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Pervasive Computing
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Abstract—In this paper, we present an algorithm for multidimensional vector regression on data that are highly uncertain and
nonlinear, and then apply it to the problem of indoor location estimation in a wireless local area network (WLAN). Our aim is to obtain
an accurate mapping between the signal space and the physical space without requiring too much human calibration effort. This
location estimation problem has traditionally been tackled through probabilistic models trained on manually labeled data, which are
expensive to obtain. In contrast, our algorithm adopts Kernel Canonical Correlation Analysis (KCCA) to build a nonlinear mapping
between the signal-vector space and the physical location space by transforming data in both spaces into their canonical features. This
allows the pairwise similarity of samples in both spaces to be maximally correlated using kernels. We use a Gaussian kernel to adapt to
the noisy characteristics of signal strengths and a Matérn kernel to sense the changes in physical locations. By using real data
collected in an 802.11 wireless LAN environment, we achieve accurate location estimation for pervasive computing while requiring a
much smaller set of labeled training data than previous methods.

Index Terms—Location-dependent and sensitive, correlation and regression analysis, pervasive computing.
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INTRODUCTION

IN this paper, we present an algorithm for multidimen-
sional vector regression on data that are highly
uncertain and nonlinear, and apply the algorithm to the
problem of indoor-location estimation in a 802.11 wireless
network. The problem of indoor location estimation can be
considered as one of building a mapping from radio-
frequency signals to a multivalued function that corre-
sponds to locations. Indoor location estimation is a major
area of pervasive computing applications that range from
context-dependent content delivery to object tracking [1]
and people monitoring [2], [3]. Many systems utilize the
signal strength values received from the access points to
infer the location of mobile devices [4], [5], [6], [7], [8], [9]
Similarly, in a sensor network, the location information
must also be inferred from signals received from various
deployed sensors [10], [11].

In general, location-estimation systems using radio
frequency (RF)-based signal-strength values function in
two phases: an offline training phase and an online localization
phase. In the offline training phase, data are collected that
correspond to each location and labeled by hand with the
location information. Then, a model is trained by consider-
ing the signal strength values received from the access
points at selected locations in the area of interest. In the
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online localization phase, the learned model is applied to
new signals. The real-time signal strength samples received
from the access points are used to estimate the current
location based on the learned model.

Models used in location-estimation systems could be
broadly categorized into two classes: Radio-Propagation
Models and Empirical-Fit Models. For building Radio-Propaga-
tion Models, we usually try to identify different factors that
may affect the fluctuation and attenuation of radio signal
and encode these factors as parameters into radio propaga-
tion equations [12], [13], [14], [15]. For building Empirical-Fit
Models, we would empirically describe the signals in terms
of their mean values, histogram, or spline interpolation
without formulating a closed-form propagation model [4],
[16], [6], [7], [8]. In order to calibrate both kinds of models,
efforts need be spent to collect signal samples from different
locations. Thus, how to maintain a high-level of accuracy
while reducing calibration effort is a challenging task, since
the data collection process is time-consuming. For example,
in our earlier test, it took many hours to collect and label the
signal-strength data in a small indoor environment.
Furthermore, the mapping between the signal and physical
location spaces is very difficult to construct with only
limited labeled data due to uncertainty and nonlinearity.
Nonlinearity exists when similar locations have very
different signal signatures. Therefore, a direct mapping
between the two spaces may not always work well, even
when much data are collected.

In this paper, we present a multidimensional vector
regression method for building a mapping function by
addressing the problems of uncertainty and nonlinearity
directly. Our main intuition is to perform a kernel-based
transformation of the signal and physical location spaces to
capture the nonlinear relationship between the signals and
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locations. Furthermore, we perform kernel canonical corre-
lation analysis (KCCA) in the two spaces for feature
extraction. This allows the pairwise similarity of samples
in both spaces to be maximally correlated. We use a
Gaussian kernel to adapt to the noisy characteristics of
signal strengths and a Matérn kernel to sense the changes in
physical locations. In comparison to previous methods, a
major advantage of our proposed technique is that we can
obtain higher accuracy while reducing the training cost by
requiring only a fraction of the labeled samples.

Although this paper focuses on the location estimation
problem in pervasive computing, the proposed method has
more general practical implications. In effect, we are
addressing a new type of machine learning problem where
there are many classes but a limited amount of training
examples. For this type of problem, traditional machine
learning algorithms will usually result in overfitting. Our
idea is to make use of the inherent relationships between
the different classes. In this paper, we rely on the similarity
relationship imposed by distance relations among the
different locations. As will be shown later in the paper,
this relationship can be captured using kernel functions
[17]. Consequently, the accuracy of the classification model
can be greatly enhanced with the use of this new piece of
information.

The rest of this paper is organized as follows: Section 2
first reviews the works on location estimation, multidimen-
sional vector regression, and (kernel) canonical correlation
analysis. Section 3 then describes the proposed KCCA-based
location estimation algorithm. Results on a series of WLAN
location estimation experiments using data collected in a
realistic environment are presented in Section 4, and the last
section gives some concluding remarks. A preliminary
version of this paper has appeared in [18].

2 RELATED WORKS
2.1 Location Estimation

Location estimation systems based on radio techniques
could be classified into different categories according to
different criteria. Considering the system architecture, they
could be client-based [4], [6], [14], [8] or infrastructure-
based [19], [16]. When emphasizing the use of probability,
they could be deterministic [4], [20], [7], [21] or distribution-
based [22], [13], [6], [23], [15], [24]. In this paper, we follow
[4] and classify location estimation systems into two main
categories: (1) Radio-Propagation Models and (2) Empirical-Fit
Models. The latter may not rely on the knowledge of radio
propagation.

Location estimation systems that adopt Radio-Propagation
Models benefit from the knowledge of radio propagation.
Observing the nonlinear and noisy patterns of radio signal
strength, people who develop these kind of systems usually
go to a low-level analysis and try to identify the hidden
factors that cause these patterns. Typical factors include
path loss, shadowing, and multipath, which lead to log-
distance, log-normal, and more sophisticated multipath
channel models [25], [26], [13], [23]. Generally speaking, a
more accurate formula needs additional information about
the physical environment and the network. For example,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO.9, SEPTEMBER 2006

the location of access points needs to be given in many radio
propagation models. When the building structure (or even
the material) is known, the wall attenuation factors and the
corridor effect could be encoded and form a more accurate
propagation model [4], [14]. Collecting environment in-
formation may raise the calibration effort. There are many
algorithms that apply radio propagation models. Take
trilateration, for example; we could first transform signal
into distance information from a client to a small number of
access points (ranging). Then, a least square fit is used to
estimate the most probable coordinate [11]. As an alter-
native, RADAR [4] discretizes the localization area to grid
locations and theoretically computes the signal strength at
these locations in the offline phase. Then, nearest-neighbor
heuristics and triangulation methods are used to infer a
client’s location in the online phase. Maligan et al. [14]
explore that different access points should behave similarly.
Their work presents a Bayesian network model that
encodes knowledge about radio-propagation models, which
make use of similarity among the access points and other
factors. It also points out that, by incorporating additional
knowledge such as the motion constraint of a user, the
calibration effort can be further reduced. Although we are
not focused on identifying all these factors and encoding
them into models in this paper, we take a complementary
view by discovering the correlation between signal and
location spaces and modeling this correlation with multi-
dimensional vector regression.

Another class of location estimation systems is based on
Empirical-Fit Models, which employ machine learning
techniques. Path loss, shadowing, and multipath are caused
by a complicated underlying process in a complex environ-
ment. When all these factors are mixed together, they show
a high-level of nonlinear and noisy patterns. These patterns
can be captured when sufficient empirical data are
manually collected at different locations [8], [22] or
automatically by additional hardware [16], [7], [27]. These
methods need less information about physical layout and
network configuration. The input is usually implicitly
encoded into radio maps [8] at different locations. In such
cases, the locations of access points are not needed. Typical
pattern descriptions include histogram [8], [15], [22],
mixture of Gaussian [15], kernel matrix [18], Akima Spline
[16], or simply the mean value of signal strength at different
locations [4], [7]. For example, the LANDMARC system [7]
uses reference tags to dynamically construct and update
radio map. It alleviates the effects caused by the fluctuation
in RF signal strength. The method first computes the
distances between the signal-strength vectors received from
the tracking tags and those from different reference tags,
respectively. It then uses k nearest reference tags’ coordi-
nates to calculate the approximate coordinate of the
tracking tag. A similar technique is used in LEASE [16], [27].

More recently, intense research efforts have been taken to
seek additional knowledge in order to boost the accuracy of
location determination systems. For example, [28], [10], [6],
[14], [24] take the sequential characteristics of user traces
into consideration by posing a reasonable assumption that a
user could not walk irregularly, run too fast, or go through a
wall. These models come closer to the general framework of
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TABLE 1
A Summary of the Characteristics of Some Common Location Estimation Methods

Robust-Indoor [12], RADAR+ [28]

Method Propagation-based | Signal dynamics | User dynamics
Multilateration [11], Statistical [23], v
Fingerprinting [13], RADAR [4]
RADAR+ [28], Bayesian-Indoor
v v
[14]
Active-Campus [21], PHD [20], v v

RADAR [4], Horus [8],
Probabilistic [15], KCCA [18]

LEASE[16], Reduce[22],
Horus+[30],
Adaptive [27], LANDMARC [7]

RADAR+ [28], MCL [10],
Robotics [6], State-Machine [24]

Bayesian filtering [29]. For example, Ladd et al. [6] suggest a
sensor fusion model and show a strong correlation between
consecutive locations. The robotics-based location sensing
system in [6] applies Bayesian inference to compute the
conditional probabilities over locations based on received
signal-strength samples from various access points. Then, a
postprocessing step, which utilizes the spatial constraints of
a user’s movement trajectories, refines the location estima-
tion and rejects the estimates that show significant changes
in the physical location space. Depending on whether the
postprocessing step is used or not, the accuracy of this
method is 83 percent or 77 percent within 1.5 meters. Bahl
etal. [28], [22], [16], [7], [27], [30] study the dynamic features
of signal strength and update their models to adapt the
change. Krishnan et al. [16], [7], [27] employ additional
hardware such as sniffers to help recalibrate the radio map
periodically. Bahl et al. [28] improve the localization
performance by profiling the radio characteristics into
“busy” and “nonbusy” hours. Chai and Yang [22], [14]
could use unlabeled data to advance the performance so
that they are capable of dynamically updating their model
to fit the characteristics of the radio environment. Youssef
and Agrawala [30] use an autoregressive model to reduce
fluctuation between consecutive signal strength.

In practice, location-estimation systems may combine
both Radio-Propagation and Empirical-Fit models, and
capture the signals and the user dynamics by filtering in
both signal and location spaces. Thus, the above models can
complement each other and improve the performance. A
summary of related works is shown in Table 1. The table
shows a high-level overview of different location-estimation
algorithms. Thus, items in the table only highlight the main
and common features of these algorithms. In this table,
some papers propose more than one algorithm so that they
fall into multiple categories. For example, RADAR [4] and
its enhanced version [28] have two variants: One is based on
Radio Propagation and the other is based on Empirical Fit,
although both use K-Nearest-Neighbor in the online
localization phase.

2.2 Multidimensional Vector Regression

There are a variety of application problems where multiple
outputs are to be predicted using multidimensional inputs.
They form a multidimensional vector regression or wvector-
valued function learning problem [31], [32]. Take location
estimation, for example; a user’s position, which is
represented by a two-dimensional vector (z,y), can be
inferred using multiple signal sources from nearby access
points by trilateration: first, a nonlinear transformation
from signal strength to distance and, second, a least square
method to recover the coordinate. Dependency between
and within all the components of signal and location vectors
may be highly nonlinear, partially depending on the spatial
structure of the localization area of interest. For example, in
Fig. 2a, there are four hallways forming an irregular shape.
For a certain predicted value of z, some y values should
automatically be ruled out (and vice versa) because the user
can only be physically located at a certain hallway. Similar
situations also exist in many real-world domains, such as
medical care, manufacturing, or stock prediction, where
multiple correlated inputs and outputs are involved [33].
Thus, a key question is how to improve prediction accuracy
by taking advantage of the possible correlations between
components of an output vector.

Breiman and Friedman [33] introduced the curds and
whey method, which bridges traditional scalar-valued
regression and vector-valued regression by a two-stage
procedure. First, each output dimension is separately
estimated by least squares fitting or ridge regression.
Second, all output dimensions are then combined together
to exploit possible correlations among the output dimen-
sions. Breiman and Friedman [33] show that the prediction
error can be substantially reduced when there are correla-
tions between outputs. Even if the outputs are indeed
uncorrelated, the curds and whey method does not lead to
performance degradation. Furthermore, once we find that
the accuracy is not improved due to weak or no correlation
among outputs, the second step can be disabled and a
traditional regression method can be used instead. The
curds and whey method can be generalized for nonlinear
regression [34].
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Partial least squares (PLS) [35] is another vector regression
method popularly used in chemometrics. It is based on
maximizing the covariance between the (multidimensional)
inputs and outputs. It generalizes and combines features
from principal component analysis and multiple linear
regression. The data are first projected onto the principal
directions, which is then followed by least squares fitting in
this projected space. When all principal directions are used,
PLS degenerates to standard multiple linear regression.
Compared to the ordinary least squares method, PLS
prevents overfitting by properly choosing the number of
principal directions. Recently, a nonlinear extension of PLS
has also been proposed by exploiting the kernel trick [36].

Another well-known vector regression method is cano-
nical correlation analysis (CCA) [37], [32]. It tries to find a pair
of canonical vectors, one for the input and another for the
output, so that the projections onto these canonical vectors
are maximally correlated. Compared to PLS, CCA exploits
the correlation, rather than the covariance, within and
between the inputs and outputs. In many real-world
applications, the inputs often come from multiple and
heterogenous sensors, which have different scales and/or
noise levels. A large covariance between signals may not
necessarily mean a strong correlation. It is possible that a
pair of principal directions in the two spaces have high
covariance merely because the signal range is large and/or
the noise level is high. Conversely, a pair of directions may
have perfect correlation but a low covariance. In such cases,
correlation (and, thus, CCA), rather than covariance (PLS),
should be used. While CCA considers only linear correla-
tion, its kernelized version (kernel CCA) [38] can also exploit
nonlinear correlation. Both CCA and kernel CCA will be
discussed in more detail in the next section.

2.3 (Kernel) Canonical Correlation Analysis

2.8.1 Canonical Correlation Analysis (CCA)

Given two sets of variables x and y, canonical correlation
analysis (CCA) [37] attempts to find a basis for each set such
that the correlation between the projections of the variables
onto these basis vectors are mutually maximized. Mathe-
matically, given n instances

S = {(Xl’yl)v (X27y2)7 L) (men)}v

CCA finds directions (canonical vectors) wyx and wy so that
the sets of transformed variables (canonical variates)

Sx = Sx(Wx) = ((Wx, X1), (Wy,X2), ..., (Wx, X))

and

Sy = SY(Wy) = (<Wy7y1>v <wy7YQ>7 R <wyvyn>)

are maximally correlated.
Define the total covariance matrix by'

o-t[()(0))-[5

where IE[] is the empirical expectation operator, Cyy, Cyy
are the within-sets covariance matrices, and Cyy, = C’yx is
the between-sets covariance matrix. The correlation coeffi-
cient between Sy and Sy can be written as

Cry }
ny ’

1. In this paper, vector/matrix transpose is denoted by the superscript ’.
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o Blwex)(wy.y)]
V(W x) B wy 3)’

/T / (1)
_ WX]E[Xy ]Wy
\/W;IE[XX’]WX . W;IE[yy’}wy
W, Cyy Wy
x Y (2>

/ /
\/ W, Cxx Wy - wynywy

It can be shown that wy can be obtained by solving the
generalized eigenproblem [38]

nyC;; Cyxwy = A2C Wiy

Subsequently, wy, can then be obtained as w, = iC;‘; CyxWy.
Moreover, it can be shown that the A obtained is equal to the p
in (1).

2.3.2 Kernel Canonical Correlation Analysis (KCCA)

A major limitation of CCA is that it can only exploit linear
relationships between x and y. As is now well-known, the
use of kernels offers efficient, nonlinear extensions for many
standard linear procedures [17]. In kernel canonical
correlation analysis (KCCA), [38] implicitly maps x and y
to ¢,(x) and ¢,(y), and then performs traditional CCA in
the two high-dimensional feature spaces. Using the dual
representations for the projection directions wy, ) and

Wo,(y)*

W, (x) = S,

b0 and W) =8 ()8,

where

S, (x) = [P (1), - - (z)w(x'n)],v S%()’) = [¢y(Y1)a ) ¢1/(yn)],7

and a, 8 € IR". Denote the corresponding kernel functions
by kx(-,-) and ky(-,-), and the kernel matrices (defined on
all n instances) by Ky and Ky. The kernelized counter-
part of (2) is
!
p= M, (3)
VaKla- ,B'Ki,ﬂ

which is then maximized with regard to a and 3. However,
it can be shown that one can always obtain perfect
correlation and, consequently, an uninteresting result given
that the kernel matrices Ky and K, are invertible [38]. To
control the flexibility of the projections, the norms of the
associated weight vectors are thus penalized as in other
kernel methods. Hence, instead of maximizing (3), we
maximize the regularized version

KK, 3
\/(a/Kia + ra'Kya) - (ﬂ’Kf,ﬁ + KKy 3) 7

(4)

where & is a user-defined regularization parameter. It can
be shown that a can be obtained by solving the generalized
eigenproblem

(Ky + 1) 'Ky (Ky + £I) 'Kya = Ma, (5)



PAN ET AL.: MULTIDIMENSIONAL VECTOR REGRESSION FOR ACCURATE AND LOW-COST LOCATION ESTIMATION IN PERVASIVE...

where I is the identity matrix. Subsequently, 3 can be
obtained as

8= %(Ky +kI) 'Kya. (6)

Given any %, its projection on w,, (x) is given by

Py(X) = ¢a(%) Wy, () = ke, (7)

where kg = [kx(X,X1), kx (X, X2), . . ., kx(X, xn)}/.
the projection of any y onto wy, (y) is

Py(y) = ¢y(y)lway(y) = ka’ﬁv

where kf’ = [ky(yv yl)v ky(yv y2)7 RS kY(S’a y'n)],
The generalized eigenproblem in (5) can be solved by

using the (complete) Cholesky decomposition [39]. How-
ever, the kernel matrices Ky and K, are of size n and, so,
obtaining the Cholesky decomposition can become compu-
tational expensive for large training sets. In this case, the
incomplete Cholesky decomposition or partial Gram-
Schmidt orthogonalization (PGSO) can be used instead
[38]. The basic idea is to find a low-rank approximation of
the kernel matrix, and the incomplete Cholesky decom-
position differs from the complete Cholesky decomposition
in that all pivots below a certain threshold are simply
skipped. The decomposition is obtained by picking columns
of the kernel matrix one at a time, at each step choosing the
column that leads to the greatest reduction in the approx-
imation error. Once a column (or basis vector) is selected,
the other columns are then orthogonalized by the Gram-
Schmidt algorithm.

Similarly,

3 LocATiON EsTIMATION UsING KCCA
3.1 Motivation
Consider the two-dimensional location estimation pro-

blem.” Its goal is to obtain a mapping between the space
of signal strengths obtained at p access points

S:{SE[Sl,SQ,...,Sp]IGIRp} (8)

and the physical location space P = {{=[z,y] € R?}.
Methods such as trilateration deal with the mapping
between signal and location spaces in two steps: First,
transform signal into distance with a nonlinear equation
(ranging) and, second, recover the most probable coordi-
nate from distance with least square methods. In this paper,
we directly build a nonlinear mapping between signal and
location spaces. We consider z and y together and
emphasize the correlation between signal and physical
location spaces, observing that the pairwise similarity in
the signal space should match the pairwise similarity in the
physical location space. For example, in Fig. 1, signal Sx
should be more similar to Sz than S, since A is closer to B
in the physical location space. Consequently, we consider
both 2 and y together and use KCCA to learn the mapping
between the two spaces.

2. Extension to the three-dimensional (or even higher-dimensional) case
is straight-forward.
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grid beundary

Fig. 1. Correlation between the signal and physical location spaces.

3.2 The LE-KCCA Algorithm

In contrast to the previous works described in Section 2.1,
our approach builds a similarity-based mapping function
by making full use of the continuous location information in
kernel-based transformation.

3.2.1 Offline Training Phase
In the training phase, the following steps are taken:

1. Signalstrengths are collected at various grid locations.

2. KCCA, with appropriate choices for the two kernels
(Section 3.3), is used to learn the relationship
between the signal and physical location spaces. In
particular, A;s and «;s are obtained from the
generalized eigenproblem in (5), and the corre-
sponding 8;’s from (6).

3. For each training pair (s;,¢;), its projections

P(si) = [Pi(si), Pa(si), - -, Pr(si)] 9)

on the T canonical vectors are obtained from (7).

3.2.2 Online Localization Phase

In the localization phase, the location of a new signal
strength vector § is estimated as follows:

1. Use (7) to project s onto the canonical vectors and
obtain

P(8) = [P(3), (3), ..., Pr(3)]"

2. Among the projections (9) from the training samples,
find the K neighbors closest to P(§). In this paper,
the weighted Euclidean distance

T
di = >_N(Pi8) = Pi(si))’ (10)

J

is employed in finding the neighbors.

3. Interpolate these neighbors” physical locations to
predict the physical location of 8. In this paper, we
simply output the median (or mean for continuous
location estimation) of the (x,y) coordinates of these
K neighbors.

Note that this is essentially a variant of the weighted
K-nearest neighbor method. Here, we use )\; as the weight
in (10). As mentioned in Section 2.3.1, ); is equal to the
correlation coefficient p in (1), and thus serves as a
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Fig. 2. Experimental test-bed and radio propagation characteristics. (a) Layout of the experimental test-bed. (b) Signal distribution from AP 1.

(c) Signal distribution from AP 2. (d) Signal distribution at a fixed location.

reasonable measure for the importance of the correspond-
ing canonical vector.

3.3 Choice of Kernels

The choice of kernels is highly dependent on the nonlinear
and noisy characteristics of the location estimation problem
we are addressing due to possible path loss, shadowing,
and multipath effects, etc. [25]. In Fig. 2a, there are three
access points (APs). Figs. 2b and 2c show the average signal
strength distributions of AP1 and AP2, respectively. As can
be seen, the signal strength changes sharply (nonlinear) at
the corner of intersecting hallways 2 and 3 due to the
shadowing effect of the walls. Fig. 2d shows the typical
signal distribution at a particular location from a fixed
access point. As can be seen, this noisy signal can be as
weak as -6dB and as strong as -10dB. Its empirical
distribution (radio map) is thus difficult to obtain, especially
when the training samples are scarce. As a first approxima-
tion, the Gaussian distribution has been used in character-
izing the nonlinearity of the signal strengths [15]. Hence, in
this paper, we also use the Gaussian kernel

(11)

for the signal space. Here, || - || denotes the Euclidean norm
and wg is a user-defined parameter that reflects the
smoothness of the radio map.

On the other hand, measurements of the physical
locations are relatively clean. Intuitively, it seems that
Euclidean distance best represents the “similarity” between
two locations. Unfortunately, the Euclidean function is not a

G(s1,82) = exp(—wgls1 — sa|”)

valid kernel since a valid kernel should satisfy the positive
definite property [40]. For the commonly used Gaussian
kernel, it has been argued by [41] that sample paths of the
Gaussian model are “infinitely smooth,” thus often leading
to unreasonably low predictive variance [42]. Consider the
Euclidean distance |z; — z;|. This distance measure cannot
be used directly as a kernel without first transforming it into
a valid kernel. Therefore, in this paper, we adopt the Matérn
kernel, which is a function that reflects the Euclidean
distance (Fig. 3) [42].

2(vvwarllx:
I'(v)

M(Xl,XQ) — _X2||)

K,,(Q\/DwMHxl - XQH)‘
(12)

Here, v is a user-defined smoothness parameter, I'(v) is
the Gamma function I'(v) = [[“e 't 'dt, and K,(r) is
the modified Bessel functlon of the second kind with
degree v [39]:

T v
K = (5)

It can be shown that, when v — oo, the Matérn kernel
degenerates to the Gaussian kernel. On the other hand,
when v = 0.5, it degenerates to the exponential kernel

("
KT (v +k+1)

E(x1,%;) = exp(—V2uwa[x1 — xa])-
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Fig. 3. The Matérn kernel.

Note that both the Gaussian and Matérn kernels are
isotropic:3 and, so, are invariant to the location of origin
and to arbitrary rotation.

3.4 Time Complexity Analysis

In location estimation, the training phase can be performed
offline and, so, its speed is not very important. On the other
hand, the localization phase has to be performed online. In
this section, we compare the time complexities for online
localization as required by LE-KCCA and other popular
location estimation algorithms, namely, support vector
machine (SVM) [43], support vector regression (SVR) [43],
model trees [44], maximum likelihood estimation (MLE) [8],
and RADAR [4]. These algorithms will also be compared
experimentally in Section 4.

In the following, let A be the number of access points, L
the number of locations, V' the number of support vectors, S
the number of training samples, and 7' the number of
canonical vectors.

1. LE-KCCA: Localization involves three steps (Sec-
tion 3.2.2). The first step projects § onto the T
canonical vectors, each being a linear combination of
the S training samples in the feature space.* The
time for one kernel evaluation is O(A). Thus, this
step takes O(AST) time. In the second step, we
compute the weighted Euclidean distance, and this
takes O(ST) time. These distances are then ranked,
but as ranking mainly involves comparison, its time
is small compared to those of the others and so will
be dropped. The total time complexity is thus
O(AST + ST).

2. SVM: Our SVM treats location estimation as a multi-
ple-class classification problem, by using the signal
strengths from the A access points as input and the
L locations as output. There are O(V') support vectors
at each location.

3. SVR: Again using the signal strengths from the
A access points as input, our SVR builds a regression
model for each output dimension, = and y. As there

3. A ;<ernel is isotropic if k(x;,x;) depends only on the distance
ll=: — x|

4. In fact, as the « vector is typically sparse, not all training samples will
be involved in the computation of the canonical vectors. By eliminating the
corresponding kernel evaluations, the first step can be performed much
faster.
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are only two outputs, the time complexity for
localization is O(AV).

4. Model tree: We build two model trees, one for each
output dimension. The time required is related to the
height of the tree and the regression computation at
the leaf nodes.

5. RADAR and MLE methods: We have to calculate the
distance or probability of the new incoming signal to
each location, which can be done in O(A4) time. As
there are L candidate locations, the time complexity
for both methods is O(AL).

4 EXPERIMENTS

In this section, we perform a series of WLAN location
estimation experiments in a realistic environment shown in
Fig. 2a, the office area of the Department of Computer
Science, the Hong Kong University of Science and Technol-
ogy. Its area is about 64m by 40m, with three entrances and
four hallways. It is equipped with an IEEE 802.11b wireless
network in the 2.4GHz frequency bandwidth. All data are
collected with an IBM laptop computer with an external
Linksys Wireless-B USB network adapter. We divide the
four hallways in Fig. 2a into a total of 99 grids, with each
grid measuring 1.5m x 1.5m. There are three access points
shown in the figure, though a total of eight access points
(including some from other floors) are detected. Each
sample is thus an 8-dimensional signal strength vector,
with the measurements averaged in one second. One
hundred such samples are collected at the center of each
grid, with a total of 9,900 samples obtained. We randomly
use 65 percent of the 9,900 samples for training and the rest
for testing. All data are not normalized and no other
preprocessing is performed. For comparison with LE-
KCCA, we also run:

Support vector machine (SVM) [43],

Support vector regression (SVR) [43],

Model tree [44],

Maximum likelihood estimation (MLE) [8], and

. RADAR [4] (Section 2.1).

As in LE-KCCA, both SVM and SVR use the Gaussian
kernel. All implementations are in C++, and experiments
are performed on a 533MHz Celeron-II machine. To reduce
statistical variability, results here are based on averages
over 10 repetitions.

4.1 Setting the LE-KCCA Parameters

To determine the tunable parameters (wy, v, and we) in the
various methods, we further split the whole training data set
into two parts: 75 percent for tentatively building the model,
while the remaining 25 percent is used as a validation set for
evaluating the performance. We enumerate a list of values
for different parameters and empirically pick up those
values with which the model performs well in the validation
set. Once parameters are determined, we recombine the two
parts of data (the whole training set) to build the model and
evaluate the performance in the testing set. In this section, we
discuss the selection of the LE-KCCA parameters in more
detail. There are five parameters in LE-KCCA:

Al

e wg in the Gaussian kernel (11),
e wj; and v in the Matérn kernel (12),
e the regularization parameter « in (5), and
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e the number of neighbors K in Step 3 of the online
localization phase (Section 3.2.2).

Initially, we set K to 7, wy and wg to some random
number around 0.05, and s to some random number
around 0.1. We then tune the parameters in the order of v,
K, wyr, Wa, and « (Flg 4).

As can be seen from Figs. 4a and 4b, the highest accuracy
is obtained at v =0.5. In this case, the Matérn kernel

degenerates to the simple exponential kernel, which is more
computationally efficient. Note that, in comparison to the
Gaussian kernel (which corresponds to setting v — oo in the
Matérn kernel), the exponential kernel drops off more
rapidly than the Gaussian kernel at small values of ||x; —
x2|| (Fig. 3). Hence, as the physical location measurements
are relatively clean, the exponential kernel is more sensitive
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than the Gaussian kernel to small changes in the physical
locations.

In the online localization phase, the most important
parameter is K. Figs. 4c and 4d show that, when K
increases from 1 to 7, the accuracy improves quickly; when
K is from 7 to about 21, the accuracy stays about the same;
then, the accuracy gradually decreases when K is further
increased. In the following, we set K = 15 (an odd number,
so that the median in Step 3 of the online localization phase
is always well-defined). It is interesting to compare this
with RADAR [4], which also uses nearest-neighbor heur-
istics. Unlike LE-KCCA, RADAR benefits little in varying
the value of K. As discussed in Section 4.1.2 of [4], a small
value of K shows minor improvement in the accuracy,
while a large value leads to rapid performance degradation.
This is because the RADAR neighbors in the signal space
may not be neighbors in the physical location space. On the
other hand, LE-KCCA uses location information as feed-
back to guide the feature extraction process so that
projections of the signal and physical location spaces are
maximally correlated. Consequently, neighbors in the signal
projected space are usually neighbors in the physical
location projected space. More discussions will be pre-
sented in Section 4.3 and Fig. 7.

The wjy; parameter reflects sensitivity of the Matérn
kernel to changes in the physical location ||x; — x;||. When
fixing v, the Matérn kernel M (12) is a function of the term
war|lz; — x;]| with domain [0, +c0) and range (0, 1]. Intui-
tively, the kernel M here could be viewed as a distance
similarity measurement (and yet a valid kernel, positive-
definite) between two locations z; and z; where M =1
means that they are in the same location (most similar) and
M — 0 indicates that they are far away from each other
(most dissimilar). From Fig. 3, we could also see that M
drops faster with a smaller ||z; — z;| than with a larger
value. This implies that M is likely to be sensitive to “small
distance change.” Here, what is “small distance change” is
controlled by the scaling parameter w),. For example, wys =
0 is an extreme that /M = 1 becomes a constant so that any
two points are equally similar. wy — 400 is another
extreme that M drops sharply so that neighbor points
would be dissimilar. Both of the two extremes could not
well capture the distance information in the physical
location space. Instead, we should choose a balanced w,
value. By observing Figs. 4e and 4f, we empirically set
wyr = 0.05. The role of wg in the signal space is similar. By
observing Figs. 4g and 4h, we set wg = 0.15.

The regularization parameter  is used to control the
flexibility of the canonical vectors. As discussed in Sec-
tion 2.3.2, one can always obtain perfect correlation and,
thus, uninteresting results when x = 0. On the other hand, if
k is too large, KCCA will be overpenalized and cannot
capture the correlation between signals and physical
locations. By observing Figs. 4i and 4j, we choose x = 1.5.

Note that wg and wj, are essentially scaling factors that
apply to data in signal and location spaces, respectively.
Thus, when the basic unit is changed in either space, the
corresponding parameter may be changed as well. For
example, if we use foot rather than meter as the basic unit in
location space, wy; should be rescaled by 0.30 since
1ft ~ 0.30m.

Furthermore, wg may be affected by the hardware
difference of network adapters from different manufac-
turers. Although this paper does not conduct research on the
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effect of hardware devices, we note that [45] shows that there
is approximately a linear relationship between adaptors
from different hardware vendors. Thus, an alternative is to
use a linear transformation as a preprocessing step, in which
parameters are obtained by a small number of calibration
data, for adapting to new hardware. In such a case, we don’t
need to change w¢. Once w¢ or the linear transformation is
properly set, the difference caused by new hardware would
be reduced. Consequently, new data would tend to have the
same characteristics as the old so that we don’t need to
change v, K, and &.

4.2 Basis Vectors Selected by PGSO

As discussed in Section 2.3.2, partial Gram-Schmidt
orthogonalization (PGSO) can be used in place of the
complete Cholesky decomposition to reduce the computa-
tional requirement of KCCA on large data sets. In our
experiments, PGSO is applied to both the signal space and
physical location space. A total of 200-300 vectors and 20-
30 vectors are picked in the signal space and physical
location space, respectively. As vectors are sequentially
added by greedily minimizing the approximation error,
they tend to spread out in the kernel-induced feature space.
Fig. 5a shows the positions corresponding to the first eight
vectors® selected in the signal space, while Fig. 5b shows
those corresponding to the first eight vectors selected in the
physical location space. As can be seen, they correspond to
the access points in the signal space, while, in the physical
location space, they correspond to the ends, corners, and
centers of the hallways.

4.3 Accuracy and Speed

Fig. 6 plots the average testing accuracies and the
corresponding standard deviations at different acceptable
error distances. In particular, at an error distance of 3.0m,
the accuracy of LE-KCCA is 91.6 percent while those of
SVM, model tree, SVR, MLE, and RADAR are 87.8 percent,
88.3 percent, 89.1 percent, 86.1 percent, and 78.8 percent,
respectively. When the acceptable error distance is 1.5m, the
accuracy of LE-KCCA, SVM, model tree, SVR, MLE, and
RADAR are 81.7 percent, 77.7 percent, 73.7 percent,
76.7 percent, 75.8 percent, and 47.3 percent. Thus, by
utilizing the pairwise distance similarities in physical
locations, LE-KCCA can perform better than the other
methods. The SVM, by treating each (z,y) location as a
class, also considers z and y together. However, it cannot
utilize the information that neighboring locations should
have similar signal strengths, and, thus, it is not as accurate
as LE-KCCA. Note that SVR and the model tree, which treat
the physical location dimensions z and y separately, can
also perform relatively well at an error distance of 3.0m.
However, at an error distance of 1.5m, the model tree has
much degraded performance because its locally linear
heuristics are not capable of capturing the nonlinearity of
the signal-location mapping. Finally, RADAR does not
perform well over the whole range. It is a deterministic
method and cannot well adapt to the noisy characteristics of
the signal.

Table 2 compares the average CPU time for predicting a
new position using the various methods. As can be seen,

5. As all the candidate basis vectors are normalized to have unit norm,
the first vector (in both the signal space and physical location space) has to
be manually selected by the user.
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(a) Vectors selected in the signal space (in the order 1,2, ...,

LE-KCCA is the slowest. Nevertheless, as this only takes
0.025 seconds, the online localization phase can still be
performed in real-time.

With the physical location similarity as feedback,
samples from the same locations move closer together,
while those from different locations are pushed away under
the feature-space mapping built by LE-KCCA. This is
further demonstrated in Fig. 7. When we walk from
hallway 1 through hallway 2 to hallway 3 (Fig. 7a), we first
come closer to AP1 and then leave AP1. We then come
closer to AP2 and then leave AP2. Thus, the signal strengths
of AP1 and AP2 first reach their maximum and then
weaken one after another (Fig. 7b). We can also see that the
signal is very noisy and unstable so that neighbors in the
signal space may not be neighbors in the physical location
space [4]. However, after the feature mapping with KCCA,
the projections in both feature spaces are maximally
correlated and the trajectories become very similar to each
other (Figs. 7c and 7d). Consequently, nearby physical
locations have similar values in the projected signal space.
In this way, even though there are not enough samples at
each individual physical location, we can “borrow strength”
from the nearby locations. When a new signal arrives, its
nearest neighbors will be closer to the true location after the
KCCA mapping than those in the original space [4], and,
consequently, we can have better location estimation.
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Fig. 6. Testing accuracies at different error distances.

8). (b) Vectors selected in the physical location space (in the order A, B, ... H).

4.4 Reduction in Calibration Effort

In the first experiment, we use all the 99 grid locations but
only a random subset of the signal samples available at each
location for training. Fig. 8 shows the testing accuracies at
error distances of 1.5m and 3.0m. As can be seen, by using
only 10-15 random training samples at each location,
LE-KCCA can already outperform the other methods that
use a full training set. Among the other methods, RADAR
only needs to compute the average signal vector at each
location and a small set of samples will suffice. Thus, its
accuracy hits the (low) ceiling very quickly. In comparison,
MLE can obtain a higher accuracy by learning a radio map at
each location, though at the disadvantage of requiring more
samples for the estimation. SVR and model tree have
comparable performance with MLE. Although they utilize
the location information (z,y), each dimension is treated
separately and so the dependency between x and y cannot be
exploited. Finally, SVM treats each physical location as an
independent class label and cannot utilize the information
that neighboring locations should have similar signal
strengths.

In the second experiment, we select a subset of the
available grid locations, and then use all the training signal
samples at those selected locations for training. Evaluation is
performed on both the unseen signal samples at the selected
grid locations and also at the unseen locations. Again, Fig. 9
shows that LE-KCCA yields better performance.

4.5 Different Variants of LE-KCCA

As mentioned earlier, we believe that the success of LE-
KCCA stems from considering information from both
physical dimensions z and y together. To validate this claim,
we consider the following three variants of LE-KCCA:

TABLE 2
Average CPU Time (in Seconds) for Online Localization
of One New Position

LE-KCCA
0.025

SVM
0.012

SVR
0.0084

MLE
0.00030

RADAR
0.00031

model tree
0.00027

method
time
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1. Discrete-KCCA: It treats all the physical locations
independently, which is achieved by using a large
value® for w;; in the Matérn kernel.

2. 1D-KCCA: Here, the LE-KCCA algorithm is mod-
ified so that the signal space is correlated with = and
y separately.

3. Linear CCA: Here, instead of using the Gaussian and
Matérn kernels, we use the linear kernel in both the
signal and physical location spaces.

Experiments are performed in the same setting as that in
Fig. 8, and results are shown in Fig. 10. As can be seen, all
three variants lead to degraded performance as expected. In
particular, linear CCA has an accuracy that is lower than

6. In the experiment, we set wy; = 50.

60 percent on every test set, and, so, its results are not
shown in the figure.

5 CONCLUSIONS AND FUTURE WORK

This paper focuses on using KCCA as a multidimensional
vector regression method to improve the accuracy of
location estimation in wireless LANs whose signal is highly
uncertain, nonlinear, and correlated. Experiments show a
better performance than SVR and model tree that treat each
output dimension separately. We found that kernel trans-
formation and CCA allow the construction of an accurate
mapping between the physical location space and the signal
space. One advantage is the higher accuracy obtained in
localization with much less calibration effort. We use a
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Gaussian kernel for the signal space to adapt to the noisy
characteristics of radio-propagation channels and a Matérn
kernel for the physical location space. The advantage of
KCCA is shown through extensive experimental tests in a
real-world environment. The disadvantage is a slower
speed when compared to the other methods, though it is
still fast enough for real-time applications.

For the localization problem in this paper, we con-
structed the mapping without considering the additional
information of user motion profiles. In the future, we plan
to take the user-motion profiles into account, which may
lead to higher accuracy with even less calibration effort.
Similarly, we will experiment on other environmental and
contextual factors in order to further boost the performance.

Note that the proposed method can be applied to a wider
range of problems that have many classes but few
examples. In this paper, we showed how to leverage the
distance-based similarity relationship between classes to
enhance classification accuracy. In the future, we will
extend this for other types of interclass relationships and
develop a general framework to address this new type of
learning problems.
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