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Brief Papers

The Evidence Framework Applied to Support Vector Machines

James Tin-Yau Kwok

Abstract—in this paper, we show that training of the support one can utilize an upper bound on the generalization error pre-
vector machine (SVM) can be interpreted as performing the level dicted by the theory of SRM [19]. Experiments in [5], [15], and

1 inference of MacKay’s evidence framework. We further on show [19] indicated that the bounds are very loose, though the min-
that levels 2 and 3 of the evidence framework can also be applied . '

to SVMs. This integration allows automatic adjustment of the reg- mum of the bound seems .to approximately coincide with the
ularization parameter and the kernel parameter to their near-op- Minimum of the generalization error.
timal values. Moreover, it opens up a wealth of Bayesian tools for ~ On the other hand, this problem of finding good parame-
use with SVMs. Performance of this method is evaluated on both ters also exists in the realm of feedforward neural networks.
synthetic and real-world data sets. For example, one has to set a regularization parameter when
Index Terms—Bayesian inference, evidence framework, support using weight decay. Also, one needs to determine some model
vector machine (SVM). parameters (such as the number of hidden layers in the net-
work and the number of hidden units in each layer) in order
to obtain an optimal network architecture for a particular appli-
cation. Recently, various researchers [4], [9], [10], [14], [18],
In recent years, the_re has been a lot of interest in studying m] have applied Bayesian methods to tackle these problems.
support vector machine (SVM) [S], [6], [17], [19], [20]. SVM | general, the Bayesian approach is attractive in being logi-
is based on the idea dftructural risk minimization(SRM)  cally consistent, simple, and flexible. Compared with the tra-
[19], which shows that the generalization error is bounded Rjtional approach, the Bayesian methods mentioned above pro-
the sum of the training set error and a term depending on thge a rigorous framework for the automatic adjustment of the
Vapnik—Chervonenkis dimension of the learning machine. Bgqguylarization parameters to their near-optimal values, without
minimizing this upper bound, high_generalization p_erforman_qﬁe need to set data aside in a validation set. Moreover, the
can be achieved. Moreover, unlike other machine |eam"%yesian framework allows objective comparison among solu-
methods, SVMs generalization error is related not to the inpdns using different network architectures. Bayesian techniques
dimensionality of the problem, but to the margin with whichyso offer some other important features. For example, in re-
it separates the data. This explains why SVMs can have gag@ssion problems, error bars can be assigned to network pre-
performance even in problems with a large number of inpUctions [10]. In classification problems, by using the moder-
[7], [15]. To date, SVM has been successfully applied to a widgeq outputs [11], the tendency by conventional approaches of
range of problems, including pattern recognition, regressiaiaking over-confident predictions in regions of sparse data can

. INTRODUCTION

time series prediction and density estimation. be avoided. Among others, Bayesian techniques have also been
However, to obtain a high level of performance, some parafised for active learning [12] and in forming a committee of net-
eters in the SVM still have to be tuned. These include works [18]. It is thus promising to integrate SVMs with these

* aregularization parameter, which determines the trade®#yesian ideas.
between minimizing training errors and minimizing model A Bayesian interpretation of the SVM has been proposed by

complexity; Smolaet al. [16]. In particular, they showed that the use of
+ a kernel parameter, which implicitly defines the high didifferent kernels in SVM can be regarded as defining different
mensional feature space to be used. prior probability distributions on the function space, 2] o

These parameters are sometimes just hand-picked by the usexi®(—3||Pf||?). Here,3 > 0 is a constant and® is the reg-
more disciplined approach is to use a validation set [13], or yarization operator corresponding to the selected kernel. This
data-resampling techniques such as cross-validation and bguter, however, is based on a function-space view and cannot be
strapping. However, these methods can be very expensivgdadily incorporated into popular Bayesian techniques like [10],
terms of computation time and/or training data. Alternatively18], whose priors are based on a weight-space view.
In this paper, we develop an alternate Bayesian interpretation
of SVM from a weight-space view and then apply a well-known
Manuscript received November 29, 1998; revised March 13, 2000. This Bayesian approach, MaCKay,.S evidence .f'jam_ework [10], to
search has been partially supported by the Research Grants Council of the HBMM. We will focus our attention on classification problems.
Kong Special Administrative Region under Grant HKBU2063/98E. The rest of this paper is organized as follows. Brief introduc-
The author is with the Department of Computer Science, Hong Kong Baptjst he SVM d th id f K . .
University, Kowloon Tong, Hong Kong (e-mail:jamesk@comp.hkbu.edu.hk).'onsl to the and t e evi enC(_a rame_W()r are given in
Publisher Item Identifier S 1045-9227(00)06030-6. Sections Il and Ill, respectively. Section IV discusses how these
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Fig. 1. True and approximated probabilities.

two methods can be combined, and then be used to determgeenidefinite and so there is no local optima while maximizing
near-optimal values for the regularization parameter and ttie. For thosey;’s greater than zero, the corresponding training
kernel parameter. Simulation results are presented in SectioreXamples must lie along the margins of the decision boundary

and the last section gives some concluding remarks. (by the Kuhn—Tucker theorem), and these are calledtipport
vectors
II. SVMs FOR CLASSIFICATION During testing, for a test vector € R™, we first compute

In this section, we briefly review the use of SVMs in cIassifiEhe activation

cation problems. For more details and also on the use of SVMs
in other kinds of problems, interested readers may consult [5], a(x;w) =wiz+b=> ayK(x,x;)+b. (2
[19], [20]. g

Let the training seD be {(x;, )}, with each input; € _ _ .
R®™ and the output labey; € {+1}. The SVM first mapsx The class label(x) for x is then assigned by the following rule:
from the input spac&™ to z = ¢(x) in a feature spacé#.
Consider the case when the data is linearly separabi#g ire., o(x)
there exists a vectow € F and a scalab € R such that
yi(wl'z; + b) > 1 for all patterns in the training set. The SVM
constructs a hyperplangv®z + b) for which the separation ~When the training set is not separable) the SVM al-
between the positive and negative examples is maximizedgtirithm introduces nonnegative slack variabfgs> 0, i =

1 alx;w) >0,
~ 1 =1 otherwise.

can be shown [6] that the for this “optimal” hyperplane can 1,..., N [6]. The resultant problem becomes
be found by minimizing|w||, and the resultant solution can be
written asw = Ef;l o;;2; for somew; > 0. This vector of 1 N
a;'s, a = (ay,...,ay), can be found by solving the following minimize§||w||2 + CZ & (3
guadratic programming (QP) problem: maximize i=1
T 1 - subject toy;a(x;,w) > 1 —&,47 =1,...,N. Here,C is a
Wia) =o'l - 2 Qa (1) regularizatiors parar)netercontrolling the tradeoff between model

complexity [the first term in (3)] and training error (the second
with respect tav, under the constrainis > 0 anda”y = 0, term) in order to ensure good generalization performance. The
wherey” = (y1,...,yn~) andQ is a symmetridV x N matrix  variableg;, whenever it is nonzero, measures the (absolute) dif-
with elementsQ;; = w;y;2! z;. To obtain@;;, one does not ference between; anda; = a(x;, w), and may be written con-
need to use the mappingto explicitly getz; andz;. Instead, cisely as
under certain conditions, one can fineternel (-, -) such that
K(xi,x;) = 7] z;. Moreover, notice tha® is always positive & =1 —wyai)y 4)
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wherefu] y = ul{,>0y.Again, minimization of (3) can be trans-Substituting in (5), the posterior distributionwfthen becomes
formed to a QP problem: maximize (1) subject to the constraints
0< o< Clandaty =0.
= > exp(—M(w))
w|DANH) = — 2 7
p(w| ) Zar(N) )

1. THE EVIDENCE FRAMEWORK

The evidence framework is a Bayesian framework propose def
by MacKay [10], [11]. Computationally, it is equivalent to theW%freM(W) = ABw(w) —logp(D|w, 1), andZy () =
type Il maximum likelihoodnethod in Bayesian statistics [1].fd w exp(—M). Minimizing M:is thus the same as finding
The evidence framework has been applied successfully to the maximum a posterioMAP) estimatewyp of w. In the
learning of feedforward neural networks in both classificatiopedue!. we will denotiog p(D | w, 1) simply asG:(w).
and regression problems. In this section, we review the evidence
framework as applied to classification problems [11]. B. Level 2 Inference

First, we introduce some notations used in the evidenceThe second level of inference determines the valug, ddfy
framework. A model®, with a k-dimensional parameter maximizingp(A | D, ) o p(D | A, H)p(A | ). Whenp(A | H)
vector w, consists of its functional forny, the distribution is a flat prior, the evidence fok, p(D | A, ), can be used to
p(D | w,’H) that the model makes about the dataand a prior assign a preference to alternative values.dy approximating
parameter distributiop(w | 7, A), which is usually written in  the posterior distribution ofv in (7) by a single Gaussian at

the form WMP, aSM(W) = M(WMP) + (1/2)(W — WMP)TA(W —
wyp), WhereA = V2M, the evidence foA can be obtained
exp(—AEw(w|H by integrating outw as [10]
vy = SPEEWITO)L )

logp(D |\, H) = —AEW" + GMP
Here, A is a regularization parameter andy (\) = 11 det A kl ‘)\ 8
— 5 logde + 5 08 (8)

J d*wexp(—AEw) is for normalization.

A. Level 1 Inference where BN andGMT are the values of’y andG evaluated at

The evidence framework is divided into three levels of infefwp.
ence. For a given value df, the first level of inference infers  One can also obtain an near-optimal value\ @f an iterative
the posterior distribution of by the Bayes rule manner. First, by setting the derivative of (8) to zero, the fol-

INotice that while we need to take the Gaussian approximation to the poste-
p(w| D, \H) «x p(D|w, H)p(w| A, H). (6) rior distribution ofw, no such approximation is needed fgtD | w, ).
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Fig. 3. The data set used in the toy problem.

lowing condition for the most probable value bH\\p, can be and—-C, we proceed further and use levels 2 and 3 of the evidence
obtained framework to determine the regularization parameter and the
kernel parameter.
22mp By =5 9

H A. A Bayesian Interpretation for SVM
where
Assuming that the patterns are independently identically
def

v k- Atrace AL (10) distributed (i.i.d.), therp(D|w, H) = [[, p(x;,y: | w, H) =
I, p(ys | xi, w, H)p(x;), and (6) becomes
is called theeffective number of parametersn near-optimal
value of ) is then obtained by iterating the process of finding p(w | D, A, H) x p(w | A, H) Hp(yi | x;, w, H)p(x;). (12)
wyp and reestimating by (9). i

Consider the following probability model.

. _ _ ) » The prior overw is the Gaussian priop(w | A\, H)
The third level of inference in the evidence framework ranks exp(_()\/2)||w||2).

different models by examining their posterior probabilities . The probability density functiop(y; | x;, w, H) for y; =
p(H| D) x p(D|H)p(H). Assuming a flat priop(#) for all +1 is given by

models, different models can then be rated by their evidence

p(D|H). Again, this is obtained by integrating oW, as

C. Level 3 Inference

exp(—[l — yiail+)

i | X, W, H) = .
p(DIH) = [p(D|X\H)p(A|H)d\. Using a Gaussian plyi [ x5, w, 1) exp(—[1 — a;]4) + exp(—[1 + a;]+)
approximation fop(L)| A, ), it can be shown that [10] Substituting these probabilities into (12), we obtain

p(D|H) o< p(D| A, H) /- (11)

A 2
IV. APPLYING THE EVIDENCE FRAMEWORK TO SVM T2 IFwli
In Section IV-A, we develop a Bayesian interpretation for the — Z 10g< exp(—[l = yiail+) )
SVM from a weight-space view and show that minimizing (3) i exp(—[1 = ai]4) + exp(=[1 + ail+)
during SVM training can be interpreted as performing the level _ Z log p(x;) + constant

1 inference of the evidence framework. Then in Sections IV-B
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Fig. 4. Results on using different values@f(polynomial kernel). (a) Toy problem. (b) Image segmentation.

This cannot be cast readily under the SVM framework. Howrhe last two terms on the right do not dependwonHence, by

ever, if we take the approximation that

p(yi | xi, w, H) = exp(—[1 — yiai]4) = exp(—&),

settingC = 1/A, optimizing (3) can be regardedas finding
the MAP estimatewyp of w. In other words, training of the
SVM can be regarded as approximately performing the first
level of inference in the evidence framework. A comparison of

using (4). Then, on substituting this approximated probabiliff}€ true and approximated probability distributions is shown

model back into (12), we get

—logp(w|D, A\, H)
A

2 L N )
= 5lwl +Z£z Zlogp(xz)—i—constant

in Fig. 1.

gesngd

2Notice that the constraintg.a; > 1—¢&;, i = / in (3) have
been implicitly taken care of by the equatidi — y;a:]. = &;.
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Fig. 4. (Continued) Results on using different values 6f (polynomial kernel). (c) Breast cancer.

Note that this Bayesian interpretation can also be appligg)zizf def riz;z} , wherer(u) def us”(u) + 2s'(u). Fig. 2
to regression problems, witfy being replaced by a different shows a plot of-(u), which has the shape of a Mexican hat and
loss function (such as theinsensitive loss function). Again, is concentrated around = 0.
each loss function corresponds to a different noise model. FoNoting thatVZEyy = I, (13) thus becomes

an overview of some common loss functions and their corre-
sponding noise models, interested readers may consult [17]. A= )4+B (15)
Considering the case when the training set is separatfe in
let ovax e the largest Lagrangian multiplier in the set of sup-
N
B=> rzz. (16)
=1

port vectors. We can view the training process as minimizing (

with C' = ay.x. With a largerC' > a5, bothw andé; will
ector8Boby p; and v,

remain unchanged. Hence, effectively, we can t8ke apax
in (3).
i ) Denote the eigenvalues and ei%env
B. Computing the Hessian respectively. Ap;v; = Bv; = >, ri(2; vi)z;, all v;’s with
To proceed under the evidence framework, we next havedp+# 0 must lie in the span of;, ...,z i.e.,
determine the Hessian
]\T
N v = Z Wi a7
A=VM=V?[XEw+> &|. (13) =1
=1
Moreover, (17) implies that there are at m@étindependent
v,;'s (and at mosftV nonzero eigenvalues). For a particutar—

we have

Recall thaté; 1 — wiai]y with [u]ly = wlg,s0y. How- / . » _
ever,I(,o) is not smooth and does not have second derivativéXx) € 7 considerp,z; v; = z; Bv,. Using (16) and (17),

Hence, we replace it by the sigmoid function
1 a
T
s(u) = ———, >0 14 o HiiZy, Z;
O =TI 14) 2
N N
= Z{ ZT]'Z]'Z? Z/mzi
j=1 =1

1,..., V.

5.

and¢; becomeg1 — y;a;)s(1 — y;a; ). Differentiating with re-
(1 — yia;)8' (1 — y;a; )Va; —

spect tow, we obtainV¢;
y:8(1 — y;a;)Va;, where the prime denotes the derivative with N N
= — Z i Z 22,2, %,k
i=1 j=1

respect to the argument f-). From (2),Va; = z; andV?q;
0. DifferentiatingV¢&; once more, we obtaiv?2¢; = »(|y; —



1168 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000

-200
- -250
-300
g -350
&
g 8
c
3 -400 8
@ >
j=] [H]
£
8 -450
-500
-550
35 1 1 1 1 1 ] 1 1 '600
0.0001 0.001 0.01 0.1 1 1C(:J 100 1000 10000 100000 1e+06
(@
90 v —r T ™ — —T— —r -440
80 L testing accuracy (%) —+—
evidence ---x--- | -460
70
— - -480
£ 80|
P
g 8
=3 c
g8 50 1-500 3
@ =
=) [
£
§ 40 +
-4 -520
30 -
- -540
20
10 L 1 L PR L L 1 1 1 PR n — _560
0.0001 0.001 0.01 0.1 c 1 10 100 1000
(b)

Fig. 5. Results on using different values@f(Gaussian kernel). (a) Toy problem. (b) Image segmentation.

Or, in matrix form,p; Ky = KK, wherey; is the N-vector The solving of the eigensystem in (18) FA&N?) time com-
(ugs. .. un)?, K is the N x N matrix with entries plexity, which can be computationally expensive for lafge
7]z; = K(x;,%x;), andK is anotherN x N matrix with However, as can be seen from Fig. 2, the value;;0i6 very
entriesr;z} z; = K (x;,x;). Assuming tha is invertible, small when|y; — a;| is large, and sd is dominated by pat-
we have terns whose; is almost the same as. We can thus reduce the

- complexity significantly by only including those patterns in the
pup = K. (18) computation.

Solving this eigensystem and using (2), we can obtain the eigen-
valuesp; of A as C. Levels 2 and 3 Inference for SVM

. | A+p 1=1,...,N, 19 Level 2 inference determines the value)oby maximizing
PEZA I=N+1,N+2,... (19) p(D| A, H) in (8). In the following, denote the number of
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Fig. 5. (Continued) Results on using different values 6f (Gaussian kernel). (c) Breast cancer.
TABLE |
RESULTS OBTAINED BY ITERATING LEVELS 1 AND 2 (POLYNOMIAL KERNEL)
C testing number of best C best testing

obtained | accuracy (%) | iterations || in range tested | accuracy (%)

toy problem 6.39 88.4 2 0.1 88.6

image segmentation 0.91 98.8 7 0.01 99.8

breast cancer 0.125 92.3 5 0.001 93.6
TABLE I

RESULTS OBTAINED BY ITERATING LEVELS 1 AND 2 (GAUSSIAN KERNEL)

c testing number of best C best testing

obtained | accuracy (%) | iterations || in range tested | accuracy (%)

toy problem 0.55 88.7 5 1 88.6
image segmentation 1.71 87.5 2 1.71 87.5
breast cancer 80.7 91.6 5 80.7 91.6

nonzero eigenvalues & by n < N. Then, using (19), we
obtain —log| A... XA+ p1) .. (A +pp)
k—n

logp(D |\, H)

1 n
= —AENT 4+ GMP — =3 log(A+ pi) + = log A (20)
MP mp |, 1 24 2
=-AEy + G+ §(k10g A —logdet A) i=1

1 To obtain the model evidengéD | H) in level 3 inference or
= AEYT +GMP 4~ | Elog A to obtain iterates of in level 2 inference, the effective number
2 of parametersy in (10) has to be computed. This involves
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Fig. 6. Results on using different valuesd{polynomial kernel). (a) Toy problem. (b) Image segmentation.

the calculation oftrace A~*, which, again, can be computed V. SIMULATION
readily from the eigenvalues & in (19), as ] . .
In this section, we report results on applying the ev-
idence framework to SVMs, with polynomial kernel

v=k— Atrace A™! K(x;,x;) = (xIx; + 1) and Gaussian kernel
K(x;,x;) = exp(—(||lx; — x;||?/20?)). Three data sets are

1 1 1 used in the experiments and they are described in Section V-A.

=k-A N XJFW +oot At p Section V-B reports results on choosing the regularization
T ' " parameteri (or, equivalently,C) using the level 2 inference

" of the evidence framework. Section V-C presents results on
_ Z pi choosing the kernel parameterg ¢r o) using the level 3
P inference.
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Fig. 6. (Continued) Results on using different values @f{polynomial kernel). (c) Breast cancer.

In the experimentsy in (14) is set to 100. Moreover, some-C'in (3)]. Fig. 4 plotsp(D | A, H) and the percentage of correct
times when the regularization parameter is set to an extreniassifications on the test set at different value€'dq= (1/X))
value, all the eigenvalues dB are numerically very close when a polynomial kernel is used. The corresponding graph for
to zero. In this case, we suspect that the parameter is podHg Gaussian kernel is shown in Fig. 5. In most cases, the evi-
matched to the problem, and we set the corresponding evidedeace forA follows the testing accuracy closely.

value to negative infinity. As mentioned in Section IlI-B, an near-optimal value of
can be obtained by iterating the process of findingp from
A. Data Sets SVM training and re-estimating by (9). Experimental results

Simulation is performed on three data sets. The first oned&S Shown in Tables I and II. The testing accuracy for the SVM
a toy problem, with the data generated from five Gaussiaf tained in the iterative manner is very close to the testing ac-
(Fig. 3). It is not separable even with a degree 3 polynomi&\‘racy for_the best SVM in the range of values tested. Results
decision surface. The training set has 500 patterns and the f§; €SPecially favorable for Gaussian kernels. Moreover, the
set has 10 000 patterns. nu_mber of iterations required to find the near-optimal value is
The second data set is the image segmentation data fromHLe small.
UCI machine learning repository [3]. Each pattern has 19 con-
tinuous attributes and corresponds to & 3 region of an out- C. Choosing the Kernel Parameter

door image. There are 210 patterns in the training set and 210Ghs section discusses results on using the model evidence

patterns_ in the test set. The original problem is to clgssify t'}fD |7) in (11) to estimate the kernel parameters, which in-
pattern into c(j)ne of trr\]e sc(ajven classbadkface, sky, fohage,_” clude the polynomial degre¢for polynomial kernels and the
cement, window, path an gr_as_s). _In oure>_<per|ments,we W \idth o for Gaussian kernels. The regularization paraméter
only concentrate on determining if a particular pattern belon%r afixedd or o) is estimated iteratively as mentioned in Sec-
to the clasdrickface or not. tion I1I-B

The third data set is the W|§c0n3|n breast cancer dataFig. 6 plotsp(D | H) and the percentage of correct classifi-
also from the UCI machine learning repository. Each patteflyiong on the test set, at different valuesiatihen a polyno-
has nine attributes. First, we remove patterns with missing yernel is used. The corresponding graph for the Gaussian
attributes. Then inconsistent patterns that share the same st.0f | at different values of is shown in Fig. 7. Though not
input at(tjrlbur:e Val”TS b“(tj with d|fferentdoutr|Jut labels a:je_alsﬁerfect, the evidence still follows the testing accuracy closely.
removed. The resultant data set is randomly partitioned intGrfg e 4re several reasons for this imperfectness. For example,
training set of 150 patterns and a test set of 299 patterns. the testing accuracy we measured is based on one SVM with
weights set towy. The evidence, however, takes account of
the complete posterior distribution around this most probable

In this section, we use the evidence farp(D | A, H), com- value. For a more complete discussion on this, interested readers
puted in (20) to rank the different values dfor, equivalently, may consult [2].

B. Choosing the Regularization Parameter
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Fig. 7. Results on using different valuesco{Gaussian kernel). (a) Toy problem. (b) Image segmentation.
VI. CONCLUSION A number of issues need to be addressed in the future. First,

an extensive study is needed to compare the use of evidence

In this paper, we introduce an alternate Bayesian interpretatvocated here and the more traditional method based on an
tion of SVM based on the weight-space view. By relating thepper bound of the generalization error. Nevertheless, we want
learning of SVM to the level 1 inference in MacKay’s evidencé emphasize that the Bayesian framework is not confined to
framework, we further on show that levels 2 and 3 of the ethis automatic adjustment of parameters. In fact, as mentioned
idence framework can also be applied to SVM. In particulain Section |, a lot more benefits can possibly be reaped. For
we have investigated some of the benefits from such an int&cample, we have obtained some encouraging results on the use
gration, namely, the automatic adjustment of the regularizatiof moderated outputs in SVM [8]. Extending this integration
parameter and the kernel parameter to their near-optimal valuesm classification problems to regression problems should also
without the need to set data aside in a validation set. be straight-forward.
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Fig. 7. (Continued) Results on using different values @f(Gaussian kernel). (c) Breast cancer.

Moreover, as the focus of this paper is to investigate the fea{7] J. T. Kwok, “Automated text categorization using support vector
sibility of applying the evidence framework to SVM, compar- machine,” inProc. Int. Conf. Neural Inform. Processingitakyushu,
. ith oth h h decisi feedf Japan, Oct. 1998, pp. 347-351.
ison with other approaches (such as decision trees, feedforwar ] ——, “Moderating the outputs of support vector machine classifiers,”
neural networks) has not been performed. Last, a central ques- IEEE Trans. Neural Networksol. 10, pp. 1018-1031, Sept. 1999.
tion in the evidence framework is the validity of the Gaussian [9] T- Y- Kwok and B. . Yeung, "Bayesian regularization in constructive

. . . . L . . neural networks,” inProc. Int. Conf. Artificial Neural Networks

approximation used for the posterior weight distribution. This
issue will be addressed in the future and the application of othgio]

Bochum, Germany, July 1996, pp. 557-562.
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