterances of his
speech were randomly selected so that the amount of adaptation
speech is about 4 or 8 s (or, 5 and 10 s, respectively, if one
includes the silence portions), and his adapted model was tested
on his remaining speech in the test set. This was repeated three
times and the three adaptation results are averaged before they
are reported. Finally, a bigram language model of perplexity 147
was employed in this recognition task.

To speed up the convergence of the gradient-based search
in each M-step of the GEM procedure, the simple gradient-as-
cent algorithm was replaced by the quasi-Newton BFGS algo-
rithm [34] plus line search. BFGS is similar to the traditional
Newton’s method and makes use of the Hessian to retrieve the
Newton’s direction. However, it approximates the Hessian with
an estimate that can be derived solely from the gradient. As a re-
sult, it is more efficient and it can enforce the Hessian estimate to
be strictly positive-definite. It was found that only about 10–20
BFGS iterations are now required.

Parameter initialization and settings: We used a simple
adaptation task on the Resource Management [35] to help set
the system parameters, and then they were applied to the WSJ0
task without modification. These parameter settings are listed
below for readers’ reference:

• for .
• The learning rate was initialized to 0.1, but it was subse-

quently changed during a heuristic line search procedure.
• The number of kernel eigenvoices was fixed to 7.
• The number of ML reference speakers was fixed to 5.
• The gradient ascent algorithm stopped when either the

relative improvement on the likelihood of the adaptation
data was less than 0.00015, or 30 iterations was reached.

Results and discussions: Table II summarizes the perfor-
mance of the various adaptation methods. Below are some addi-
tional or different observations we have beyond those we have
already made in the TIDIGITS evaluation:

• All the three conventional adaptation methods—EV,
MAP, and MLLR—now give slight improvement over
the SI model when 4 s of adaptation data are available.
With 8 s of adapting speech, MLLR adaptation again
outperforms the other two methods.

• While EV adaptation has no improvement in the
TIDIGITS experiments, it now outperforms the SI
model and is comparable with MAP adaptation.

• eKEV adaptation again outperforms all the other methods
under comparison in the 4-s case, and is comparable with
MLLR adaptation in the 8-s case. It reduces the WER of
the SI model by 6.85% and 8.52% respectively with 4 and
8 s of adaptation speech.
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TABLE II
PERFORMANCE OF MLLR, MAP, EV, AND eKEV ADAPTATION ON WSJ0

C. Implication to Reference Speaker Weighting (RSW)

As we mentioned in the Introduction section that eKEV
adaptation and RSW are similar in that both methods restrict a
speaker-adapted model to lie in the span of a set of reference
speakers. The two methods are also different in some details:

• The definition of the reference speakers are different.
From the experiments in Section V-A, eKEV adaptation
suggests to use maximum-likelihood (ML) reference
speakers, but RSW uses speaker clusters defined by their
speaking rates [2].

• eKEV adaptation further requires the adapted model to
lie on the part of the reference speakers’ span that is re-
lated to the eigenspace found by KEV adaptation in the
kernel-induced feature space. The conjecture is that the
constraint may provide some useful prior information in
the spirit of the eigenvoice approach to improve the adap-
tation performance.

Two additional experiments were run on the WSJ0 task to in-
vestigate the adaptation performance of eKEV and RSW with
regards to the above two differences. The experimental proce-
dure is the same as in the last Section V-B. For eKEV adapta-
tion, five ML reference speakers were employed. For RSW, the
procedure described in [2] were implemented. However, we de-
fine the speaker-adapted model simply as a linear combination
of reference speakers :

(38)

In addition, no restriction is placed on the values of
.

RSW was tested with two different definitions of reference
speakers.

• Clustered speaker groups as defined in [2]. Thus, six
speaker clusters were hierarchically defined: first based
on the gender and then their speaking rates; each cluster
consists of roughly 14 training speakers.

• The exact ML speakers as used by eKEV adaptation.

The results are shown in Table III. It can be seen that the
definition of reference speakers is essential to the performance
of RSW and eKEV adaptation. The clustered speaker groups
based on speaking rate give only small improvement. However,
the use of ML reference speakers may boost the performance of
RSW so that it is as good as that of eKEV adaptation.

TABLE III
COMPARISON BETWEEN eKEV AND RSW USING DIFFERENT TYPES OF

REFERENCE SPEAKERS

VI. CONCLUSION

In this paper, we attempt to solve the efficiency problem of
our previously proposed kernel eigenvoice (KEV) speaker adap-
tation method by embedding the kernel PCA procedure in the
computation of the speaker-adapted (SA) model. Although both
KEV and eKEV adaptation methods try to improve the standard
EV adaptation by exploiting the nonlinearity in the speaker su-
pervector space via kernel PCA, eKEV adaptation using em-
bedded kernel PCA has the additional advantage of eliminating
all kernel evaluations between the training speaker supervec-
tors and the adaptation or testing observations. This is achieved
by finding an approximate pre-image of the implicit SA model
in the kernel-induced feature space so that, at the end, there
is an explicit SA model in the input supervector space from
which regular acoustic HMMs can be constructed. As a result,
both eKEV adaptation and subsequent recognition using its SA
model run much faster than those of KEV adaptation with no
performance degradation. In terms of adaptation performance,
eKEV adaptation also outperform EV, MAP, and MLLR adap-
tation when less than 10 s of adaptation speech are available.
For instance, with only 4 s of adaptation data, eKEV adapta-
tion reduces the WER of the SI model by 40.5% in our simple
TIDIGITS task, and 6.85% in the more complex WSJ0 task.

The successful use of a set of carefully chosen reference
speakers in our novel eKEV adaptation prompts us to re-visit
the reference speaker weighting (RSW) technique. It turns out
that our use of maximum-likelihood (ML) reference speakers
can greatly boost the adaptation performance of RSW. At the
end, by adopting the ML reference speakers, both eKEV and
RSW adaptation have similar performance. It shows that local
speaker information is of great importance to speaker adapta-
tion. On the other hand, our experiments using the WSJ0 task
does not support our conjecture about the possible advantage
of the additional prior information provided by the kernel
eigenspace; further investigations will be needed.

APPENDIX

RELATION BETWEEN DISTANCE AND KERNEL FUNCTIONS

Without loss of generality, the Euclidean distance be-
tween 2 vectors: and in the input space, can be expressed
in terms of many common kernel functions. Let us rewrite the
Euclidean distance in terms of inner products as follows:

(39)
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• Case I: Linear Kernel. Let , then

(40)

• Case II: Polynomial Kernel. Let ,
then

(41)
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