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Abstract—This paper proposes a nonlinear generalization of
the popular maximum-likelihood linear regression (MLLR) adap-
tation algorithm using kernel methods. The proposed method,
called maximum penalized likelihood kernel regression adaptation
(MPLKR), applies kernel regression with appropriate regulariza-
tion to determine the affine model transform in a kernel-induced
high-dimensional feature space. Although this is not the first
attempt of applying kernel methods to conventional linear
adaptation algorithms, unlike most of other kernelized adapta-
tion methods such as kernel eigenvoice or kernel eigen-MLLR,
MPLKR has the advantage that it is a convex optimization and
its solution is always guaranteed to be globally optimal. In fact,
the adapted Gaussian means can be obtained analytically by
simply solving a system of linear equations. From the Bayesian
perspective, MPLKR can also be considered as the kernel version
of maximum a posteriori linear regression (MAPLR) adaptation.
Supervised and unsupervised speaker adaptation using MPLKR
were evaluated on the Resource Management and Wall Street
Journal 5K tasks, respectively, achieving a word error rate
reduction of 23.6% and 15.5% respectively over the speaker-inde-
pendently model.

Index Terms—Kernel regression, maximume-likelihood linear re-
gression (MLLR), reference speaker weighting, speaker adapta-
tion.

1. INTRODUCTION

N general, there is a performance gap between a
I well-trained speaker-dependent (SD) model and a
speaker-independent (SI) model on recognizing speech from
a specific speaker. Nevertheless, it is impractical to require a
speaker to provide a large amount of speech to train a good
SD model for himself/herself. That leaves one to start with
an SI model, and try to accommodate the speaker’s acoustic
characteristics to work with the already trained SI model via
adaptation techniques using a relatively small amount of speech
data from the new speaker. In feature-based adaptation, such
as piecewise linear acoustic mapping [1], and feature-space
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maximum-likelihood linear regression.! (fMLLR) [2], [3],
the testing acoustic features are modified to match closer
to the training acoustics. In model-based adaptation, the SI
model parameters are modified so that the adapted model fits
better the new speaker. There are three basic categories of
speaker adaptation methods: speaker-clustering-based methods
[4]-[6] (including the eigenspace-based methods [7], [8]),
Bayesian-based methods such as the maximum a posteriori
(MAP) adaptation [9], and transformation-based methods,
most notably, maximum-likelihood linear regression (MLLR)
adaptation [10].

In our experience, the plain MLLR together with a carefully
built regression tree works well in most cases: The algorithm
is simple, has an analytical solution which is globally optimal,
and naturally improves with more adaptation data through the
use of regression tree. However, for many online applications
over the telephone, for instance, directory or other query ser-
vices in which the users say only a few words and no pre-reg-
istration is required, the amount of adaptation data can be very
limited—typically less than 10 s of speech—the MLLR trans-
forms can be easily overtrained. In such cases, speaker-clus-
tering-based or eigenspace-based adaptation methods such as
eigenvoice [7], eigen-MLLR [8], cluster weighting [6], or ref-
erence speaker weighting [6], [11] usually gives better adapta-
tion performance. On the other hand, by imposing various con-
straints on the MLLR transformation, the original MLLR adap-
tation method can be modified for fast adaptation. Some notable
efforts are summarized as follows.

* Reduce the number of free parameters by constraining the
MLLR transforms to be block-diagonal or diagonal ma-
trices. Although it results in some improvement, it is an ad
hoc solution that does not utilize the correlation among all
different components of the acoustic feature vector.

e Constrain the solution space of MLLR with a prior dis-
tribution in the Bayesian MAP approach, resulting in
MAPLR [12]. The first MAPLR algorithm does not really
work for very small amount of adaptation data since a
robust estimation of the hyperparameters of the prior
distribution also requires a fairly substantial amount of
adaptation data. Structural MAPLR (SMAPLR) [13] was
later proposed to solve the problem by using hierarchical
priors as in structural MAP (SMAP) [14]. SMAPLR
estimates the prior density in a child node as the posterior
density of its parent node. On the other hand, [15] shows
that on a task with only 2.5 s of adaptation speech, using
the solution from cluster weighting adaptation as the prior

IfMLLR transformation, however, is not a feature-space transformation be-
cause of the additional Jacobian term per transform as explained in [2], which
actually calls the method constrained MLLR.
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mean for MAPLR can further improve MAPLR perfor-
mance.

* Regularization technique interpolates the MLLR estimate
with a more robust estimate that is obtained from addi-
tional data or knowledge sources which is not necessarily
the prior distribution. For instance, in discounted likelihood
linear regression (DLLR) [16], part of the MLLR like-
lihood is discounted and interpolated with the likelihood
computed from the desired family of distributions that may
explain the adaptation data. It was shown that DLLR gave
better performance than diagonal, block-diagonal, or full
MLLR in Switchboard with as little as 5 s of adaptation
speech.

In this paper, we propose a nonlinear generalization of MLLR
for fast adaptation which is referred to as maximum penalized
likelihood kernel regression (MPLKR) adaptation.2 MPLKR
performs nonlinear regression between the maximum-likeli-
hood (ML) adapted mean vectors and the SI mean vectors with
the use of kernel methods [18]-[20]. The basic idea is to first
map the SI mean vectors to a high-dimensional feature space
via some nonlinear map ¢ before performing linear regres-
sion with appropriate regularization to find the affine model
transform. The computational procedure depends only on the
inner products of the mapped SI mean vectors in the high-di-
mensional feature space, which can be obtained efficiently
with a suitable kernel function. One attraction of MPLKR is
that except for the nonlinear mapping of SI mean vectors, all
remaining operations are linear. Thus, the MPLKR transform
can be obtained by solving a system of linear equations in much
the same way as the original MLLR. It is in contrast with our
previous nonlinear extensions to eigenvoice and eigen-MLLR
(called kernel eigenvoice (KEV) and kernel eigen-MLLR
(KEMLLR) respectively) that are nonlinear optimizations and
require gradient-based solutions; as a consequence, globally
optimal solutions cannot be guaranteed in KEV or KEMLLR.3

It is worth noting that another nonlinear extension of MLLR
using kernel ridge regression (KRR) was proposed by Saon
[21] (in the same conference that MPLKR was first published
[17]), which we will refer to as KRR-MLLR. There are some
subtle differences between MPLKR and KRR-MLLR adapta-
tion method, and we will discuss them in Section III after we
have presented MPLKR in details. Moreover, MPLKR can be
treated as a kernel version of MAPLR.

The rest of this paper is organized as follows. We first give
a review of the ML and MLLR solutions for adaptation in Sec-
tion II in order to illustrate the regression concept of MLLR.
Section III extends linear regression in MLLR to kernel regres-
sion in our proposed MPLKR. The section ends with a discus-
sion on the differences between MPLKR and other MLLR vari-
ants. Experimental evaluation of MPLKR is presented in Sec-
tion IV, followed by the concluding remarks and future direc-
tions in Section V.

2A preliminary version of this paper had been presented in a conference paper
[17].

3Although our preliminary experiments of fast supervised adaptation on RM
in [17] showed that KEMLLR and MPLKR gave comparable performance,
KEMLLR ran much more slowly. Thus, KEMLLR it is not further compared
with MPLKR in this paper.
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II. ADAPTATION BY MAXIMUM-LIKELIHOOD ESTIMATION
AND LINEAR REGRESSION

Let us consider an SI speech recognition system that em-
ploys hidden Markov models (HMMs) with Gaussian mixture
states. Assume that there are a total of N Gaussian pdf’s,
N(ot;y,]-, C;),j =1,...,N, where o, is the acoustic vector
observed at time ¢; p; and C; are the mean and covariance
of the jth Gaussian, respectively.# Moreover, the dimension
of each acoustic vector is d so that o, € R, K € R4, and
C; € R4 j = 1,...,N. Also assume that there are T’
speech frames available for adaptation. Only the Gaussian
means are adapted, and the new adapted means are denoted by
B, j=1,...,N.

A. Adaptation by Maximum-Likelihood Re-Estimation (MLRE)

If T is large, meaning that there are lots of adaptation data,
one may simply replace the SI Gaussian means by the cor-
responding ML estimates computed from the adaptation data.
That is, the ML mean vectors p} € R?, j = 1,...,N, of the
new speaker can be found by maximizing the log-likelihood of
the adaptation data (after removing the irrelevant terms) as fol-
lows:

N T
p; = arg max | — Z Z v;(t)(0r — ﬂj)'Cj_l(ot — i)

H; j=11t=1
€Y
where ;(t) is the posterior probability of the jth Gaussian at
time ¢ given the T' adaptation observations O = [o1,...,07].
It can be easily shown that the solution of (1) is
w = Yy vithor _ O )

S

where v; = [v;(1),...,7(T)) € RT and1 = [1,...,1] €
RT.

In practice, however, it is difficult to collect sufficient speech
covering all phonetic contexts from a new speaker to compute
his/her ML Gaussian means reliably. As a consequence, the ML
solution of (2) results in a poorly adapted model, producing poor
recognition performance. This is particularly true in the case
of fast speaker adaptation when there are fewer than 10 s of
adaptation speech.

B. Adaptation by Linear Regression

From the above discussion, we see that overfitting with the
ML estimated means is not desirable, and some constraints
should be imposed in the ML estimation process. For adap-
tation using linear transformation, the adapted means are
constrained to be a linear transformation of the corresponding
means. Without loss of generality, the foregoing discussion
only deals with finding a global affine transform which is
shared by all the N speaker-independent Gaussian means.>
Thus, for the jth Gaussian, we first augment the mean vector

4Matrices and vectors are bold, written in upper case and lower case, respec-
tively. Scalar quantities, including vector or matrix elements, are not bold.

SIn practice, the SI Gaussian means are generally clustered in a regression
tree so that Gaussian means in the same tree node—also known as a regression
class—will share the same affine transform. Our description on global trans-
formation can be then applied to each regression class, and all the sufficient
statistics should be collected over all Gaussians in the same regression class.
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wito &; = [w;, 1] € RUTY and if W € R s the
required affine transform, then we require the adapted mean f;
to be W¢ ;- From the regression perspective, the required linear
affine transform is the linear regression function that relates the
SI means and the adaptation data.

1) Maximum-Likelihood Linear Regression (MLLR): In
MLLR [10], the affine transform W is found by maximizing
the likelihood of the adaptation data, or equivalently, the fol-
lowing function:

max —Zz'yj

j=1t=1

+— WE;)'C (0r — WE))| . (3)

The analytic solution for the general case with full Gaussian co-
variances can be found in [22]. On the other hand, since most
HMM-based recognition systems use diagonal Gaussian covari-
ances, there is a simpler solution which solves the transform row
by row as follows. Let w; € R(¢t1) i = 1,..., d be the row
vectors of W so that W’/ = [w, ..., wy]. Then, we have

WwW; = (EAZ‘EI>_IEZ7; (4)

Z=[6,,. .. £y € ROTDN

A; =diag (C;"1'y,,...,Cxil'vy)

T T
otiv1(t), ..., C'NZ1 Z ot YN (1)

t=1

c RNXN

ot eRY (5)

t=1

and C; is the ith diagonal element of the jth covariance, and
0¢; 1s the ith dimension of the acoustic vector o;.

The computation of a row of the MLLR transform mainly
involves an inversion of the (d + 1) x (d + 1) matrix ZA,Z’.
Thus, the computational complexity of MLLRS is O(d*).

2) Least Squares Linear Regression (LSLR): A special case
of MLLR was worked out earlier by Hewett [23] by making
two assumptions: firstly, all Gaussians (in the same regression
class) have the same covariance; second, there is only one align-
ment—the Viterbi alignment—between the Gaussians and the
adapting acoustic vectors.” As a result, the problem is reduced
to a least squares linear regression, and the solution is given by

W = O=/(E=)~". (6)

Due to the simplifying assumptions, the LSLR method in-
volves only one inversion of the, again, (d+ 1) x (d+ 1) matrix
ZE'. Thus, its computational complexity is only O(d*)—and is
d times faster than MLLR.

III. MAXIMUM PENALIZED LIKELIHOOD KERNEL
REGRESSION ADAPTATION (MPLKR)

Let us look at the two ML-based cost functions used by
MLRE [(1)] and MLLR [(3)] more closely. One can see that the

6Here we assume the use of the Gaussian elimination method for inverting an
n X n matrix which has a computatlonal time complexity of O(n?). There are
faster but more complicated matrix inversion algorithms such as the Strassen in-
version algorithm or Coppersmith—Winograd algorithm; it has been also proved
that the lower bound for matrix inversion complexity is O(n?1n n).

TConsequently, N = T in this special case. That is, each frame is aligned
with one of the HMM Gaussians.
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quantity W§; of (3) plays the role of ft; of (1). As the optimal
solution of f2; of (1) is given by p7 in (2), mean adaptation by
MLLRS is, in effect, trying to learn a transform W such that

WL &n] = (11, 1y]
or
WE =U" (N
where U = [p,...,puy] € RN is the collection of the

N speaker-independent Gaussian means, and U* is the solu-
tion given by MLRE adaptation of U. In the linear system rep-
resented by (7), there are d x (d + 1) variables in the affine
MLLR transform W, and a total of d N constraints provided by
the N maximum-likelihood means g7, j = 1,..., N. When
d+ 1 > N, in general, an exact solution can be found for W
unless the system is inconsistent; in fact, multiple solutions can
be found when d + 1 > N. Consequently, ﬂj’s obtained from
MLLR are the same as the ML means from MLRE of (2). On
the other hand, when d + 1 < N (and that is the usual case in
MLLR adaptation), the system in (7) is over-constrained—with
more constraints than variables—and the solution obtained by
MLLR will, in general, be different from that obtained in (2).

A. Nonlinear Regression

For the case where d+1 < N in the linear system represented
by (7), one may introduce more variables into the system so that
the number of variables is greater than or equal to the number of
constraints. As a result, one will be able to get back the optimal
Gaussian means p7, j = 1,..., N, in the ML sense. In this
paper, this is achieved by promoting the problem to nonlinear
regression of the ML means. We further apply kernel methods
so that the nonlinear regression still will be represented by a
linear system similar to the one in (7) but in the kernel-induced
feature space. As a consequence, the resulting linear system can
be easily solved with an analytic solution that is globally op-
timal.

However, as we point out in Section II, these ML adapted
means are undesirable in fast adaptation because they are poor
estimates when the amount of adaptation speech is scarce. The
robustness problem will be solved with the use of an appropriate
regularization in Section III-D.

B. Empirical Kernel Map

Let us convert the linear system of (7) to another one such that
the number of variables is the same as the number of constraints

by mapping §; € R to p(¢;) € RN, j = 1,..., N. The
linear system in (7) then becomes
or

Weé = U* ®)

8All discussions of adaptation in this paper deal with Gaussian means only;
other HMM parameters are not modified.

9From (7), the system will be inconsistent if for some m and n, €, = £, but

p. # p . For an inconsistent system, a least-squares error solution can still be
found by using the pseudoinverse.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 8, 2010 at 01:51 from IEEE Xplore. Restrictions apply.



MAK et al.: MAXIMUM PENALIZED LIKELIHOOD KERNEL REGRESSION FOR FAST ADAPTATION

where ® = [p(€,), ..., ¢(€x)] € RV N represents the collec-
tion of ¢-mapped augmented Gaussian means, and W € R?*V
is the new transform for vectors in the new N -dimensional fea-
ture space introduced by the ¢-mapping. One commonly used ¢
function for finite-dimensional mapping in kernel methods is the
empirical kernel map [24] defined as follows. For a given set of
N speaker-independent Gaussian means {£,...,£&yx} (where

vy, fj € R*1), the empirical kernel map ¢ is given by

@() = [k(El)k(gN)]l 9

where k is a kernel function. Applying the empirical kernel map
to @, we obtain

k(£17€1) k(€17£N)

& — =K (10)

B(Ex €)oo K(Exo€x)

where K is usually called the kernel matrix. Hence, (8) can be
rewritten as

WK = U*. 1)

From [24], we know that when a positive definite kernel (such

as the Gaussian kernel) is used, the kernel matrix in (10) is al-

ways full rank if all Gaussian means £j, 7=1,..., N are dis-
tinct.

C. Trivial Solution

In general, the least squares solution of the linear system in
(11) can be obtained by minimizing the following Frobenius
norm:

WK — U*|2 = tr [(WK _U*Y(WK — U*)] (12)
and its general solution is

W = U*K™* (13)
where K+ = K'(KK')™! is the pseudoinverse of the kernel
matrix K. Moreover, if K is invertible—as in the case when a
positive definite kernel is used—the solution is simply given by
W =U*K . (14)
The nonlinear regression solution of (14) implies that the new
adapted means will be exactly equal to the ML means U* ob-
tained in (2). In other words, although the transform matrix W
is tied across all Gaussians, unlike MLLR, the use of kernel
methods allows the ML means to be perfectly recovered.

D. Regularization

From the regression perspective, linear regression used by
MLLR can only capture linear characteristics in the data; on
the other hand, nonlinear regression can be overly flexible, at-
taining zero training error (which is analogous to our situation
here where the ML means can be perfectly recovered) and suf-
fers from overfitting. Hence, proper regularization is needed in
the use of (nonlinear) kernel regression for fast adaptation so
as to capture possible nonlinearity in the data, and at the same
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time, effectively control the degree of freedom to avoid overfit-
ting. Assuming that we have some prior knowledge of the ex-
pected value of W, a regularization term can be added to the
cost function of (12) to penalize those solutions of W that de-
viate too much from the expected value. The expected value can
be derived from a prior distribution of W. In this paper, we in-
vestigate, as in the case of MAPLR, the use of the magrix-variate
normal distribution to represent the prior density of W. We then
require W to be close to the mean of the normal prior density,
which will be denoted by W,. Consequently, we arrive at the
following minimization function

min [WK — U*||% + B(|W — Wol[ (15)

W,8
where (3 is the regularization parameter. We refer to this new
method as maximum penalized likelihood kernel regression
adaptation (MPLKR). ~

By differentiating (15) w.r.t. W and setting the result to zero,
one can easily show that its general solution is given by

W = (UK’ + fWy)(KK' + pI)~". (16)
Furthermore, if the kernel matrix K is symmetric (which is the
case in our paper), the solution can be simplified as

W = (UK + fW,)(K?* + )7L, (17)
The regularization parameter /3 can be determined empirically
by cross-validation.

Equation (17) also shows that the MPLKR transform can be
found analytically, and its computation is dominated by the in-
version of the N x N kernel matrix K. Thus, MPLKR has a
computational complexity of O(N?).

1) Choice of Wy: The choice of Wy represents a bias of
where the W solution should be. A good fail-safe choice of Wy
is one that will reproduce the original SI Gaussian means U be-
cause when there are not sufficient adaptation data, it is safer to
fallback to the original SI model without modifying its param-
eters.!0 If we denote the MPLKR transform that reproduces the
SI means as W (*%) it can be obtained by replacing U* by U in
(14). That is

W) = UK. (18)

In this paper, we choose Wo = WG in all experimental
evaluations of MPLKR in Section IV.

2) Generation of New Mean Vectors: In practice, not all
Gaussian means are observed in the adaptation speech. This is
particularly true for fast adaptation with less than 10 s of speech.
Thus, only the observed Gaussians!! are actually used in the
above formulation ((1)-(17)) of MLLR or MPLKR. Any mean
vector fi of the new adapted model, regardless of whether it is
observed in the adaptation data, can be obtained by first aug-
menting its corresponding SI mean g to € = [¢', 1], mapping
& using the empirical kernel map, the ¢ function in (9) to the

10]n MLLR, the transform that will reproduce the SI means is simply the
identity matrix.

Tn general, how to filter the data before regression is an open question. In
this paper, we simply keep all the observed Gaussians because of the observation
that standard MLLR also keeps all adaptation data for regression and it performs
well with the simple strategy.
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kernel-induced feature space, and then multiply it with the W
solution given by (17). That is

i =Wo(€)
= (UK + W) (K* + L) !
(19)

3) Regularized Linear Regression: For the sake of compar-
ison, we also experiment with the simple case when the map-
ping function in (8) is the simple identity function p(z) = z.
MPLKR is then reduced to simple least squares linear regres-
sion between the augmented mean vectors and the ML-adapted
mean vectors with regularization. By replacing the kernel ma-
trix K of (15) by E of (7), we obtain

min [WE - U |3 + BIW - Wol2.  (20)
W.8

We call this method maximum penalized likelihood linear re-
gression (MPLLR) since no nonlinear kernels are employed.
Notice that MPLLR is different from LSLR of Section II-B2
which regresses the acoustic observations against the Gaussian
means.

4) Relationship With Generalized Tikhonov Regularization:
The mathematical form of MPLKR can be thought of as a spe-
cial case of generalized Tikhonov regularization with the use
of Frobenius norm and an identity Tikhonov matrix. However,
the motivations behind the use of penalized likelihood and reg-
ularization are different. Generalized Tikhonov regularization
is usually applied to solving ill-posed problems in the clas-
sical sense given by Hadamard.!2 In our case, the problem is
well-posed and we use penalized likelihood in the sense given
by Green [25] not because of stability issue but to avoid over-
fitting by biasing the solution toward W, which is observed to
have reasonably good performance.

The formulation of our MPLKR also shares a Bayesian inter-
pretation similar to that of the generalized Tikhonov regulariza-
tion, which will be given in Section III-F2.

E. Advantages Over Other Kernel-Based Adaptation

Compared to other kernel-based adaptation techniques
recently proposed by us, such as kernel eigenvoice (KEV)
[26], embedded kernel eigenvoice (eKEV) [27], and kernel
eigenspace-based MLLR (KEMLLR) [28], MPLKR has the
advantage that the new adapted Gaussian mean vectors can
be computed analytically by simply solving a linear system,
whereas the other three kernel-based adaptation methods are
usually solved by iterative gradient-based algorithms. As no
nonlinear optimization is involved, unlike KEV, eKEV, or
KEMLLR adaptation, the solution obtained by MPLKR adap-
tation is always globally optimal.

F. Difference Between MPLKR and Other MLLR Extensions

MPLKR starts from generalizing MLLR using nonlinear re-
gression with the help of kernel methods. It bears certain sim-
ilarities with some recent MLLR extensions such as MAPLR
[12] and KRR-MLLR [21], and yet they are subtly different.

I2A problem is well-posed if a solution exists which is unique and varies
continuously with the data.
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TABLE I
COMPUTATIONAL COMPLEXITY OF MLLR AND ITS VARIANTS. (d IS THE
DIMENSION OF ACOUSTIC VECTORS, K IS THE NUMBER OF EIGENMATRICES
IN EMLLR, N 1S THE NUMBER OF GAUSSIANS IN A REGRESSION CLASS,
T 1S THE NUMBER OF ADAPTATION SPEECH FRAMES ASSOCIATED
‘WITH THE REGRESSION CLASS)

[ Method [Complexity [ Diagonal Cov?| Viterbi?|
MLLR O(d?) yes no
LSLR O(d?) no yes

EMLLR | O(K9) - 1o
MAPLR O(d?) yes no
MPLLR O(d?) no no
MPLKR O(N?) no no
KRR-MLLR [O(dN3T?3) yes no

Table I summarizes the computational complexity of these adap-
tation algorithms, and their assumption of diagonal Gaussian co-
variances and Viterbi alignment. Notice that all these methods
have analytical solutions.

1) MPLKR and MLLR/LSLR: As a side effect of the conver-
sion from an over-constrained linear system [(7)] in the usual
case of MLLR to a sufficiently constrained linear system [(11)]
in MPLKR, the response variable of the regression changes
from the observed adaptation data O in MLLR to the ML
Gaussian means U* in MPLKR. MPLKR is similar to LSLR in
two aspects. a) Both of them employ least squares regression,
but MPLKR does that in the kernel-induced feature space. The
use of least squared errors instead of maximum likelihood as
the cost function leads to their relatively reduced computational
complexity. b) The Gaussian covariances do not appear in their
formulation; thus, they have the same solution for both diagonal
or full Gaussian covariances. On the other hand, LSLR uses
Viterbi alignment and makes a hard decision on assigning
an adaptation frame to only one single Gaussian, MPLKR
is similar to MLLR and makes a soft decision on the frame
assignment, which is weighted by its posterior probability.

2) MPLKR and MAPLR: Our MPLLR may be considered as
a MAPLR variant (and MPLKR as a kernel version of MAPLR)
though it regresses the original Gaussian means with the ML
adapted Gaussian means instead of the adaptation observations.
The second term in (15) and (20) implements the prior proba-
bility of the MPLKR (and MPLLR) transform W.

That is, if we assume, like MAPLR [13], that the prior density
of W is the matrix normal distribution

p(W[W,, 2, E) = (2r) N2 |QN/?| |4/
1 N N . N
X exp <—§tr [Q—l(w W)W — WO)]) 1)
where Wy € RN, Q € RVXN and £ € R are the

hyperparameters of the distribution, and set 8 = ¥ = I, then
we have

Ing(W|W0,I7 I)
1 . L
= constant — _tr [(W - Wy) (W — WO)}

1 - -
= constant — §||W - Wol|%. (22)
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Thus, maximizing the prior probability in MAPLR is equivalent
to minimizing the Frobenius norm of (W — W) in MPLKR
(and MPLLR).

However, we prefer using the term “penalizing likelihood™ as
we are then free to choose a regularizer as we see fit according
to our problem without restricting it to be a true prior.

Furthermore, if one denotes the solution that perfectly re-
covers the ML means shown in (14) as

W* = U*K™! (23)
then (17) can further be written as
W = (W*K? + W) (K? + )~ (24)

Equation (24) shows that the MPLKR solution is similar to the
MAP adaptation of Gaussian means using conjugate Gaussian
prior: W* represents the transform estimated solely from adap-
tation speech while W, is the prior mean, and 31 and K2 con-
trol the balance between the contributions of the prior and the
adaptation speech in determining the MPLKR transform. An-
other way to see this is to replace K? in (24) by the identity
matrix I, then it becomes

= _W*—I—ﬂWo

1+0 )

which is the familiar MAP adaptation solution.

3) MPLKR and KRR-MLLR: Saon’s KRR-MLLR adaptation
[21] is most similar to our MPLKR: both algorithms are kernel
versions of MLLR. Similar to MLLR, Saon applies weighted
kernel ridge regression for each dimension of the acoustic vec-
tors and Gaussian means, resulting in the following minimiza-
tion function [21, Eqn. (15)]) to compute each row of the KRR-
MLLR transform

mcin(y —Kc)W(y — Kc) + A\c'Kc (26)
where y € R represents a particular dimension of all adap-
tation acoustic vectors; K € RNTXNT ig the kernel matrix;
c € RNT is the minimization variable, which, together with the
kernel matrix, will be used to compute the new adapted means;
W is a weighting matrix consisting of Gaussian posterior prob-
abilities and Gaussian variances (and is not the MLLR trans-
form); and A is a regularization parameter. KRR-MLLR has the
nice property that if linear kernel function is used and A is set
to zero, it is reduced to MLLR. On the other hand, that does not
apply to MPLKR. Nevertheless, we believe that our MPLKR
may have two advantages over KRR-MLLR.

1) Since KRR-MLLR follows the formulation development
of MLLR very closely except for the use of KRR, its com-
putation complexity is O(dN3T), which is very high.
The high complexity is mainly due to the inversion of the
NT x NT kernel matrix, which is 7" times bigger than
ours. [21] suggests two heuristics to reduce the complexity.
a) Reduce T' by choosing a subset of adaptation frames,
or by clustering the data and using only the centroids of
the clusters as training data. b) Reduce N by keeping only
those Gaussians with posterior probability greater than a
threshold. In contrast, the kernel matrix in our MPLKR is
much smaller. Thus, MPLKR can solve bigger adaptation
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problems than KRR-MLLR without resorting to approxi-
mation heuristics; when the problem is too big, MPLKR
may take advantage of similar approximations as well.

2) The regularizer used in KRR-MLLR is the standard reg-
ularizer commonly used in KRR that is not particularly
chosen for the current task of speech adaptation. On the
other hand, our MPLKR allows the incorporation of infor-
mative prior knowledge in the regularizer. We believe that
more informative prior should lead to better performance
in MPLKR.

IV. EXPERIMENTAL EVALUATION

The proposed maximum penalized likelihood kernel regres-
sion adaptation (MPLKR) was evaluated on speaker adaptation
of two continuous speech corpora: the 1000-word DARPA
RM [29], and the 5000-word WSJO [30]. We first performed
supervised adaptation on the simpler RM task using context-in-
dependent acoustic models to study the behavior of various
adaptation methods (especially KRR-MLLR and MPLKR).
The simpler task also allows us to run many experiments within
reasonable amount of time to investigate the proper settings of
various parameters—such as the parameters in the kernel func-
tion, and the value of the regularization parameter—in these
methods. Afterwards, these system parameters were applied
without any changes to unsupervised speaker adaptation on
WSJO using cross-word context-dependent acoustic models.
Specifically, MPLKR was compared with the following model
and adaptation methods.

SI: the baseline SI model.

MAP: the speaker-adapted (SA) model found by MAP
adaptation [9].

MLLR/MLLR-B/MLLR-D: the SA model found by
MLLR adaptation [10] using full, block-diagonal, or diag-
onal transform respectively. MLLR-B uses the common
three 13-dimensional blocks.

EMLLR: the SA model found by eigenspace-based
MLLR adaptation [8].

MAPLR: the SA model found by MAPLR adaptation [12].
KRR-MLLR: the SA model found by KRR-MLLR adap-
tation [21].

RSW: the SA model found by reference speaker weighting
[11].

MPLKR: the SA model found by MPLKR.

MPLLR: the SA model found by MPLLR, which is the
degenerative MPLKR method when the identity mapping
function is used.

For each adaptation method, we tried to find the best setup
for the method so as to obtain its best results for comparison.
Both MAP and MLLR adaptation were done using the HTK
software; only their basic algorithms were employed. For MAP
adaptation, scaling factors in the range of 3-30 were tried. For
MLLR adaptation, it was performed with a regression tree of 32
classes; the minimum occupation count for a regression class
was adjusted for the three different forms of transformation
matrix: full transform, block-diagonal transform, or diagonal
transform. The adaptation results with the best setup (scaling
factor and minimum occupation count respectively) are re-
ported for MAP and MLLR. Thus, the MAP and MLLR results
represent an upper bound for these methods. For EMLLR and
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TABLE II
BEST VALUES OF GAUSSIAN KERNEL WIDTH o AND
REGULARIZATION PARAMETER (3 FOUND FOR MAPLR,
MPLKR, AND KRR-MLLR ON RM ADAPTATION

[ Method [ o | 8]
MAPLR — | 0.1
MPLKR |0.05| 0.1

KRR-MLLR |0.05[0.02

RSW adaptation, the speaker-dependent (SD) models for the
training speakers were created by MLLR adaptation using the
same 32-class regression tree. For RM adaptation, EMLLR
used all eigen-matrices for 10-s adaptation and only half of
them for 5-s adaptation; similarly, RSW also used all training
speakers as the reference speakers for 10-s adaptation and only
half of them for 5-s adaptation. For unsupervised adaptation
on WSJO, they used all eigen-matrices and training speakers
as reference speakers, respectively. For the two kernel-based
adaptation methods, namely, MPLKR and KRR-MLLR, the
following Gaussian kernel was used:

k(u,v) = exp (—a||u — v||2) 27
where o controls the width of the Gaussian kernel, and |u —
v|? = (u — v)/(u — v) is the Euclidean distance between u
and v. To reduce the computation of KRR-MLLR, we followed
[21] and used the rectangular approximation method as well as
ignored those pairs of adaptation frames and Gaussian means
which have a posterior probability of less than 0.1.

Lastly, during supervised adaptation, the contents of the adap-
tation utterances are assumed to be known and one knows which
models to adapt. The SI model was used to compute the ini-
tial Gaussian mixture posteriors. In subsequent adaptation iter-
ations, these Gaussian posteriors were estimated using the new
adapted model found at the previous iteration. The model ob-
tained from the last adaptation iteration was then used to rec-
ognize the test utterances which are different from the adapta-
tion utterances. Unsupervised adaptation ran similarly except
1) since the contents were not known, they were first estimated
by Viterbi decoding using the SI model, and 2) each test utter-
ance was its own adaptation source. Thus, after the final adapted
model was created, it was used to recognize the same utterance
and the recognition accuracy was noted.

A. Supervised Adaptation on RM

1) RM Corpus: The Resource Management corpus RM1
consists of clean read speech that represents queries about the
naval resources. The utterances were recorded using a headset
microphone at 16 kHz with 16-bit resolution. The corpus com-
prises a SI section and a SD section. The SI section consists of
3990 training utterances from 109 speakers, whereas there are
12 speakers in the SD section, each having 600 utterances for
training, 100 utterances for development, and 100 utterances
for evaluation. The corpus has a vocabulary size of 1000 words.

2) Feature Extraction and Acoustic Modeling: All training
and testing data were processed to extract 12 static mel-fre-
quency cepstral coefficients (MFCCs) and the normalized frame
energy from each speech frame of 25 ms at every 10 ms. Thus,
the dimension of acoustic vectors in RM1 is d = 13. Forty-
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TABLE IIT
PERFORMANCE OF MPLKR ON RM DEVELOPMENT DATA
WITH DIFFERENT VALUES OF GAUSSIAN KERNEL WIDTH o
AND REGULARIZATION PARAMETER 3

B/o
0.001
0.005

0.001
64.49
65.26
0.01 |64.80
0.05 |62.28
0.1 66.27
0.5 162.98

1 161.97

0.005| 0.01
78.60|83.45
77.21|83.40
77.28|83.37
78.29|83.06
77.88|83.45
77.74|83.42
77.59|83.69

0.05 | 0.1
79.58 | 74.90
81.57 |76.73
81.93 | 77.64
83.47 |179.89
83.78|80.61
83.35 |82.58
83.25 | 82.82

seven context-independent and SI phoneme models were trained
using only the acoustic observations from the SI training set.
Each phoneme model is a strictly left-to-right, three-state hidden
Markov model (HMM) with a mixture of ten Gaussian compo-
nents per state. All Gaussians have diagonal covariances. In ad-
dition, there are a three-state “sil” model to capture silence and
a l-state “sp” model to capture short pauses.

3) Experimental Procedure: Adaptation was performed
using 5 s and 10 s of speech data (or, about 4.6 s and 9.2 s
if we exclude the leading and ending silence) among the 100
development utterances of each test speaker. The adapted
models were then tested on the 100 evaluation utterances of
their speakers using the standard RM word-pair grammar which
has a perplexity of 60. To improve the statistical reliability of
the results, for each test speaker, three sets of adaptation data
of the required duration were randomly chosen from his/her
development utterances. Reported results are the averages
of experiments over the three adaptation sets of the 12 test
speakers.

For each method, three adaptation iterations were run. The
system parameters, the Gaussian kernel width o and the regu-
larization parameter 3 for MAPLR, MPLKR, and KRR-MLLR
were determined as follows: from the 100 development utter-
ances of each speaker that had not been selected for adaptation,
40 utterances were chosen to tune o and [ using a grid search.
The set of o and [ that gives the best average performance over
all 12 speakers was then adopted. Table II lists their best values
for the three methods, and Table IIT shows the sensitivity of
MPLKR on the values of a and . It is interesting to see that
the two MAP-based methods (MAPLR and MPLKR) use the
same regularization parameter for their priors, and KRR-MLLR
requires a much smaller contribution from its prior.

4) Adaptation Performance Comparison: Using the best
values of o and (3 in Table II, MPLKR was compared with
other MLLR variants. The comparison results are summarized
in Table IV. The bold figures represent the best results in each
column. We observe the following.

* When there are only 5 s of adaptation speech, only
MAPLR, EMLLR, and RSW are effective; but the simple
EMLLR and RSW are much better.

* When there are 10 s of speech, all adaptation methods ex-
cept MAP work reasonably well. In addition:

— MLLR with full transform lives up to the expectation as
being one of the best adaptation methods when there are
10 or more seconds of adaptation speech.

— MPLKR and RSW work best, achieving basically the
same performance that is slightly better than MLLR.
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TABLE IV
PERFORMANCE OF SUPERVISED ADAPTATION ON RM. RESULTS
ARE WORD ACCURACIES IN % ON THE TEST SET

[ Model/Method | 5s [ 10s |
ST 78.27 | 78.27

MAP 78.41 | 79.82
MLLR 78.43 | 83.26
EMLLR 80.96 | 82.68
RSW 80.46 | 83.42
MAPLR 79.81 | 82.01
KRR-MLLR 78.42 | 81.60
KRR-MLLR (linear) | 74.85 | 82.34
MPLLR 78.27 | 82.76
MPLKR 78.64 |83.40

— KRR-MLLR does not perform as well as we expect. We
re-ran using linear kernel and got more reasonable per-
formance (which is labeled as “KRR-MLLR (linear)”
in Table IV) though it is still short of MLLR’s perfor-
mance.!3

— The simple MPLLR (MPLKR with linear mapping)
works surprisingly well with 10 s but poorly with 5 s.
Its poor performance at 5 s is not unexpected as the ML
means estimated with 5 s of speech are probably too
bad for subsequent linear regression. On the contrary,
MAPLR, which is similar to MPLLR but regresses
directly with the adaptation observations, performs
much better in the 5-s adaptation task.

— The better performance of MPLKR over MPLLR is
attributed to the exploitation of nonlinearity in their
framework with the use of a kernel map.

In summary, the adaptation experiments in this simple RM
adaptation task show that when there are less than 5 s of adapta-
tion speech, one should choose simple methods such as EMLLR
or RSW that exploit correlation among the acoustic units; on the
other hand, when there are about 10 s of adaptation data, more
sophisticated adaptation methods, such as MPLKR, start to pay
off although the simple RSW method performs unexpectedly
well in both 5 s and 10 s adaptation. Table V shows the results
of four common significance tests; they confirm that on the 10 s
RM supervised adaptation task, MPLKR performs significantly
better than all other methods in Table IV except RSW at the 95%
confidence level.

B. Evaluation on Large-Vocabulary Continuous Speech
Recognition (LVCSR)

In this section, experience we learned from supervised adap-
tation of the simpler context-independent RM task is used to
check if MPLKR adaptation is also effective for unsupervised
adaptation on a relatively large-vocabulary recognition task
using context-dependent HMMs.

1) WSJO Corpus: The Wall Street Journal corpus WSJO [30]
with 5K vocabulary was chosen. The standard SI-84 training set
was used for training the SI model. It consists of 83 speakers and
7138 utterances for a total of about 14 h of training speech (after

I3Theoretically, KRR-MLLR with linear kernel is equivalent to MLLR. How-
ever, in practice, due to the use of heuristics in KRR-MLLR to reduce its com-
putation, they differ.
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TABLE V
SIGNIFICANCE TEST RESULTS AT THE 95% CONFIDENCE LEVEL FOR THE
COMPARISON BETWEEN MPLKR AND OTHER ADAPTATION METHODS
FOR THE 10 S RM ADAPTATION TASK. (A “/” MEANS THAT MPLKR IS
SIGNIFICANTLY BETTER, AND A ‘X’ MEANS POORER. THE SIGNIFICANCE
TESTS ARE: MP =MATCHED PAIR TEST, SI = SIGNED PAIRED COMPARISON
TEST, WI =WILCOXON SIGNED RANK TEST, MN = MCNEMAR TEST)

| Method |
SI
MAP
MLLR
EMLLR
RSW
MAPLR
KRR-MLLR
KRR-MLLR (linear)
MPLLR

SN

same

w0

<= B lrde=l 2

@

SR
<Jededed x el 2

SN

discarding the problematic data from one speaker). The standard
nov’92 5K non-verbalized test set was used for evaluation. It
consists of eight speakers, each with about 40 utterances.

2) Feature Extraction and Acoustic Modeling: The tradi-
tional 39-dimensional MFCC vectors were extracted at every
10 ms over a window of 25 ms from the training and testing data.
The SI model consists of 15449 cross-word triphones based on
39 base phonemes. Each triphone was modeled as a continuous
density HMM which is strictly left-to-right and has three states
with a Gaussian mixture density of 16 components per state.
State tying was performed to give 3131 tied states in the final SI
model. In addition, the same type of “sil” and “sp” models were
trained as in the last RM evaluation.

3) Experimental Procedure: For each speaker, unsupervised
adaptation was performed using one of his 40 utterances at a
time. Then the adapted model was used to decode the same ut-
terance. Reported results are based on the average over all 40
utterances of all eight speakers (i.e., totally 320 test utterances).
Each adaptation method was run for six iterations to study their
convergence behavior. Notice that the average length of each
WSIJO utterance is 7.26 s (or, 6 s if one excludes the silence
portions). The system parameters such as the Gaussian kernel
width o and regularization parameter 3 for various methods
were simply adopted from the corresponding values found in
RM adaptation.

4) Adaptation Performance Comparison: Table VI summa-
rizes the performance of the various unsupervised adaptation
methods on WSJO at the end of each adaptation iteration. The
best result for each method is bold, and if two iterations have
the same performance, the one occurring with fewer iterations
is highlighted.

The results are similar to those of 10-s RM adaptation. Never-
theless, probably because WSJO is a much more difficult recog-
nition task with many more Gaussian parameters than RM, there
are also some differences. The most notable difference is that
now all MLLR variants seem to work in this task. KRR-MLLR
now performs as well as MLLR, but MPLKR and RSW continue
to outperform all other methods. The results of four common
significance tests in Table VII once again confirm that on the
WSIJ unsupervised adaptation task, MPLKR performs signifi-
cantly better than all other methods in Table VI except RSW
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TABLE VI
PERFORMANCE OF UNSUPERVISED ADAPTATION ON WSJ. RESULTS
ARE WORD ACCURACIES IN % ON THE TEST SET

Model or lteration
Method 1 \ 2 | 3 | 4 | 5 | 6
SI 92.60 | 92.60 | 92.60 | 92.60 | 92.60 | 92.60
MAP 92.60 | 92.60 | 92.60 | 92.60 | 92.60 | 92.60
MLLR 92.75 | 92.83 {92.85| 92.85 | 92.85 | 92.85
MLLR-D |93.05|93.16 | 93.16 {93.20 | 93.20 | 93.20
MLLR-B | 93.16 | 93.20 {93.24| 93.18 | 93.18 | 93.24
EMLLR | 93.37 {93.61| 93.52 | 93.52 | 93.54 | 93.49
RSW 93.48 | 93.56 | 93.67 | 93.69 | 93.67 |93.70
MPLLR | 92.69 | 92.75 [92.82| 92.82 | 92.82 | 92.82
MAPLR [93.05]| 92.96 | 92.94 | 92.96 | 92.81 | 92.87
KRR-MLLR | 92.87 | 92.98 | 93.12 | 93.23 |93.28| 93.27
MPLKR | 93.23 | 93.37 | 93.54 | 93.62 | 93.73 |93.75
TABLE VII

SIGNIFICANCE TEST RESULTS AT THE 95% CONFIDENCE LEVEL FOR THE
COMPARISON BETWEEN MPLKR AND OTHER ADAPTATION METHODS
FOR THE WSJ ADAPTATION TASK. (A “\/” MEANS THAT MPLKR Is

SIGNIFICANTLY BETTER. THE SIGNIFICANCE TESTS ARE: MP =MATCHED

PAIR TEST, SI =SIGNED PAIRED COMPARISON TEST, WI =WILCOXON

SIGNED RANK TEST, MN =MCNEMAR TEST)

| Method [MP]| SI [ WI [MN]
SI VIV IV IV
MAP VIV IV IV
MLLRB | V| v | v |V
EMLLR | | / |same| /
RSW V/ |same |same| /
MAPLR |V | vV | v |V
KRR-MLLR| v | v | Vv |V
MPLLR |V | v | V | V

at the 95% confidence level, and RSW is probably comparable
with MPLKR.

On the other hand, the various methods have very different
convergence behavior. To see that, the adaptation performance
of MLLR-B, RSW, MAPLR, KRR-MLLR, and MPLKR across
iterations is replotted in Fig. 1. It is noticed that MLLR-B does
not change much with iterations, while KRR-MLLR, RSW,
and MPLKR do. On the other hand, MAPLR actually performs
worse with more iterations. RSW converges faster than the
two kernel-based MLLR variants, namely, KRR-MLLR and
MPLKR: RSW converges in about three iterations, while
KRR-MLLR and MPLKR converge in about six iterations.

In summary, once again, MPLKR and RSW perform the best.

V. CONCLUSION

In this paper, we try to improve the standard MLLR speaker
adaptation method by using kernel methods to capture possible
nonlinearity in the data under the MLLR framework. Unlike
the previous kernel-based adaptation methods (such as KEV,
eKEV, and KEMLLR) we proposed, the new method, which we
call MPLKR, is computationally simpler and the solution can
be analytically obtained by simply solving a linear system. No
nonlinear optimization is involved, and the solution obtained
by MPLKR is always globally optimal. In both supervised
adaptation on the Resource Management task and unsupervised
adaptation on the more difficult Wall Street Journal task using
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Fig. 1. Convergence behavior of various unsupervised adaptation methods
on WSJ.

about 10 s of speech, MPLKR outperformed all other adapta-
tion methods that we tried except RSW which gives comparable
performance. For example, for the WSJO task, unsupervised
adaptation using MPLKR reduces the word error rate of the SI
model by 15.5%, whereas the figure for MLLR is 8.65%.

However, we are cautious to see that the simple linear method,
RSW, performs as well as the kernel-based MPLKR in both
adaptation tasks. In our experience, RSW saturates very fast and
does not improve much after 10 s of adaptation speech. On the
other hand, MPLKR will not have this limitation: with more
adaptation data, the ML means that the method uses for kernel
regression will be estimated more reliably, and the subsequent
regression will be more accurate.

In summary, we find that RSW and MPLKR perform very
well for the fast adaptation tasks in this paper. RSW is simple
and very fast, but it saturates quickly after approximately 10 s
of adaptation speech. The standard MLLR is well studied and is
known to perform reasonably well with a wide range of amount
of adaptation data if used together with an appropriate regres-
sion class tree of Gaussians. Our new MPLKR is somewhere
between RSW and MLLR: it performs as well as RSW in fast
adaptation but is slower and has a speed similar to that of MLLR;
on the other hand, in theory, it has the potential to work well for
longer adaptation data by using a regression class tree as MLLR,
and by suitably adjusting the regularizer.
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